M1F Foundations of Analysis, Problem Sheet 1

1. Which of the following statements involving an integer x are true and which are false? Just write T or F , and perhaps also one remark about why you think this is the answer.
(a) $x^{2}-3 x+2=0 \Rightarrow x=1$.
(d) $x^{2}-3 x+2=0 \Longleftrightarrow x=1$ or $x=2$.
(b) $x^{2}-3 x+2=0 \Leftarrow x=1$.
(e) $x^{2}-3 x+2=0 \Rightarrow x=1$ or $x=2$ or $x=3$.
(c) $x^{2}-3 x+2=0 \Longleftrightarrow x=1$.
(f) $x^{2}-3 x+2=0 \Leftarrow x=1$ or $x=2$ or $x=3$.
2. Suppose P, Q and R are mathematical statements (so they are either true or false). Let's say we know that if Q is true then P is true, and that if Q is false then R is false. Does R imply P ? Write down either a proof, or a counterexample.
3. Say P is true, Q is false, R is false and S is true. Is $(P \Rightarrow Q) \Leftarrow(R \Rightarrow S)$ true or false?
4. Say P, Q and R are true/false mathematical statements, and we know the following:
(a) $P \Rightarrow(Q \vee R)$,
(b) $\neg Q \Rightarrow(R \vee \neg P)$
(c) $(Q \wedge R) \Rightarrow \neg P$.

Can we deduce anything about P, Q or R ? For example, is R definitely false? Write down a complete list of possibilities for the truth values of P, Q and R.
$\mathbf{5}^{*}$. Let A be the set $\{1,2,3,4,5\}$. Which of the following statements are true and which are false? (just write T or F).
(a) $1 \in A$.
(e) $\{1,2,1\} \subseteq A$.
(b) $\{1\} \in A$.
(f) $\{1,1\} \in A$.
(c) $\{1\} \subseteq A$.
(g) $A \in A$.
(d) $\{1,2\} \subseteq A$.
(h) $A \supseteq A$.
6. Now let A be the slightly weirder set $\{1,2,\{1,2\}\}$ and let B be the even weirder set $\{1,2, A\}$. Which of the following statements are true and which are false? (again just write T or F).
(a) $1 \in A$.
(e) $1 \in B$.
(b) $\{1\} \in A$.
(f) $\{1\} \in B$.
(c) $\{1,2\} \in A$.
(g) $(\{1,2\} \in B) \Rightarrow(1 \in A)$.
(d) $\{1,2\} \subseteq A$.
(h) $(\{1,2\} \subseteq B) \vee(1 \notin A)$.
7. Set $A=\left\{x \in \mathbf{R}: x^{2}<3\right\}, B=\left\{x \in \mathbf{Z}: x^{2}<3\right\}$ and $C=\left\{x \in \mathbf{R}: x^{3}<3\right\}$. For each statement below, either prove it or disprove it! Be careful with your logic and your exposition.
(a) $\frac{1}{2} \in A \cap B$.
(d) $B \subseteq C$.
(b) $\frac{1}{2} \in A \cup B$.
(e) $C \subseteq A \cup B$.
(c) $A \subseteq C$.
(f) $(A \cap B) \cup C=(A \cup B) \cap C$

