
KMB, 24/3/16

M3P11 Galois Theory, Solutions to problem Sheet 6
1.

(i) a > 1 so a has a prime divisor p; now use Eisenstein. Or use uniqueness of factorization to
prove

√
a 6∈ Q.

Next, if
√
b ∈ Q(

√
a) then write

√
b = x+ y

√
a; square, and use the fact that

√
a is irrational

to deduce that 2xy = 0. Hence either y = 0 (contradiction, as
√
b 6∈ Q) or x = 0 (contradiction,

as we can write ab = cd2 with c squarefree, and a 6= b so c 6= 1, and again
√
c 6∈ Q).

(ii) F = Q(
√
a,
√
b) and the preceding part, plus the tower law, shows that [F : Q] = 4. Now

F is a splitting field in characteristic zero, so it’s finite, normal and separable, so Galois. By the
fundamental theorem, Gal(F/Q) must be a finite group of order 4, so it’s either C4 or C2 × C2.
There are lots of ways of seeing that it is actually C2 × C2. Here are two that spring to mind:
firstly, C4 only has one subgroup of order 2, whereas F has at least two subfields of degree 2 over Q,
namely Q(

√
a) and Q(

√
b), so by the correspondence in the fundamental theorem, C4 is ruled out.

And another way – if we set K = Q(
√
a) then F/K is Galois and [F : K] = 2, so Gal(F/K) is

cyclic of order 2 by the fundamental theorem, and the Galois group permutes the roots of x2 − b.
We deduce that there must be an element of Gal(F/K), and thus a field automorphism ga of F ,
that sends +

√
b to −

√
b and fixes

√
a (as it fixes K). Similarly there’s an automorphism gb of F

that sends +
√
a to −

√
a and fixes

√
b. This gives us two elements of order 2 in Gal(F/Q), which

must then be C2×C2. Of course their product, gagb, sends
√
a to −

√
a and

√
b to −

√
b, so it fixes√

ab and is the third non-trivial element of Gal(F/Q).
The subgroups of C2×C2 are: the subgroup of order 1 (corresponding to F ), the group itself, of

order 4 (corresponding to Q) (both of these because the Galois correspondence is order-reversing,
so i.e. sends the biggest things to the smallest things and vice-versa), and then there are three
subgroups of order 2, corresponding to Q(

√
a), Q(

√
b) and Q(

√
ab). One way to see this for sure

is, for example, that ga fixes
√
a, so the subfield corresponding to 〈ga〉 definitely contains

√
a,

but has degree 2 over Q by the tower law and so must be Q(
√
a). Arguing like this will show

everything rigorously.
Finally, all of the subfields are normal over Q, because all subgroups of Gal(F/Q) are normal

(as it’s abelian).
(iii) Every element of Gal(F/Q) sends

√
a +
√
b to something else! (for example ga sends it

to
√
a −
√
b). So the subgroup of Gal(F/Q) corresponding to Q(

√
a +
√
b) must be the identity,

which corresponds to F , and so F = Q(
√
a+
√
b).

(iv) If
√
r ∈ Q(

√
p,
√
q) then Q(

√
r) must be one of the quadratic subfields of Q(

√
p,
√
q), and

hence it must be either Q(
√
p), Q(

√
q) or Q(

√
pq) by part (ii). But by part (i)

√
r is not in any of

these fields! Done.
(v) [F : Q(

√
p,
√
q)] must be 2 (as it isn’t 1) and now use the tower law. The Galois group –

we know firstly that any element of the Galois group will be determined by what it does to
√
p,√

q and
√
r, and of course

√
n must be sent to ±

√
n for any n ∈ Q, so there are at most eight

possibilities for Gal(F/Q), corresponding to the 8 = 23 choices we have for the signs. However we
know the size of Gal(F/Q) is eight, so all eight possibilities must occur and the group must be
C2 × C2 × C2.

Let me stress here, for want of a better place, that you cannot just say “clearly
√
p,
√
q and√

r are “independent” so we can move them around as we please” – one really has to come up
with some sort of an argument to prove that there really is a field automorphism of F sending,
for example,

√
p to −√p, √q to +

√
q and

√
r to −

√
r. You can build it explicitly from explicit

elements you can write down in the Galois group using degree 4 subfields, or you can get it via the
counting argument I just explained, but you can’t just say “it’s obvious” because Galois theory
is offering you precisely the framework to make the arguments rigorous and I don’t think it is
obvious without this framework.

(vi) Meh. Think of the Galois group as a 3-dimensional vector space over the field with two
elements. There are seven 1-dimensional subspaces (each cyclic of order 2 and generated by the
seven non-trivial elements), and there are also seven 2-dimensional subspaces, by arguing for
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example on the dual vector space – or by arguing that any subgroup of order 4 of C2 × C2 × C2

is the kernel of a group homomorphism to C2 and such a homomorphism is determined by where
the three generators go; there are eight choices, one of which gives the trivial homomorphism and
the other seven of which give order 4 subgroups.

Hence other than F and Q there are 14 fields; seven have degree 2 and seven have degree 4. The
degree 2 ones are Q(

√
paqbrc) as a, b, c each run through 0 and 1, but not all zero. The degree 4

ones are Q(
√
paqbrc,

√
pdqerf ) as (a, b, c), (d, e, f) run through bases of the seven 2-dimensional

subspaces of the Galois group considered as a vector space of dimension 3 over the field with 2
elements.

(vi) We know all seven non-trivial elements of the Galois group, and none of them fix
√
p +√

q+
√
r (because if you think of it as a real number, they all send it to something strictly smaller),

so the subgroup corresponding to Q(
√
p+
√
q +
√
r) is trivial and we’re home.

(vii) Induction and the argument in (v) gives the degree; considering possibilities of signs gives
that the Galois group is what you think it is, acting how you think it acts, and the last part again
follows by observing that Q(

√
p1 +

√
p2 + · · ·+√pn) corresponds to the trivial subgroup.

2. (i) This is just the same as x3 − 2. If the roots are α, β, γ then the Galois group permutes
them, it has order 3 so it must be S3, the subgroups of order 2 generated by the transpositions fix
Q(α), Q(β) and Q(γ) of degree 6/2 = 3, and the subgroup A3 of order 3 corresponds to a normal
extension of degree 5/3 = 2 which must be Q(ω) with 1 6= ω and ω3 = 1. the normal ones are F ,
Q and Q(ω).

(ii) Let the roots of x4−11 be α (positive and real), and iα, −α, −iα. Now x4−11 is irreducible
by Eienstein and Q(α) is contained within the reals so it has degree 4 over Q and i 6∈ Q(α). Hence
Q(α, i) must have degree 8 over Q by the tower law, and is clearly a splitting field for x4−11. The
Galois group is then a subgroup of S4 (permutations of the roots) of order 8 and as it happens
there is only one of these up to isomorphism, by Sylow’s theorems for example, if you know Sylow’s
theorems, so if you’re happy with this group theory then the Galois group must be D8 because
D8 is a subgroup of S4 of order 8. If you’re not happy to use Sylow’s theorems then you’ll have
to do it by hand. Again we’re lucky in that Q(α, i) is degree 8 over Q so the Galois group has
order 8, but there are only four possibilities for where an automorphism can send α (the four roots
of its min poly) and there are only two possibilies for i (namely ±i) so each must occur. Note
that this argument wouldn’t have worked if we had used the alternative presentation Q(α, β) of
the splitting field; there would have been four possibilities for β and we would have had to think
more.

Having established that α maps to something in {α, iα,−α,−iα} and i maps to ±i we need to
figure out what this group of order 8 actually is. If i 7→ i and if α 7→ inα then idα 7→ in+dα and we
see that if we regard the four roots of x4−11 as the corners of a square then this map corresponds
to rotating the square. Similarly fixing α and sending i to −i corresponds to reflecting the square
along the long diagonal from +α to −α. So now we see that we have two elements which generate
the dihedral group D8 (a rotation and a reflection) and so this must be the full Galois group.

3.

Q ⊆ Q
(

81/5
)

⊆ Q
(

81/5,
√

81/5 + 6
)

⊆ Q
(

81/5,
√

81/5 + 6, 51/3
)

⊆ Q
(

81/5,
√

81/5 + 6, 51/3,
11

√
51/3 +

√
81/5 + 6

)
⊆ Q

(
81/5,

√
81/5 + 6, 51/3,

11

√
51/3 +

√
81/5 + 6, 91/7

)

4. Q7 of the previous sheet showed Gal(F/Q) was cyclic of order p − 1, which is even, so there
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is a unique subgroup of order (p − 1)/2 (the squares, if you’re thinking about things number-
theoretically) corresponding to a unique quadratic subextension in F .

If p = 3 then F = Q((−1 +
√
−3)/2) = Q(

√
−3) so n = −3.

If p = 5 then F = Q(ζ5) with ζ5 = e2πi/5. Now F contains ζ5 + ζ−1
5 = 2 cos(72o) and there are

various cute ways of showing that this is (
√

5−1)/2 (drawing some cunning lines in a pentagon, or
observing that cos(5θ) is a polynomial in cos(θ) and then setting θ = 72o, or several other tricks).
Anyway, we deduce

√
5 ∈ F and n = 5.

In general the quadratic subfield is Q(
√
p) if p = 4n + 1 and Q(

√
−p) if p = 4n − 1; this is a

little tricky to prove without any help, although you’ll find some slick proofs in books; Legendre
symbols (quadratic residues etc) can help here.

5.
a) Because w ∈W1 we know λw ∈W1. So if v+ λw ∈W1 then by subtracting we get v ∈W1,

a contradiction.
b) We know v + λw is never in W1. Because V is the union of W1,W2, . . . ,Wn we must have

that v+λw is in Wj for some j > 1. Because K is infinite we know that there must be some fixed
i > 1 and two distinct values of λ, say λ1 and λ2, for which v + λ1w and v + λ2w are both in Wi.
Hence the difference (λ1 − λ2)w is in Wi and so w ∈Wi.

c) By part (b) we have seen that W1 is contained in W2 ∪W3 ∪ . . . ∪Wn. Hence if V is the
union of W1 to Wn, then it’s also the union of W2 to Wn, and now an easy induction shows that
this can’t happen (because it can’t happen for n = 1 as W1 6= V ).

6.
(i) If L = E(α1, . . . , αn) then for E ⊆ K ⊆ F we have that K contains L iff K contains all the

αi. So if E ⊆ K ⊆ F then E contains N iff E contains M and the αi iff E contains M and L;
hence N is the smallest subfield of F containing M and L.

(ii) If L is the splitting field of p(x) ∈ E[x] and M is the splitting field of q(x) ∈ E[x] (these
polynomials exist by normality) then I claim N is the splitting field of p(x)q(x); indeed if the αi
are the roots of p and βj are the roots of q then by the first part N is the field generated by the
αi and the βj . Now N is finite and normal; moreover each of the αi and the βj are separable over
E (as each is contained in either L or M) and hence each time we adjoin one we get a separable
extension; finally a separable extension of a separable extension is separable (by comparing degrees
and separable degrees).

(iii) If g ∈ Gal(N/E) then g(L) = L by 6.7 and hence the restriction of g to L is in Gal(L/E).
Similar for M/E. So we get a map Gal(N/E)→ Gal(L/E)×Gal(M/E). This is easily checked to
be a group homomorphism. It’s injective because anything in the kernel fixes L and M pointwise,
so fixes LM pointwise; but LM = N .

It’s not always surjective though – for example if L = M then it hardly ever is. More generally
if L ∩M 6= E then there will be problems. However if L ∩M = E then my guess is that the
map is a bijection; however it’s nearly midnight and so I think I’ll leave this as an exercise for the
interested reader!
7.

a) This is clear. We have L = K(α0, α1, α2, . . . , αq−1) and each αi is algebraic over K as L/K
is finite. For a field map L→ L which is the identity on K, each αi must be sent to a root of the
min poly of αi over K, so there are only finitely many possibilities for where each αi can be sent.
But a field map from L to L which is the identity on K is determined by where each of the αi are
sent, and we’re done.

b) If N is a finite extension of L in L such that N/K is normal, then any K-map N → L must
have image equal to N again. But any K-map L→ L extends to a map N → L, so in particular
N must contain all of the possible images of K-maps L→ L. In particular N must contain all of
the Ai and hence N contains M . It then suffices to prove that M/K is normal. By Lemma 6.2
we just need to check that any K-map M → L, the image is M again. But M is generated by
the fields Ai each of which are isomorphic to L. So for β such a map, β(Ai) is a subfield of L
which must be equal to one of the Aj (because composing the isomorphism L→ Ai with the map
β shows that β(Ai) is the image of a K-map L → L). Because M is generated by the Ai, β(M)
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must be generated by the β(Ai), so β(M) is certainly contained in M . Now for degree reasons we
must have β(M) = M . So M/K is normal.

c) D(α) is the smallest field containing D and α, and D = AC, so D(α) is the smallest field
containing A and C and α. But the smallest field containing A and α is A(α) = B, so D(α) is
the smallest field containing B and C, which is E. Finally αn ∈ A ⊆ AC = D and we’re done.

d) We know that L/K is an extension by radicals, and each Ai is isomorphic to L, so Ai/K is
also an extension by radicals (only involving taking nth roots for n ∈ S). By repeated applications
of (c) to the extensions used to build A2/K we see that A1A2/A1 is an extension by radicals (only
involving nth roots for n ∈ S) and then that A1A2A3/A1A2 is an extension by radicals, and so
on: we deduce M = A1A2 . . . AN/K is an extension by radicals and we only ever took nth roots
for n ∈ S.

8. (a) If you’ve been to the group theory course: the orbits of S3 on {1, 2, 3, 4} are {1, 2, 3}
and {4}. Now H must contain an element of S4 not in S3 so that means H acts transitively on
{1, 2, 3, 4}, and hence the stabiliser of {4} in H has index 4, thus order 3, but it contains all S3,
a contradiction.

If you haven’t, rotten luck. Here’s a more hands-on proof. Say H is a subgroup of S4 of
order 12 that contains S3. Choose h ∈ H with h 6∈ S3. Then h(4) 6= 4. Say h(4) = i ∈ {1, 2, 3}.
Because H = S3 ∪ hS3 we see that every element of H sends 4 either to 4 or to i. But this can’t
be true because if j ∈ {1, 2, 3} with j 6= i then (i j) ∈ H and (i j)h sends 4 to j, a contradiction.

(b) If α is a real root of f(x) then [Q(α) : Q] = 4, the degree of f , and if L is the splitting
field of f(x) over Q then Q(α) is the subfield of L corresponding to the elements of S4 which fix
one element (which WLOG can be 4) so it corresponds to the subgroup S3 of S4.

However a subfield of Q(α) of degree 2 over Q would correspond via the fundamental theorem
to a subgroup H as in part (a), and we showed that no such subgroup exists.

This shows that it’s not true that if L/K has degree 4 then there’s a subfield K ⊆ M ⊆ L
with [M : K] = [L : M ] = 2. This should make us wonder whether α is constructible and in the
rest of this question we will show that it is not.

(c) First note that if B/A is an extension of fields of characteristic zero with [B : A] = 2, then
B = A(α) for some α with α2 ∈ A (just let α0 be any element of B not in A, write down its
min poly and then complete the square). Q7 then shows that the normal closure is generated by
a sequence of subfields each obtained by adding a square root of an element in the field before;
the extension is finite and normal, and it must be separable because we are in characteristic zero.
The degree has 2-power order by the tower law and we are done.

(d) Let α be a real root of x4−x− 1. Then the point (α, 1) is not constructible. For if it were,
Q(α) would be contained in some finite extension of Q which can be obtained via a sequence of
degree 2 extensions. By part (c) Q(α) would be contained in a finite Galois extension of Q of
2-power order. This would imply that the normal closure of Q(α)/Q was contained in such an
extension – but I have claimed that this normal closure has Galois group S4, whose size is not a
power of 2.

(e) The hand-out contains a proof that the Galois group is S4.
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