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M345P11 Galois Theory, Solutions to problem Sheet 3

1. (a) If we can construct a regular n-gon somewhere in the plane then (bisect the interior
angles) we can construct its centre, and hence (drawing lines from the centre C and using
the compass) an isosceles triangle with side length 1, two equal angles A and B, and the
third angle C equal to 2π/n. Setting the compasses to be the distance AB we can then
use this to go around the unit circle centre the origin and construct our n-gon.

(b) (cos(2π/n), sin(2π/n) is the coordinate of another point of this n-gon.

(c) i has degree 2 over Q(cos(2π/n), sin(2π/n)) (as it is not real), so Q(cos(2π/n), sin(2π/n), i)
has degree a power of 2 over Q by the tower law. It also contains ζn = cos(2π/n) +
i sin(2π/n) and the result follows again by the tower law.

(d) What is the min poly of ζp, for p prime? Well certainly ζp 6= 1 but (ζp)p = 1, so ζp is
a zero of the function (xp−1)/(x−1) which is actually the polynomial 1+x+· · ·+xp−1. We
showed in lectures (as an application of Eisenstein) that this polynomial was irreducible!
Hence [Q(ζp) : Q] = p − 1 by 2.3 and in particular if p − 1 isn’t a power of 2 then we
cannot construct a regular p-gon. In particular, although we might be able to (and can)
construct a regular pentagon, we can’t construct a regular heptagon.

2.

(a) Well z5 = 1 and z 6= 1 so z is a root of x5 − 1 = (x− 1)(1 + x+ x2 + x3 + x4) and
not a root of (x− 1) so it must be a root of the other factor.

(b) x2 = z2+2+z−2 so x2+x−1 = z−2+z−1+1+z+z2 = z−2(1+z+z2+z3+z4) = 0.

(c) z = cos(72
◦
) + i sin(72

◦
) and z−1 = cos(72

◦
) − i sin(72

◦
), so x = 2 cos(72

◦
). We

deduce that if c = x/2 = cos(72
◦
) then (2c)2 + (2c) − 1 = 0 and hence (completing the

square because I’m old-fashioned like that) (4c+ 1)2 = 5, so c = −1±
√
5

4 , and clearly c > 0
so done.

(d) Construct a circle centre the origin radius 1, and then its diameter has length 2.
Draw a right angle at the end of this length 2 line and then use the compass to mark a point
one unit up; the hypotenuse of the resulting right-angled triangle is

√
12 + 22 =

√
5. Use

the compass to mark a point a distance one from an end of the circumference; the distance
to the other end is now

√
5−1. Now bisect this length twice and you have made cos(72

◦
);

plot (cos(72
◦
), 0) and draw a vertical line up to hit the unit circle at (cos(72

◦
), sin(72

◦
)),

and now it’s easy.

For bonus points: now do a regular 17-gon. Actually, if I were you I would wait until
we’ve done some Galois theory before you start on this.

3.

(a) If we regard Cn as the set {0, 1, 2, . . . , n− 1} under addition, then the reason any
subgroup is cyclic is that it is generated by the smallest non-zero element in the subgroup,
and the reason that there’s only one cyclic subgroup of order d in Cn if d | n is that there
are only d elements of order dividing d in Cn (namely the multiples of n/d).

The reason
∑

d|n φ(d) = n is that every element of Cn generates a cyclic subgroup of

some order d | n so is counted once (when computing φ(d) ).

(b) If p has no roots then done; if p has a root a then p(x) = (x − a)q(x) + r(x) by
Euclid, and r is a constant polynomial. Evaluating at x = a gives r = 0. Comparing
degree gives that the degree of q(x) is one less than the degree of p(x). Finally if b 6= a is
a root of p(x) then (b− a)q(b) = 0 and hence q(b) = 0, so now we’re done by induction.

(c) If Gd is non-empty then choose a ∈ Gd. Then {1, a, a2, . . . , ad−1} is a subset of G
of size d, and all of these elements are dth roots of 1, so by (a) we must have that there
are precisely d roots of xd − 1 = 0 in K, and that these are precisely {1, a, a2, . . . , ad−1}.
In particular we must have Gd ⊆ {1, a, a2, . . . , ad−1} and now Gd is the elements of order
precisely d in this group, and there are by definition φ(d) of these.

(d) The Gd partition G, so we have n =
∑

d|n |Gd| ≤
∑

d|n φ(d) = n. So equality must

hold in that middle ≤, so |Gd| = φ(d) > 0 for all d and in particular Gn is non-empty.
But if a ∈ Gn has order exactly n, then 〈a〉 is a subgroup of G of size n and hence must



equal G.

Well done if you got through this question. The proof can be simplified if you know
that any finite abelian group is a direct product of cyclic groups, because then (if you know
what you’re doing) it’s not hard to show that if G is an abelian group which is not cyclic
then there exists some n such that there are more than n solutions to gn = 1, and this
contradicts (b) immediately. But proving that a finite abelian group is a direct product
of cyclic groups is a little tricky, whereas the above argument is completely self-contained.

4. (a) Well z3 = ω3α3 = 1× 2 = 2 so z is a root of x3 − 2 = 0, which is irreducible over
Q by Eisenstein, so x3 − 2 is the min poly of z, and by 2.3 this means [Q(z) : Q] = 3.
Although we don’t need it, we can note that in fact Q(z) is isomorphic to, but not equal
to, Q(α), as an abstract field.

(b) We know ω3 = 1 but ω 6= 1 so ω is a root of (x3 − 1)/(x − 1) = x2 + x + 1. This
polynomial is irreducible as it has no rational (because no real) roots, so [Q(ω) : Q] = 2.

Note also while we’re here that solving the quadratic gives ω = −1+i
√
3

2 (plus sign because
the imaginary part of ω is positive; the other root is ω2).

(c) We have α ∈ R. Furthermore ω is another cube root of 1 so it must be ω2. Hence
z = ωα = ω2α = ωz. In particular if z ∈ Q(z) then ω = z/z ∈ Q(z). This means
Q(ω) ⊆ Q(z), and by the first two parts and the tower law we deduce [Q(z) : Q(ω)] = 3

2 ,
which is nonsense because the dimension of a (finite-dimensional) vector space is a whole
number.

(d) If x ∈ Q(z) then z = −z + 2x ∈ Q(z), contradiction. So x is not in. If i ∈ Q(z)
then Q(i) ⊆ Q(z) and this contradicts the tower law like in part(c). Finally because the
imaginary part of ω is

√
3/2 we see y = α

√
3/2, so if y ∈ Q(ω) then y3 = 3α3/8

√
3 =

3/4
√

3 ∈ Q(z), implying
√

3 ∈ Q(z) which again contradicts the tower law.


