KMB, 17/11/15

M345P11 Galois Theory, Solutions to problem Sheet 3

1. (a) If we can construct a regular n-gon somewhere in the plane then (bisect the interior
angles) we can construct its centre, and hence (drawing lines from the centre C' and using
the compass) an isosceles triangle with side length 1, two equal angles A and B, and the
third angle C' equal to 27 /n. Setting the compasses to be the distance AB we can then
use this to go around the unit circle centre the origin and construct our n-gon.

(b) (cos(2m/n),sin(2x/n) is the coordinate of another point of this n-gon.

(c) i has degree 2 over Q(cos(2m/n), sin(27/n)) (as it is not real), so Q(cos(27/n), sin(27/n), )
has degree a power of 2 over Q by the tower law. It also contains (, = cos(27/n) +
isin(2m/n) and the result follows again by the tower law.

(d) What is the min poly of {,, for p prime? Well certainly ¢, # 1 but ({,)? =1, so (, is
a zero of the function (2 —1)/(x—1) which is actually the polynomial 1+z+- - -+2P~1. We
showed in lectures (as an application of Eisenstein) that this polynomial was irreducible!
Hence [Q(¢p) : Q] = p — 1 by 2.3 and in particular if p — 1 isn’t a power of 2 then we
cannot construct a regular p-gon. In particular, although we might be able to (and can)
construct a regular pentagon, we can’t construct a regular heptagon.

2.

(a) Well 2° =1 and z # 1 so zis aroot of 2° — 1 = (z — 1)(1 + . + 22 + 2% + 2*) and
not a root of (x — 1) so it must be a root of the other factor.

(b) 22 = 224242 2s0x?+x—1 =224z +1+2+22 = 27 2(1+2+224+23+2%) = 0.

(¢) z = cos(72") +isin(72°) and 2! = cos(72") — isin(72°), so x = 2cos(72°). We
deduce that if ¢ = /2 = cos(72") then (2¢)? + (2¢) — 1 = 0 and hence (completing the
square because I'm old-fashioned like that) (4c+1)? =5, so ¢ = %\/57 and clearly ¢ > 0
so done.

(d) Construct a circle centre the origin radius 1, and then its diameter has length 2.
Draw a right angle at the end of this length 2 line and then use the compass to mark a point
one unit up; the hypotenuse of the resulting right-angled triangle is v/12 4+ 22 = /5. Use
the compass to mark a point a distance one from an end of the circumference; the distance
to the other end is now v/5 — 1. Now bisect this length twice and you have made cos(72°);
plot (cos(72”),0) and draw a vertical line up to hit the unit circle at (cos(72),sin(72")),
and now it’s easy.

For bonus points: now do a regular 17-gon. Actually, if I were you I would wait until
we’ve done some Galois theory before you start on this.

3.

(a) If we regard C,, as the set {0,1,2,...,n — 1} under addition, then the reason any
subgroup is cyclic is that it is generated by the smallest non-zero element in the subgroup,
and the reason that there’s only one cyclic subgroup of order d in C,, if d | n is that there
are only d elements of order dividing d in C,, (namely the multiples of n/d).

The reason » din ¢(d) = n is that every element of C,, generates a cyclic subgroup of
some order d | n so is counted once (when computing ¢(d) ).

(b) If p has no roots then done; if p has a root a then p(z) = (v — a)q(z) + r(x) by
Euclid, and r is a constant polynomial. Evaluating at z = a gives r = 0. Comparing
degree gives that the degree of g(x) is one less than the degree of p(x). Finally if b # a is
a root of p(z) then (b — a)q(b) = 0 and hence ¢(b) = 0, so now we’re done by induction.

(c) If G4 is non-empty then choose a € G4. Then {1,a,a?,...,a% !} is a subset of G
of size d, and all of these elements are dth roots of 1, so by (a) we must have that there
are precisely d roots of x4 — 1 = 0 in K, and that these are precisely {1,a,a?,...,a%"'}.
In particular we must have G4 C {1,a,a?,...,a% '} and now G is the elements of order
precisely d in this group, and there are by definition ¢(d) of these.

(d) The G partition G, so we have n =3, [Ga| <>y, #(d) = n. So equality must
hold in that middle <, so |G4| = ¢(d) > 0 for all d and in particular G,, is non-empty.
But if a € G, has order exactly n, then (a) is a subgroup of G of size n and hence must



equal G.

Well done if you got through this question. The proof can be simplified if you know
that any finite abelian group is a direct product of cyclic groups, because then (if you know
what you're doing) it’s not hard to show that if G is an abelian group which is not cyclic
then there exists some n such that there are more than n solutions to g" = 1, and this
contradicts (b) immediately. But proving that a finite abelian group is a direct product
of cyclic groups is a little tricky, whereas the above argument is completely self-contained.

4. (a) Well 2% = w3a® =1 x 2 =250z is aroot of 2> — 2 = 0, which is irreducible over
Q by Eisenstein, so #3 — 2 is the min poly of z, and by 2.3 this means [Q(z) : Q] = 3.
Although we don’t need it, we can note that in fact Q(z) is isomorphic to, but not equal
to, Q(«), as an abstract field.

(b) We know w? = 1 but w # 1 so w is a root of (2 —1)/(x — 1) = 2% + x + 1. This
polynomial is irreducible as it has no rational (because no real) roots, so [Q(w) : Q] = 2.
Note also while we’re here that solving the quadratic gives w = ’1%“/5 (plus sign because
the imaginary part of w is positive; the other root is w?).

(c) We have a € R. Furthermore @ is another cube root of 1 so it must be w?. Hence
zZ = wa = w?a = wz. In particular if 7 € Q(z) then w = Z/z € Q(z). This means
Q(w) € Q(z), and by the first two parts and the tower law we deduce [Q(2) : Q(w)] = 2,
which is nonsense because the dimension of a (finite-dimensional) vector space is a whole

number.

(d) If z € Q(z) then z = —z + 2z € Q(z), contradiction. So z is not in. If i € Q(z)
then Q(7) C Q(z) and this contradicts the tower law like in part(c). Finally because the
imaginary part of w is v/3/2 we see y = av/3/2, so if y € Q(w) then y* = 3a3/8v/3 =
3/4v/3 € Q(z), implying v/3 € Q(z) which again contradicts the tower law.



