
M4 and M5 extra material for P11 Galois theory, Oct–Dec 2015.

Kevin Buzzard

1 Introduction / overview / waffle.

The goal of the Mastery/Comprehension element of the Galois theory course is to understand how
to generalise the Fundamental Theorem of Galois Theory so that it applies to infinite extensions
too. A (perhaps rather terse) reference is section 1 of “Profinite Groups” by K. Gruenberg, which
can be found as chapter 5 of “Algebraic Number Theory” by Cassels and Froehlich.

Here is the theorem. Recall that an extension L/K of fields is Galois if it is algebraic, normal
and separable. This is genuinely more general than being just finite normal and separable – for
example if K = Q and L = Q, the set of all algebraic numbers in C, then L/K is infinite,
algebraic, normal (clear if you think about it) and separable (because we’re in characteristic zero).
This means that Q/Q is a Galois extension.

The Galois group Gal(L/K) of a Galois extension of fields is exactly what you think it is – it
is just the field automorphisms of L which are the identity on K.

If [L : K] = ∞ then the size of G := Gal(L/K) will be infinite too; this will need proof, but
it’s true, and a good start.

However then things go a bit wrong – in general it is not true that there’s a natural bijection
between the intermediate field extensions K ⊆ E ⊆ L and the subgroups of G. But there is a
really neat fix! The idea is that G carries a very natural topology on it, and everything in sight is
continuous, and the theorem is that intermediate field extensions correspond (in a natural bijective
way) to closed subgroups of G, and the dictionary is just the same: to the field E we associate
the subgroup {h ∈ G |h(e) = e∀ e ∈ E} and this is the bijection.

All the other statements of the fundamental theorem generalise in the obvious way (normal
extensions correspond to normal subgroups, and so on). If you regard a finite Galois group, of
the kind we thought about in lectures, as having the discrete topology, then every subset is open
and closed, and in particular every subgroup is closed, so the usual fundamental theorem can also
be thought of as a bijection between intermediate fields and closed subgroups. However in the
infinite case there will usually be subgroups that aren’t closed, and they don’t correspond to any
subfields.

One piece of good news – a proof of the fundamental theorem in the infinite case can be deduced
from the assertion in the finite case, so we don’t have to re-do all the intermediate lemmas and so
on – in fact the main work we have to do is to explain how we put a topology on Gal(L/K). This
topology is not like the kinds of topologies you usually see in an introductory course – it has a
rather different flavour to the usual topology on Rn. For example the topology on a Galois group
is totally disconnected, which means that the only connected subsets are subsets with one element.
The topology on an infinite Galois group is very much like the topology on the p-adic numbers
– you may have seen these things in, for example, the elliptic curves course. Indeed there is an
infinite extension of fields whose Galois group is isomorphic to the p-adic integers.

This was new material for 2014-15 so all you have in the way of past papers or questions is
last year’s Mastery exam (the system was different last year). So this note may look a little long,
but that’s not because it’s complicated or full of hard material – it’s long because I will explain
everything slowly and carefully. If you want to know how to prepare for the mastery exam – make
sure you understand well the construction of the topology on an infinite Galois group, and make
sure you know the statement of the fundamental theorem of Galois theory for an infinite Galois
field extension, because that is what I am trying to teach you.

2 Topological groups.

A topological group is a group G such that the underlying set G has the structure of a topological
space, in such a way that multiplication G×G→ G and inversion G→ G (the map sending g to
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g−1) are continuous (put the product topology on G×G, which means that a basis for the open
sets are things of the form U × V with U and V open in G). Examples of topological groups are
everywhere – indeed most if not all groups you have seen that have natural topologies on them
(for example the real numbers under addition) will be topological groups. Fields such as as R, C,
the p-adic numbers Qp (if you know what they are) are all topological groups under addition. You
can build plenty more topological groups from them too, such as GLn(R), GLn(C), or slightly
more exotic groups like On(R) (the orthogonal groups), or Sp2n(R) (the symplectic groups) if you
know what these things are. It doesn’t matter if you don’t though – such groups are not the kinds
of groups that show up as infinite Galois groups.

Let me explain an example of a topological group which is much more like the kind of group
that shows up. Before I do that I need to explain how to do infinite products of topological spaces.

2.1 Infinite products of topological spaces.

If I is a set (probably infinite), and for each i ∈ I we have a topological space Xi, then I want
to define a topological space X =

∏
iXi. As a set, X is just what you think it is: an element of

X is just an element from each Xi, so it’s a collection (xi)i∈I , with xi ∈ Xi for all i ∈ I. The
interesting thing is the topology. If you’ve seen the definition of a finite product of topological
spaces, you would know exactly what to guess – we could take Ui ⊆ Xi an open set, for all i, and
then say that

∏
i Ui ⊆

∏
iXi is open and furthermore that these form a basis of open sets for the

product topology. This looks like a nice idea but it is unfortunately not the right idea. The reason
is that we want to make sure that the topology on X is somehow “the weakest topology such that
the natural projection maps X → Xi are all continuous” (i.e. the topology with the fewest open
sets that makes all the maps continuous), and thinking about this (see the first question on the
example sheet) leads us to the following definition:

Definition. The topology on
∏
iXi is defined as follows. Choose open sets Ui ⊆ Xi for all i,

but with the extra condition that Ui = Xi for all but finitely many i. A basis for the topology on∏
iXi are the sets

∏
i Ui of this form. As usual, a set if open if and only if it is a union of elements

of this basis.
As I say, the first exercise on the example sheet indicates why this is the right topology.

2.2 Infinite products of finite groups.

Let I be a set and for i ∈ I, let Gi be a finite group. Regard each Gi as a topological space
with the discrete topology – recall that this is the silly topology where every subset of Gi is open.
Define G =

∏
iGi, and put the product topology on G. It is easy to check that G is a group –

the group law is just defined pointwise, the identity is the element which is the identity on each
component, and each of the group axioms hold for G because their truth is inherited from the
corresponding axiom for each Gi. We also know that G is a topological space – give it the product
topology. The Gi’s all had the discrete topology, but it is not true in general that G will have the
discrete topology! See Q3 on the example sheet. A point in the product will be closed, but not
open in general. Anyway, that’s not what we need to worry about right now – what we need to
worry about right now is whether G with its product topology becomes a topological group – in
other words, whether the topology and the group law play well together. Indeed, they do.

Lemma 2.1. G with its product topology becomes a topological group.

Proof. We need to check that multiplication G × G → G and the inverse map G → G are
continuous. Let’s do this.

Let’s start with multiplication. It suffices to check that the pre-image of a basic open set
U =

∏
i Ui ⊆ G is open in G × G. Say I0 is a finite subset of I such that Ui = Gi for all i 6∈ I0;

such a finite set I0 exists by the definition of a basic open set. Say (g, h) ∈ G×G is in the pre-image
of U ; this is just a silly way of saying that gh ∈ U . Let’s write g = (gi) and h = (hi). Let’s check
that there are basic open sets V and W in G such that g ∈ V , h ∈W , and such that for all v ∈ V
and w ∈ W , we have vw ∈ U . This will suffice, because then V ×W is in the pre-image of U . In
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fact such sets V and W are very easy to define: set Vi = {gi} if i ∈ I0 and Vi = Gi otherwise;
similarly set Wi = {hi} if i ∈ I0 and Wi = Gi otherwise. It’s very easy to check that V =

∏
i Vi

and W =
∏
iWi have the properties we require (note that gh ∈ U and hence gihi ∈ Ui for all i).

Next let’s do inversion; this is just as easy, because if U =
∏
i Ui is a basic open set then

Ui = Gi for all but finitely many i, and if Vi = U−1i = {u−1i : ui ∈ Ui} then Vi = Gi for all but
finitely many i, and V =

∏
i Vi is basic open and the pre-image of U under the inversion map.

2.3 Projective limits of finite groups.

Now we let I be not just a set, but a directed set. This means that I is equipped with a relation
≤ (recall: a relation ≤ on a set I is, formally speaking, a subset of I × I, and informally it’s just,
for every pair of elements i, j a way of deciding whether i ≤ j or not) and this relation had better
satisfy some axioms, which I’m about to tell you. Firstly, it has to satisfy the axioms for a partial
order :

(i) [Reflexivity] i ≤ i for all i ∈ I;
(ii) [Transitivity] If i ≤ j and j ≤ k then i ≤ k;
(iii) [Antisymmetry] If i ≤ j and j ≤ i then i = j.
Important note: We do not demand that for all i and j, either i ≤ j or j ≤ i; it might be

the case that neither of these things hold. A good model to keep hold of is that I can be the set
of subsets of a set S, and i ≤ j iff i ⊆ j; if S has size 2 or more then there will be subsets i and j
with i 6⊆ j and j 6⊆ i.

This is not quite the definition of a directed set: we also require a fourth axiom:
(iv) For all i, j ∈ I there is k ∈ I with i ≤ k and j ≤ k.
Again, an example would be the set of subsets of a set; we could just take k to be the union

of i and j for axiom (iv).
Another example: I could be Z or Z≥1 or R with the usual ordering.
Now here’s the set-up. Say I is a directed set, and say for each i ∈ I we have a finite group Gi.

Furthermore, suppose that whenever i ≤ j we have a map πj,i : Gj → Gi, satisfying the following
axioms:

(a) πi,i is the identity map for all i
(b) If i ≤ j ≤ k then πk,i = πj,i ◦ πk,j (note that i ≤ k by transitivity, so πk.i makes sense).
Here’s an example: Let p be a prime, set I = {1, 2, 3, . . .}, set Gi = (Z/piZ) and for i ≤ j let

πj,i be the obvious projection map Z/pjZ→ Z/piZ. The axioms are readily checked.
We define the projective limit, or the inverse limit, or sometimes just the limit of this inverse

system of groups, to be the following topological group: it is the subspace Γ of the product
∏
iGi

consisting of elements (gi) such that πj,i(gj) = gi for all i.

Lemma 2.2. The inverse limit Γ (equipped with the subspace topology) is a topological group.

Proof. Let us first check that Γ is a group. We know that G =
∏
iGi is a group, and Γ is a

subset of G. To check it’s a subgroup we need to check that the identity is in (which is obvious,
as πj,i(ej) = ei as all the πj,i are group homomorphisms), that if (gi) is in then so is (g−1i ) (which
is clear, because if πj,i(gj) = gi then πj,i(g

−1
j ) = g−1i ) and that if (gi) and (hi) are in then so is

(gihi) (which is also clear, because if πj,i(gj) = gi then and πj,i(hj) = hi then πj,i(gjhj) = gihi).
Next we need to check that multiplication and inverse are continuous. But in fact these things

are obvious, because they are true for G as we already checked, and Γ has the subspace topology
so it inherits all the continuity statements we want. Alternatively just bash it all out.

Notation: Γ = proj limi(Gi) or Γ = lim←−i(Gi).
Example: if I = {1, 2, 3, . . .} and Gi = Z/piZ then proj limiGi = Zp, the p-adic integers (if

you know what they are; if you don’t then it’s still true but is probably less helpful, unless you
just learnt what they are from this, in which case it’s helpful but not in the way I meant it to be).

Example: if I is anything and we define i ≤ j iff i = j, and set each πj,i to be the identity
map, then proj limi(Gi) =

∏
iGi.

3



Lemma 2.3. If Γ = proj limiGi with Gi finite, then Γ is a closed subset of G =
∏
iGi.

Proof. This is easy. Say x = (xi) 6∈ Γ. Then by definition there exists j and k with j ≤ k and
πk,j(xk) 6= xj . Set Ui = Gi unless i = j or i = k; set Uj = {xj} and Uk = {xk}. Set U =

∏
i Ui;

then U is an open set containing x and furthermore U ∩ Γ is empty, because if (ui) ∈ U then
πk,j(uk) = πk,j(xk) 6= xj = uj .

Remark 2.3.1. Tychonoff’s theorem says that a product of compact topological spaces is compact.
In particular a product of finite topological spaces is compact. Moreover it’s well-known that a
closed subspace of a compact topological space is compact, and we conclude from the previous
lemma that a projective limit of finite groups is compact. The proof of Tychonoff’s theorem does
use the Axiom of Choice (in an essential manner), but given that we’re all consenting adults now,
this should hopefully not bother you.

3 Infinite Galois groups.

Say L/K is an algebraic normal and separable extension. I am now going to show how Gal(L/K),
the group of field isomorphisms L → L which are the identity on K, is naturally a group with a
topology; I’m going to do this by identifying it with a projective limit of finite groups as in the
previous section.

Say λ ∈ L. Then by definition λ is algebraic over K, so let p(x) be its min poly. By definition
of normality, p(x) splits completely in L; let Kλ denote the subfield of L generated over K by
the roots of p(x). Now Kλ is finite over K, and it’s also a normal extension of K (because it’s a
splitting field) and a separable extension of K (because it’s a subfield of a separable extension).
This means Kλ/K is a finite Galois extension, and hence has a Galois group Gal(Kλ/K).

Now let I be the set of all finite Galois extensions M/K with K ⊆M ⊆ L. If M1, M2 ∈ I then
define M1 ≤ M2 iff M1 ⊆ M2. By Problem sheet 6 Q6(ii) I is a directed set. For M ∈ I write
GM = Gal(M/K); if M1 ≤ M2 then the natural restriction map is a map GM2

→ GM1
and one

checks easily that the GM form a projective system of finite groups. Let Γ denote their projective
limit. Then Γ is a topological group, and it’s compact if you believe Tychonoff’s theorem.

Lemma 3.1. Γ = Gal(L/K).

Proof. If f : L→ L is a field automorphism and f is the identity on K, then for each M ∈ I the
restriction of f to M is a map M → L, and by problem sheet 4 Q7 the image of this map lands
in M . The induced map M → M is a bijection (because it’s a field map so it’s an injection, and
an injective linear map from a finite-dimensional vector space to itself is a bijection), and hence
f gives us an element in Gal(M/K). In particular f gives us an element of

∏
M Gal(M/K), and

it’s clearly compatible with the restriction maps so it gives us an element of Γ. We get a map
Gal(L/K) → Γ which is easily checked to be a group homomorphism. It is injective because if
two f ′s agree on every M ∈ I then (set M = Mλ) they agree on each λ ∈ L and hence they
agree (in other words, they agree because L is the union of the M ’s in I). It is surjective because
given γ = (gM ) ∈ Γ we can define f : L → L by f(λ) = gMλ

(λ); equivalently we can define
f(λ) = gM (λ) for any M ∈ I containing λ; this is well-defined because (gM ) ∈ Γ so the gM all
agree on overlaps.

Corollary 3.2. Gal(L/K) inherits a natural topology (coming from Γ).

4 The fundamental theorem of Galois theory.

Say L/K is algebraic, normal and separable. Let Γ = Gal(L/K) denote the field automorphisms
of L which are the identity on K. Give Γ the topology defined in the previous section.
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Theorem 4.1 (Fundamental theorem of Galois theory). There is an order-reversing bijection
between the closed subgroups of Γ and the subfields of L containing K. The dictionary is the same
as in the finite case – if ∆ is a closed subgroup of Γ then define M = {λ ∈ L : g(λ) = λ ∀g ∈ ∆},
and conversely if K ⊆M ⊆ L then define ∆ = {g ∈ Γ : g(m) = m∀m ∈M}.

If ∆ corresponds to M via this bijection then L/M is Galois and Gal(L/M) = ∆ (both sides
are naturally subgroups of Gal(L/K) and the equality is taking place in this group).

Finally, ∆ is normal iff M/K is normal, and in this case M/K is Galois and Gal(M/K) =
Γ/∆.

The proof is not hard. A sketch is on the example sheet. Note: the proof is not part of the
assessed material! My initial plan was to make it part of the assessed material, but when I saw
how much stuff was involved in even stating the result, I decided that asking you to learn the
proof too was just too much.

So in summary then, that’s a pretty crazy fix to make the fundamental theorem work in the
infinite case. And there really will be non-closed subgroups, in general, in an infinite Galois group,
so all this stuff really did need to be done – the fundamental theorem really would not work without
this new idea.

One of the objects I study as a research mathematician is the infinite Galois group Gal(Q/Q)
and how representations of this group can come from all sorts of crazy places, like modular forms,
and so the fundamental theorem is the sort of thing I am always using in my work.
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