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M3P11 Galois Theory, Problem Sheet 6
[version 3: typos fixed in Q7 and Q8 (and solutions added)]

1. Say a positive integer is squarefree if it is the product of distinct prime numbers.
(i) Say a, b > 1 are distinct squarefree integers. Prove x2 − a is irreducible, so Q(

√
a) has

degree 2 over Q. Now prove that
√
b 6∈ Q(

√
a).

(ii) Let F be the splitting field of (x2 − a)(x2 − b) over Q. What is Gal(F/Q)? Use the
fundamental theorem of Galois theory to find all the fields K with Q ⊆ K ⊆ F . Which ones are
normal over Q?

(iii) Prove that F = Q(
√
a +
√
b). Hint: figure out which subgroup of the Galois group this

field corresponds to.
(iv) Let p, q and r be distinct primes. Prove

√
r 6∈ Q(

√
p,
√
q). Hint: use one of the previous

parts. Meta-hint: if you’re ever stuck on a part of an example sheet or an exam question, consider
using one of the previous parts.

(v) Conclude that if F = Q(
√
p,
√
q,
√
r) then [F : Q] = 8. What is Gal(F/Q)?

(vi) (long) If you can be bothered, then use the fundamental theorem of Galois theory to write
down all the intermediate subfields between Q and F . If you can’t then just write down the
subfields E of F with [E : Q] = 2.

(vi) Show that (notation as in the previous part) F = Q(
√
p+
√
q +
√
r).

(vii) Prove that if p1, p2,. . . ,pn are distinct primes, then Q(
√
p1,
√
p2, . . . ,

√
pn) has degree 2n

over Q, and equals Q(
√
p1 +

√
p2 + · · ·+√pn).

2. Say F is the splitting field of x3− 11 over Q. Figure out Gal(F/Q). List all the subfields of F .
Which are normal over Q?

3. Say r =
11
√

51/3 +
√

81/5 + 6 + 91/7. Find a sequence of fields Q = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fn

with r ∈ Fn and such that for all i we have Fi = Fi−1(αi) with αni
i ∈ Fi−1 for some positive

integer ni.

4. Let p be an odd prime number, and let F be the splitting field of xp − 1. Prove that there is a
unique subfield K of F with [K : Q] = 2 (hint: Q7 of previous sheet, plus the fact that (Z/pZ)×

is cyclic). Say K = Q(
√
n) with |n| squarefree. Figure out n when p = 3. If you’re good at

pentagons (i.e., if you know what cos(72) is), figure out n when p = 5. What do you think the
answer is in general? This is a number-theoretic question rather than a field-theoretic one, and
there are tricks but they’re tough to spot.

5. Let V be a finite-dimensional vector space over an infinite field K, and say W1, W2, . . . , Wn

are finitely many subspaces of V , with Wi 6= V for all i. This question leads you through a proof
of the fact that the union of the Wi cannot be all of V . We used this purely linear-algebra fact in
the proof of the theorem of the primitive element (Corollary 6.11).

a) Say w ∈W1. Choose v 6∈W1 and consider the elements v+ λw for λ ∈ K. Prove that none
of these elements are in W1.

b) Deduce that if V is the union of the Wi then (with notation as in (a)) there is some i > 1
such that Wi contains w (hint: find Wi that contains v + λw for two values of λ).

c) Proceed by induction on n to get a contradiction.

6.
Say E ⊆ F , and L and M are intermediate fields (i.e. E ⊆ L,M ⊆ F ). Let N := LM denote

the smallest subfield of F containing L and M .
(i) If L = E(α1, . . . , αn) then prove N = M(α1, . . . , αn).
(ii) Now assume L/E and M/E are finite and normal. Prove N/E is finite and normal. (hint:

splitting field). Next assume L/E and M/E are finite and Galois. Prove that N/E is finite and
Galois.

(iii) Prove that restriction of functions gives a natural injective group homomorphism from
Gal(N/E) to Gal(L/E)×Gal(M/E). Is it always surjective?



7. Let’s prove that an extension by radicals always lives in an extension by radicals which is
furthermore normal. In fact let’s prove that if L/K is a finite extension of fields of characteristic
zero which is an extension by radicals, and if M/K is its normal closure, then M/K is also an
extension by radicals. We can even do more: let’s assume that L/K is constructed by taking n’th
roots only for integers n in some finite set S; then we’ll show that the normal closure can also be
constructed by taking n’th roots only for n ∈ S.

Here is a precise statement, made to set up some notation. Let K be a field of characteristic
zero, say S is a finite set of positive integers, and say K = L0 ⊆ L1 ⊆ L2 ⊆ · · · ⊆ Lq = L with
Li+1 = Li(αi), and αni

i ∈ Li for some ni ∈ S. The claim is that the normal closure M/K of L/K
can be written K = M0 ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Mr = M with Mj+1 = Mj(βj), and β

mj

j ∈ Mj for
some mj ∈ S.

a) Let L be an algebraic closure of L. Prove that there are only finitely many field maps L→ L
which are the identity on K.

b) Let A1, A2, . . . , AN be the image of these field maps. Let M be the smallest subfield of
L containing all the Ai. Prove that M is the normal closure of L/K. The definition of normal
closure is on Sheet 4, Q6.

c) Say A, B and C are all subfields of a large field, and and B = A(α) for some α ∈ B such
that αn ∈ A for some positive integer n. Say D = AC, the smallest subfield containing A and C,
and E = BC. Prove that E = D(α) and αn ∈ D.

d) Use (b) and (c) to prove the result we need.

8. (a) (mostly for people who have done or are doing the group theory course.) Regard S3

(permutations of {1, 2, 3}) as a subgroup of S4 (permutations of {1, 2, 3, 4}) in the obvious way.
Prove that there is no subgroup H of order 12 in S4 such that H contains S3. Hint: if you’ve been
to the group theory course then consider an element of H not in S3 and ask where it sends 4. Now
consider what the orbit of 4 must be under H. Now consider the stabiliser of 4 in H and convince
yourself that it has order 3 but contains S3, a contradiction.

(b) Let us assume that the polynomial f(x) = x4 − x − 1 ∈ Q[x] is irreducible and that
its splitting field L/Q has Galois group S4. In fact I will remark that if you choose a random
polynomial of degree 4 in Q[x] then with probability 1 (in some meaningful sense) it will be
irreducible and the Galois group of its splitting field will be S4, so in practice such polynomials
are not hard to find! If you have access to a computer algebra package that will compute Galois
groups of splitting fields of polynomials (for example pari-gp) then you can try this yourself.

Under this assumption, convince yourself that there an element α ∈ R such that [Q(α) : Q] = 4
but that Q(α) has no subfield of degre 2 over Q. Indeed, for the polynomial f(x) = x4 − x − 1
above, check that it has a real root (by evaluating f(0)) and show that letting α be a real root of
f(x) works.

(c) Prove that if E is a field of characteristic zero, and E = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fn = F are
a collection of field extensions such that [Fi+1 : Fi] = 2 for all i, then the normal closure of F/E
is Galois, with Galois group a group of 2-power order. Hint: Q7 of this sheet.

(d) Deduce that the statement “if (α, β) is constructible then [Q(α, β) : Q] is a power of 2” is
not an iff (assuming that the splitting field of x4 − x− 1 has Galois group S4).

(e) To finish the job, read Keith Conrad’s notes at http://www.math.uconn.edu/~kconrad/

blurbs/galoistheory/cubicquartic.pdf, Example 3.2, to justify my assertion about the Galois
group in (b).

http://www.math.uconn.edu/~kconrad/blurbs/galoistheory/cubicquartic.pdf
http://www.math.uconn.edu/~kconrad/blurbs/galoistheory/cubicquartic.pdf

