KMB, 24/3/16

M345P11: Existence of algebraic closure of a field.

Recall that a field L is said to be algebraically closed if any non-constant polynomial f(x) € L[z]
has a root in L, that is, there is some A € L such that f(A) = 0. It’s easy to check (induction on
degree of f(x)) that this is equivalent to saying that every non-constant polynomial factors into
linear factors in L[z], or equivalently that the irreducible elements of the ring L[z] are the degree 1
polynomials.

Algebraically closed fields are very useful to have around. For example, algebraic geometry is
a way to study systems of polynomial equations by looking at their zeros as a geometric object,
and of course you're not going to get very far understanding the polynomials 2" + 3% = —1 for
n € Z>, if you just look at their rational or real solutions, because there aren’t any — no square of
a real number is negative. If you want to see that these polynomials really have different geometry
as n varies you must look at the complex solutions. Closer to home, if you want to construct a
splitting field for f(z) € K|[z| cheaply (K any field) you could just hope that K is a subfield of
an algebraically closed field L and then look at the extension of K generated by the roots of f(x)
in L. But do we have a sufficiently rich choice of algebraically closed fields? In particular, if K is
any field, does there exist an algebraically closed field L containing K? The answer is yes.

Theorem 1. If K is any field then there exists an algebraically closed field L and an injective
field map K — L. In particular any field K may be thought of as a subfield of an algebraically
closed field.

This theorem has some useful consequences. For example one can check that if K is any field
and K C L with L an algebraically closed field, then the elements of L which are algebraic over K
form a subfield K, which one can check is an algebraic extension of K which is algebraically closed.
This field K is called an algebraic closure of K, and one can check that algebraic closures are unique
up to (typically non-unique) isomorphism. In some sense K is “the smallest algebraically closed
field containing K”.

I stated the theorem above (existence of algebraically closed field containing a given field) in
the course, but I did not prove it, because the proof involves some ring theory and also Zorn’s
Lemma, which is a kind of transfinite version of induction, and I felt it would take me too far from
the course to go through all the details. In fact I thought that the proof of this theorem would be
ideal for a hand-out, so here’s the hand-out and let’s go.

Proof of theorem. We begin with a lemma — this is where we need Zorn’s Lemma.
Lemma 2. If R is a non-zero commutative ring with a 1, then R has a maximal ideal.

Let S be the set of ideals I of R such that I # R. Let’s partially order S, by defining I < J
if and only if I C J. This is called a partial order because of course we might have ideals I and
J with I € J and J € I, so our ordering does not order these elements I and J — they are just
“incomparable”.

What we’re looking for is a maximal element of S, that is, an element M of S such that if
I e Sand M <1 then M = I. Now we recall (or we look up on Wikipedia)

Zorn’s Lemma: If S is any partially ordered set, with the property that any chain in S (that
is any subset X of S with the property that for any =,y € X either x < y or y < x) has an upper
bound (that is, an element b € S such that z <b for all x € X), then S has at least one maximal
element.

Zorn’s Lemma is equivalent to the Axiom of Choice, which is one of the axioms of mathematics,
SO we can assume it :-)

The proof of our lemma is trivial given Zorn’s Lemma — the hypotheses of the lemma are
satisfied because if X is a chain in S, then X is a bunch of ideals of R, with the property that
if I and J are in X then either I C J or J C I, and now it’s easy to check that the union of


https://en.wikipedia.org/wiki/Zorn's_lemma

the ideals in X (and also throw in {0} if X is empty, he said pedantically) is also an ideal which
is clearly an upper bound for X; moreover the union can’t be all of R because if it were then it
would contain 1, which would mean some ideal in X contained 1, which can’t happen because S
only contains proper ideals of R.

So by Zorn’s Lemma S has a maximal element, which is a maximal ideal of R.

Corollary 3. If R is a commutative ring with a 1, and I C R is an ideal of R such that I # R,
then R has a mazimal ideal containing I.

Proof. Apply the lemma to R/I and then look at the pre-image of the maximal ideal of R/I under
the natural map R — R/I. O

Now let’s build an algebraically closed field containing a given field K.

First let’s construct a polynomial ring R = K[Xy,, Xy,,...] in infinitely many variables Xy, ,
where the f; run over every polynomial in K [X] of positive degree and Xy, is just a variable which
is labelled by f;. Just to be clear — an element of R is a polynomial in only finitely many of the
variables X,, and with coefficients in K.

Now let I be the ideal of R generated by all the elements f;(Xy,) as the f; run through all of
the polynomials of positive degree. The claim is that I # R. Why is this? Well, if [ = R then
1 € I, so one can write

n

i=1
for some polynomials f; € K[X] of positive degree, and elements a; € A. Now let M be a splitting
field over K for the product of the f;, 1 < i < n, and choose a root «; for each of these f; in M.
If we now consider the map from R to M sending Xy, to a;, 1 < i < n, and X to zero for the
other f’s, then f;(c;) = 0 and the equation becomes 1 = 0, which is nonsense. This proves that
I # R, as claimed.

By the corollary there’s a maximal ideal m of R with I C m C R. Define K; = R/m, and note
that there’s a natural injection K — K;. Furthermore every polynomial f(X) € K[X] of degree
1 or more has a root in K;! Indeed X is a root of f(X) in R/I, so its image in K is a root of
f(X) in Kj.

It would be great if we were now done. Unfortunately we are not yet there. The problem is
that K has the property that every polynomial in K[X] of degree 1 or more has a root — however
there may be polynomials of degree 1 or more in the larger ring K;[X] that do not have roots.
Once you realise this you wonder whether we have got anywhere at all!

However the trick is to iterate this construction. If we start with K then we build a field K5
containing K such that every element of K;[X] of positive degree has a root in K. And so on.
We continue, getting an infinite collection of fields K C K3 C Ky C K3 C ---. Now, informally,
we could just let L be the union of the K, and if this made sense (and it nearly does) then L
will be algebraically closed, because any f € L[X] of degree 1 or more will have each coefficient in
some K, so all coefficients will be in Ky for IV large enough, so f has a root in K43 and hence
in L.

However we can’t really take a union because really we don’t have K; C K;,1, we just have
a natural injection K; — K11, so we need to use a slightly more sophisticated language — we
let L be the colimit of the K;, which is something that does make sense: formally L is the disjoint
union of the K;, modulo the equivalence relation generated by saying that o € K; is equivalent to
its image in K;11. In other words L is a set of equivalence classes, and a typical equivalence class
looks like {a;, iq1,@tiya, ...} with o; € K; and all the o4, ’s are the image of «; in K; .

The field L is the extension of K that we seek. O



