
KMB, 24/3/16

M345P11: Existence of algebraic closure of a field.

Recall that a field L is said to be algebraically closed if any non-constant polynomial f(x) ∈ L[x]
has a root in L, that is, there is some λ ∈ L such that f(λ) = 0. It’s easy to check (induction on
degree of f(x)) that this is equivalent to saying that every non-constant polynomial factors into
linear factors in L[x], or equivalently that the irreducible elements of the ring L[x] are the degree 1
polynomials.

Algebraically closed fields are very useful to have around. For example, algebraic geometry is
a way to study systems of polynomial equations by looking at their zeros as a geometric object,
and of course you’re not going to get very far understanding the polynomials x2n + y2n = −1 for
n ∈ Z≥1 if you just look at their rational or real solutions, because there aren’t any – no square of
a real number is negative. If you want to see that these polynomials really have different geometry
as n varies you must look at the complex solutions. Closer to home, if you want to construct a
splitting field for f(x) ∈ K[x] cheaply (K any field) you could just hope that K is a subfield of
an algebraically closed field L and then look at the extension of K generated by the roots of f(x)
in L. But do we have a sufficiently rich choice of algebraically closed fields? In particular, if K is
any field, does there exist an algebraically closed field L containing K? The answer is yes.

Theorem 1. If K is any field then there exists an algebraically closed field L and an injective
field map K → L. In particular any field K may be thought of as a subfield of an algebraically
closed field.

This theorem has some useful consequences. For example one can check that if K is any field
and K ⊆ L with L an algebraically closed field, then the elements of L which are algebraic over K
form a subfield K, which one can check is an algebraic extension of K which is algebraically closed.
This field K is called an algebraic closure of K, and one can check that algebraic closures are unique
up to (typically non-unique) isomorphism. In some sense K is “the smallest algebraically closed
field containing K”.

I stated the theorem above (existence of algebraically closed field containing a given field) in
the course, but I did not prove it, because the proof involves some ring theory and also Zorn’s
Lemma, which is a kind of transfinite version of induction, and I felt it would take me too far from
the course to go through all the details. In fact I thought that the proof of this theorem would be
ideal for a hand-out, so here’s the hand-out and let’s go.

Proof of theorem. We begin with a lemma – this is where we need Zorn’s Lemma.

Lemma 2. If R is a non-zero commutative ring with a 1, then R has a maximal ideal.

Let S be the set of ideals I of R such that I 6= R. Let’s partially order S, by defining I ≤ J
if and only if I ⊆ J . This is called a partial order because of course we might have ideals I and
J with I 6⊆ J and J 6⊆ I, so our ordering does not order these elements I and J – they are just
“incomparable”.

What we’re looking for is a maximal element of S, that is, an element M of S such that if
I ∈ S and M ≤ I then M = I. Now we recall (or we look up on Wikipedia)

Zorn’s Lemma: If S is any partially ordered set, with the property that any chain in S (that
is any subset X of S with the property that for any x, y ∈ X either x ≤ y or y ≤ x) has an upper
bound (that is, an element b ∈ S such that x ≤ b for all x ∈ X), then S has at least one maximal
element.

Zorn’s Lemma is equivalent to the Axiom of Choice, which is one of the axioms of mathematics,
so we can assume it :-)

The proof of our lemma is trivial given Zorn’s Lemma – the hypotheses of the lemma are
satisfied because if X is a chain in S, then X is a bunch of ideals of R, with the property that
if I and J are in X then either I ⊆ J or J ⊆ I, and now it’s easy to check that the union of
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the ideals in X (and also throw in {0} if X is empty, he said pedantically) is also an ideal which
is clearly an upper bound for X; moreover the union can’t be all of R because if it were then it
would contain 1, which would mean some ideal in X contained 1, which can’t happen because S
only contains proper ideals of R.

So by Zorn’s Lemma S has a maximal element, which is a maximal ideal of R.

Corollary 3. If R is a commutative ring with a 1, and I ⊂ R is an ideal of R such that I 6= R,
then R has a maximal ideal containing I.

Proof. Apply the lemma to R/I and then look at the pre-image of the maximal ideal of R/I under
the natural map R→ R/I.

Now let’s build an algebraically closed field containing a given field K.
First let’s construct a polynomial ring R = K[Xf1 , Xf2 , ...] in infinitely many variables Xfi ,

where the fi run over every polynomial in K[X] of positive degree and Xfi is just a variable which
is labelled by fi. Just to be clear – an element of R is a polynomial in only finitely many of the
variables Xfi , and with coefficients in K.

Now let I be the ideal of R generated by all the elements fi(Xfi) as the fi run through all of
the polynomials of positive degree. The claim is that I 6= R. Why is this? Well, if I = R then
1 ∈ I, so one can write

1 =

n∑
i=1

aifi(Xfi)

for some polynomials fi ∈ K[X] of positive degree, and elements ai ∈ A. Now let M be a splitting
field over K for the product of the fi, 1 ≤ i ≤ n, and choose a root αi for each of these fi in M .
If we now consider the map from R to M sending Xfi to αi, 1 ≤ i ≤ n, and Xf to zero for the
other f ’s, then fi(αi) = 0 and the equation becomes 1 = 0, which is nonsense. This proves that
I 6= R, as claimed.

By the corollary there’s a maximal ideal m of R with I ⊆ m ⊂ R. Define K1 = R/m, and note
that there’s a natural injection K → K1. Furthermore every polynomial f(X) ∈ K[X] of degree
1 or more has a root in K1! Indeed Xf is a root of f(X) in R/I, so its image in K1 is a root of
f(X) in K1.

It would be great if we were now done. Unfortunately we are not yet there. The problem is
that K1 has the property that every polynomial in K[X] of degree 1 or more has a root – however
there may be polynomials of degree 1 or more in the larger ring K1[X] that do not have roots.
Once you realise this you wonder whether we have got anywhere at all!

However the trick is to iterate this construction. If we start with K1 then we build a field K2

containing K1 such that every element of K1[X] of positive degree has a root in K2. And so on.
We continue, getting an infinite collection of fields K ⊆ K1 ⊆ K2 ⊆ K3 ⊆ · · · . Now, informally,
we could just let L be the union of the Ki, and if this made sense (and it nearly does) then L
will be algebraically closed, because any f ∈ L[X] of degree 1 or more will have each coefficient in
some Ki, so all coefficients will be in KN for N large enough, so f has a root in KN+1 and hence
in L.

However we can’t really take a union because really we don’t have Ki ⊆ Ki+1, we just have
a natural injection Ki → Ki+1, so we need to use a slightly more sophisticated language – we
let L be the colimit of the Ki, which is something that does make sense: formally L is the disjoint
union of the Ki, modulo the equivalence relation generated by saying that α ∈ Ki is equivalent to
its image in Ki+1. In other words L is a set of equivalence classes, and a typical equivalence class
looks like {αi, αi+1, αi+2, . . .} with αi ∈ Ki and all the αi+n’s are the image of αi in Ki+n.

The field L is the extension of K that we seek.
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