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Preface

v14.4.2
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Chapter 0

Introduction

Galois Theory was invented to help study polynomial equations in one variable.

Example. x2 + 2x = 3, we can solve this by factoring: x2 + 2x− 3 = (x− 1)(x+ 3), or use
the formula.

rest of introductory lecture missing...
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Chapter 1

Rings and Fields

Definition. A ring, by which we mean a commutative ring with a 1, is the following:

• A (non-empty) set R,

• Elements 0, 1 ∈ R,

• Maps + : R × R → R, × : R × R → R. For r, s ∈ R we write +(r, s) = r + s and
×(r, s) = r × s = r · s = rs,

satisfying the following axioms:

1. (R,+) is an abelian group with identity 0,

2. (R,×) is a commutative semi-group, with identity 1, i.e,

• a(bc) = (ab)c ∀a, b, c ∈ R,

• 1a = a = a1 ∀a ∈ R,

• ab = ba ∀a, b ∈ R,

3. a(b+ c) = ab+ ac ∀a, b, c ∈ R.

Example. Z, Q, R, C are all rings.

Example. Z/nZ = {[0], [1], . . . , [n−1]} is a ring as well. (Exercise: make sure × makes sense
on Z/nZ)

Definition. A field is a ring R with the property that R \ {0} is an abelian group under
multiplication.

Remark. Informally, a field is a place where we can do +,−,×, / as we wish (except for
division by zero)

Example. Q, R, C are all fields, Z however is not (2, 3 ∈ Z, 2/3 /∈ Z).

Example. Also if p is prime then Z/pZ is a field.
To show this we need to show that if 1 ≤ i ≤ p− 1, then there exists j, such that ij = 1 + pk
for k ∈ Z.
However i < p =⇒ gcd(i, p) = 1 =⇒ ∃λ, µ such that λi+ µp = 1, so if we pick j = λ, we
have a multiplicative inverse for i.
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M3P11 CHAPTER 1. RINGS AND FIELDS

What are the finite fields?

Fact: If n ∈ Z≥2 then there is a field of size n if and only if n is the power of a prime number,
and such a field is unique up to isomorphism.

Remark. So there is a field of size 9, but it is not Z/9Z, as 3 × 3 = 0, but we can not have
zero dividers.
The field of size 9 is (Z/3Z)[i] = {a + bi : a, b ∈ Z/3Z} (this works as there are no solutions to
x2 = −1 in Z/3Z).

Proposition 1.1. Say K is a field and E ⊆ K is a subset. Then E (with induced 0, 1,+×)
is a subfield if and only if

• 0, 1 ∈ E

• If a, b ∈ E then so are a+ b, a− b, a× b and if b 6= 0 then a/b is too.

Proof. =⇒ : trivial
⇐= : Check axioms, but they are true in K!

Example. Q ⊆ C is a subfield: If a, b ∈ Q then so are a+ b, . . .

Example. Set E = Q(
√

2) = {a+ b
√

2 : a, b ∈ Q}. E ⊆ R ⊆ C, but is E a field?
Let us use 1.1. Set a = r + s

√
2 and b = t+ u

√
2, r, s, t, u ∈ Q. So a, b ∈ E.

Obviously 0, 1 ∈ E. So we just need to check a± b, ab, a/b ∈ E.

a± b = (r ± t)︸ ︷︷ ︸
∈Q

+ (s± u)︸ ︷︷ ︸
∈Q

√
2 ∈ E

ab = (r + s
√

2)(t+ u
√

2)

= (rt+ 2su)︸ ︷︷ ︸
∈Q

+ (ru+ st)︸ ︷︷ ︸
∈Q

√
2 ∈ E

Assume b 6= 0

a

b
=
r + s

√
2

t+ u
√

2

=
r + s

√
2

t+ u
√

2
× t− u

√
2

t− u
√

2

=
(rt− 2us) + (st− ru)

√
s

t2 − 2u2

t2 − 2u2 = 0 implies either t = u = 0 = b, but we assume b 6= 0 or t/u = ±
√

2, but
√

2 is
irrational, so this is impossible as well.

=
(rt− 2us)

t2 − 2u2
+

(st− ru)

t2 − 2u2
√
s ∈ E

So Q(
√

2) is a field.
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M3P11 CHAPTER 1. RINGS AND FIELDS

Is Q( 3
√

2) = {a+ b 3
√

2 + c( 3
√

2)2 : a, b, c ∈ Q} a field?

It is obviously a ring. . .
Here is a really important trick:
Say R is a ring and K ⊆ R is a subring such that K is a field. Then R is naturally a vector
space over K:
If λ ∈ K and v ∈ R then λ, v ∈ R, therefore λv ∈ R so K acts on R.
All the other vector space axioms follow immediately from the ring axioms.

Example. R = C, K = R, R ↪→ C, therefore C is a vector space over R, dimR C = 2. and
a basis is {1, i}.

Example. Q(
√

2) is a vector space over the subfield Q, dimQ(Q(
√

2)) = 2, a basis is {1,
√

2}.

Example. The polynomial ring. C[T ] has elements

n∑
i=0

λiT
i λi ∈ C

C ⊆ C[T ], the polynomials of degree 0, (and the 0 polynomial), so C[T ] is a vector space
over C. It is ∞-dimensional, a basis is the set

{1, T, T 2, T 3, . . . }

Proposition 1.2. Say R is a subring of C, with Q ⊆ R ⊆ C. Assume furthermore that
dimQR, the Q-dimension of R considered as a Q vector space is finite.
Then R is a field.

Remark. Hence Q( 3
√

2) is a field, dimQ(Q( 3
√

2)) = 3 and a basis is {1, 3
√

2, ( 3
√

2)2}.
In particular

1

1 + 3
√

2 + 7( 3
√

2)2
∈ Q(

3
√

2)

Proof. R is a ring, we need to check that if 0 6= r ∈ R, then 1
r
∈ R.

Consider the map φr : R→ R, defined by φr(a) = ra. (Note R is a ring, so ra ∈ R.)
φr(a + b) = r(a + b) = ra + rb, ∀a, b ∈ R and φr(λa) = rλa = λra = λφr(a)∀λ ∈ Q, a ∈ R.
So φr is a Q-linear map R→ R.
What is Ker(φr)?
It is {a ∈ R : φr(a) = 0} = {a ∈ R : ra = 0}. But r, a ∈ C and r 6= 0 by assumption, so
ra = 0 =⇒ a = 0 as C is a field.
So Ker(φr) = {0}. But dimQ(R) = d <∞, so by rank-nullity, dim(Imφr) = d and Im(φr) ⊆
R, so Imφr = R, so φ is surjective. Hence there exists s ∈ R such that φr(s) = rs = 1, so
1
r

= s ∈ R.

Remark. π is known to be a transcendental number. i.e. if f(x) ∈ Q[x] and f(π) = 0 then
f was the zero polynomial.
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M3P11 CHAPTER 1. RINGS AND FIELDS

Definition. Let us define

Q[π] =

{
n∑
i=0

λiπ
i : λi ∈ Q

}

the smallest subring of C containing Q and π.

Exercise. Check: dimQ(Q[π]) =∞ and that 1
π

is not in it.

Polynomial Rings

Definition. Let K be a field (or even a ring). The polynomial ring K[x] is the set of
polynomials (of any finite degree) in x, with coefficients in K. i.e. f ∈ K[x] is of the form

λ0 + λ1x+ · · ·+ λdx
d , λi ∈ K.

Remark. If f is a polynomial then f gives rise to a function K → K: send α ∈ K to
f(α) = λ0 + λ1α + · · · + λdα

d ∈ K. It can happen that different polynomials give the same
function:
If K = Z/2Z, let f(x) = x and g(x) = x2, then f 6= g, but f(x) = g(x)∀x ∈ K. (However this
only happens in finite fields)

Definition. Say f = λ0 +λ1x+ · · ·+λdx
d, with λd 6= 0. We say the degree of f , deg(f), is

f . The leading coefficient is λd, the leading term is λdx
d and the constant coefficient is λ0.

We say f is monic if λd = 1.

The polynomial 0 is a special case: Sometimes it is helpful to define deg(0) = −1 or deg(0) =
−∞. For the point of this course (or these lecture notes) we will leave deg(0) undefined.

Addition and Multiplication of polynomials

If f =
m∑
i=0

λix
i and g =

n∑
i=0

µix
i, WLOG m ≤ n, then expand the set of λi, 0 ≤ i ≤ m to λi,

0 ≤ i ≤ n, by setting λi = 0, ∀m < i ≤ n.

Now f =
n∑
i=0

λix
i.

Define

f + g =
n∑
i=0

(λi + µi)x
i

f − g =
n∑
i=0

(λi − µi)xi

fg =
m+n∑
i=0

γix
i
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M3P11 CHAPTER 1. RINGS AND FIELDS

where

γi =
k∑
i=0

λiµk−i

Exercise: Check this makes K[x] into a ring.

Remark. Note that K ⊆ K[x] and hence K[x] is a vector space over K, if K is a field.

Proposition 1.3. If f and g are polynomials in K[x], (K a field) and g 6= 0 then there
exists polynomials q and r, such that

1. f = gq + r

2. deg(r) < deg(g)

Furthermore, g and r are unique.

Example. Say K = C, f = x3 − x2, g = x2 + 1.
Then (long division or any other method) f = (x− 1)g + (−x+ 1).

Proof. We have done this in literally every course I attended this year. I won’t type it down
again.

Remark. Now that we have Euclid’s algorithm uniqueness of prime factorization follows
immediately.

Definition. Say f , g ∈ K[x], K a field and f and g not both zero. The highest common
factor h(x) = hcf of f and g is a polynomial h such that

1. h divides f and h divides g.

2. If j is any polynomial such that j divides f and j divides g, then j divides h.

Proposition 1.4. If at least one of f and g is non-zero, then a highest common factor
exists. Furthermore, if h1 and h2 are highest common factors of f and g then there exists
λ ∈ K, λ 6= 0 such that λh1 = h2.

Proof. Again, done so many times in previous courses.

Corollary 1.5. Say f , g ∈ K[x] at least one non-zero and if h is an hcf of f and g, then
there exists polynomials λ, µ ∈ K[x] such that h = λf + µg.

Proof. Go backwards in the proof for 1.4
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Irreducible Polynomials

Definition. Say K is a field, f ∈ K[x]. We say f is irreducible if

1. f 6= 0

2. deg f > 0

3. If f = gh, with g, h ∈ K[x], then either deg(g) = 0 or deg(h) = 0

Remark. If K = C then f ∈ K[x] irreducible is equivalent to deg(f) = 1.

Example. If K = R then x2 + 1 is irreducible.
If K = Q, is x4 − 2 irreducible? Is x4 + 4 irreducible?

Theorem 1.6. Say f 6= 0, f ∈ K[x]. Then

1. f = up1p2p3 . . . pn, u ∈ K, u 6= 0 with all the pi irreducible polynomials in K[x].

2. If f = vq1q2q3 . . . qm, with v ∈ K, v 6= 0 and all the qj irreducible polynomials in K[x].
Then n = m and after reordering the qi if necessary qi = λipi, λi ∈ K, λi 6= 0 ∀i.

Proof. Only a sketch of a proof was given.

Let us talk about irreducible polynomials.
By the Fundamental Theorem of Algebra, if p(x) ∈ C[x] of degree ≥ 1, then there exists
λ ∈ C such that p(λ) = 0, hence p(x) = (x− λ)q(x). So if p has degree strictly bigger than
1, we have just factored it.
Conclusion: Any polynomials p(x) ∈ C[x] of degree > 1 is reducible. Now it is easy to check

Proposition. p(x) ∈ C[x] is irreducible if and only if deg p(x) = 1.

C is special though, every non-constant polynomial has a root. (C is algebraically closed.)
K algebraically closed =⇒ irreducible polynomials in K[x] are the degree 1 polynomials.

Example. x2 + 1 is irreducible in R[x]. More generally, if f(x) ∈ K[x] has degree 2, then
either f(x) is ireducible or it factors as u(x− a)(x− b) into two linear factors, a, b, u ∈ K.

Therefore, for a degree 2 polynomial it holds: f is irreducible in K[x] if and only if f has no
root in K.
The same trick works for degree 3:
If f = gh, a non trivial factorisation, then one of g, h is degree 1, therefore f has a root in
K.

Example. Say K = Q, Say f(x) = x3 − 2, then f(x) is irreducible in Q[x].
Why? if it factored it would have a root in K = Q, but the three complex roots of x3 − 2 are
3
√

2, ω 3
√

2 and ω2 3
√

2, with ω = e
2πi/3.

ω 3
√

2 and ω2 3
√

2 are not even real, let alone rational and 3
√

2 /∈ Q either.

In degree 4 or more the trouble starts.
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Example. f(x) = x4 + 2x2 + 1 = (x2 + 1)2. Then f is reducible in R[x], but f(λ) > 0 for
all λ ∈ R and in particular f(λ) 6= 0, so there are no roots in R.

Example. What about x4 − 2 (over Q)?
It has no roots in Q, but does it factor into two quadratics?
Say x4 − 2 = (x2 + ax+ b)(x2 + cx+ d), a, b, c, d ∈ Q.
Multiplying out and comparing coefficients gives four non-linear equations in four vari-
ables...good luck.

Example. What about x4 + 4 in Q[x]? It has no roots in Q, but it turns out it is actually
reducible.

Over Q it turns out xn − 2 is irreducible for all n ≥ 1. We will now see how to prove this.

Remark. If a field is finite we can just try all possible factors. For example in F2, x2 +x+1
is irreducible since x− 1 and x do not divide it.

Say p(x) ∈ Q[x]. How do we tell if it has a root in Q? Replace p by Np, where N =
lcm(denominators of coefficients). So with out loss of generality p(x) = anx

n + · · · + a0,
ai ∈ Z, an 6= 0.
Say λ = r/s is a root with r/s ∈ Q in lowest terms, i.e. hcf(r, s) = 1.
Then

p(λ) = 0 =⇒ 0 = an

(r
s

)n
+ an−1

(r
s

)n−1
+ · · ·+ a1

r

s
+ a0

multiplying by sn, we get

0 = anr
n + an−1r

n−1s+ · · ·+ a1rs
n−1 + ans

n = anr
n + s · (. . . )

Since s
∣∣ 0, we must have s

∣∣ anrn, but hcf(r, s) = 1 so s
∣∣ an.

Similarly we have r
∣∣ a0.

Now we have finitely many possibilities for s and r.

Remark. Do not forget signs when looking for solutions.

What about degree larger or equal than 4?

We will not give a general answer, we will just list a few strategies.

Proposition 1.7 (Gauss’ Lemma). Say f ∈ Q[x] and all coefficients are integers. Say
f = gh, g, h ∈ Q[x] of degree m = deg(g), n = deg(h).
Then there exist g′ and h′, such that f = g′h′ and deg(g′) = m and deg(h′) = n and g′ and
h′ have integer coefficients too.

Proof. We know f = gh. Now choose N,M ∈ Z≥1 such that Mg,Nh ∈ Z[x].
Set R = MN . Now Rf = (Mg)(Nh), if R = 1, we are done.
If R > 1, choose a prime factor p

∣∣ R. We will show that either p divides all coefficients of
Mg or all coefficients of Nh. We can then proceed by induction on the number of prime
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factors.
Write

G = Mg ∈ Z[x]

H = Nh ∈ Z[x]

We know that GH = Rf , polynomials whose coefficients are multiples of p since f ∈ Z[x].
Assume for a contradiction that both G and H have at least one coefficient that is not a
multiple of p.
Say G =

∑
six

i, H =
∑
tjx

j.
Now choose the highest i such that p

∣∣- si and highest j such that p
∣∣- tj. So

G = s0 + s1x+ · · ·+ si︸︷︷︸
p|-si

xi + si+1x
i+1 + si+2x

i+2 + . . .︸ ︷︷ ︸
p|si+1, p|si+2,...

H = t0 + t1x+ · · ·+ tj︸︷︷︸
p|-tj

xj + tj+1x
j+1 + tj+2x

j+2 + . . .︸ ︷︷ ︸
p|tj+1, p|tj+2,...

Now, what is the coefficient of xi+j in GH = Rf? It is

· · ·+ si−2tj+2 + si−1tj+1︸ ︷︷ ︸
p|tk

+ sitj︸︷︷︸
p|-sitj

+ si+1tj−1 + si+2tj−2 + dots︸ ︷︷ ︸
p|sk

So p divides all terms but sitj, so p does not divide the sum. But all coeffecients in Rf are
multiples of p, so we have a contradiction.
Hence one of G, H can be divided by p.

Remark. A significantly shorter proof: Say GH ≡ 0 mod p in (Z/pZ)[x], it is a fact that
(Z/pZ)[x] is an integral domain, so either G ≡ 0 mod p or H ≡ 0 mod p.

Corollary 1.8 (Eisenstein’s Criterion). Say f ∈ Q[x], f =
d∑
i=0

aix
i, d ≥ 1, and assume

1. ai ∈ Z, for all i.

2. ∃p, prime such that p
∣∣- ad, p ∣∣ ai for 0 ≤ i < d and p2

∣∣- a0.

Then f is irreducible.

Example. x100 − 2 is irreducible in Q[x], using p = 2.
x5 + 4x+ 2 is irreducible in Q[x], using p = 2 as well.

Proof. Say f = gh, deg(g), deg(h) > 0, gh ∈ Q[x], where f satisfies the above conditions.
So f ∈ Z[x], hence by Gauss’ Lemma WLOG, g, h ∈ Z[x].

Say g =
m∑
i=0

six
i, h =

n∑
j=0

tjx
j. si, tj ∈ Z, so m+ n = d, smtn = ad.

So sm, tn are not multiples of p.
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Let us choose i and j as low as possible such that p
∣∣- si and p

∣∣- tj (such i and j exist as we
have just shown). Then the coefficient of xi+j in gh is

· · ·+ si−1tj+1 + sitj + si+1tj−1 + . . .

Now p
∣∣ si−k, for all k ≥ 1, so p

∣∣ si−ktj+k, and since p
∣∣ tj−k for all k ≥ 1, p

∣∣ si+ktj−k. But
p
∣∣- sitj, therefore the coefficient of xi+j in f is coprime to p.

But p
∣∣ ak, for all 0 ≤ k < d, therefore i+ j = d = m+ n. Hence i = m, j = n.

In particular i, j > 0. Therefore the constant term of f is a multiple of p2, which is a
contradiction since p2

∣∣- a0 by assumption.

Remark. p
∣∣- ad, p ∣∣ ak, for 0 ≤ k < d, so f ≡ adx

d mod p, so (g mod p)(h mod p) =
adx

d, thus g mod p, h mod p are monomials too. Hence p2
∣∣ a0.

Corollary 1.9. If p is a prime number, then the polynomial 1 + x + x2 + · · · + xp−1 is
irreducible in Q[x].

Proof. We know

1 + x+ x2 + · · ·+ xp−1 =
xp − 1

x− 1
Set y = x− 1, so x = y + 1, then

=
(y + 1)p − 1

y

=
yp +

(
p
1

)
yp−1 +

(
p
2

)
yp−2 · · ·+ py + 1− 1

y

= yp−1 +

(
p

1

)
yp−2 + · · ·+

(
p

i

)
yp−i−1 + · · ·+ p

Now we can apply Eisenstein since ap−1 = 1, and p
∣∣ (p

i

)
for all 1 ≤ 1 < p, so p

∣∣ ak, for
0 ≤ k < p− 1. Finally p2

∣∣- a0.
So Eisenstein applies, hence 1 + x+ · · ·+ xp−1 is irreducible.

Exercise. If p > 1 is not prime, prove that 1 + x+ · · ·+ xp−1 is reducible.
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Chapter 2

Field Extensions

i.e. K ⊆ L, L and K fields, then L is an extension of K, K is a subfield of L.
Given a big field F , what do all the subfields look like?
This is a “wild” question, so here is an easy fact

Lemma 2.1. Let F be field and say I is a set and for each i ∈ I, say Ei ⊆ F is a subfield,
then ⋂

i∈I

Ei

is a subfield of F .

Proof. Set E =
⋂
i=I

Ei.

Recall. X ⊆ F is a subfield if and only if 0, 1 ∈ X and if x, y ∈ X then so are x+ y, x− y,
xy and x/y(if y 6= 0)

Now it is easy to see that 0, 1 ∈ Ei ∀i ∈ I, so 0, 1 ∈ E.
Similarly, if x, y ∈ E, that means that x, y ∈ Ei ∀i. So x + y, x − y, xy and x/y(if y 6= 0)
are ∈ Ei ∀i, hence they are in E.

As a consequence, given a field F , we can look at he intersection of all the subfields of F .
This is called the prime subfield, or the primefield of F .
By Lemma 2.1 it is the smallest subfield of F .
What does it look like?

Example. F = C Any subfield will contain 0 and 1, if x, y are in F , then x+ y is in F as
well, so every subfield must contain Z.
Similarly every x/y must be contained, so Q is a subset of every subfield of C.
Conversely Q is a subfield of C, so the prime subfield of C is Q.

13



M3P11 CHAPTER 2. FIELD EXTENSIONS

General Case

Say F is any field. If E ⊆ F is any subfield then 0, 1 ∈ E.
We can get a map Z→ E, n→ (1 + 1 + · · ·+ 1), if n > 0 and the additive inverse of −n if
n < 0. Now there are two very distinct cases:

1. Z → E is injective. Then E contains a copy of Z. But E is a field, so E contains a
copy of Q, which is necessarily the prime subfield.

2. Z → E is not injective. Then Z → E is a group homomorphism, so the Kernel must
be of the form nZ for some n ∈ Z≥1 (For a proof look at the smallest positive element
of the kernel) and by the first isomorphism theorem we have an injection Z/nZ→ E.
What can we say about n?
First of all we can say that n 6= 1. If n = 1, we have 0 = 1 and E = {0}, which is not
a field.
Secondly, if n is not prime, we can write n = ab, 1 < a, b < n. In E, a 6= 0, b 6= 0, but
ab = n = 0, which can not happen in a field.
Therefore n is prime and E ⊇ Z/pZ, which is a field and therefore the prime subfield of
E;

In Case 1, Q ⊆ F , we say F has characteristic 0. In Case 2, we say F has characteristic p.

Remark. If F has characteristic p the ∀x ∈ F , x+ x+ x+ x+ · · ·+ x (p times) = 0.

Now say K ⊆ L are fields. Say a ∈ L (interesting case a /∈ K). What is the smallest subfield
of L containing K and a? Does that question even make sense?
Let us consider all subfields of L containing K and a. By 2.1 their intersection is a field as
well, contains K and a and it is the smallest such field.
Let us call it K(a).

Definition. K(a) is the smallest subfield of L containing K and a.

Definition. More generally, say a1, . . . , an ∈ L and K ⊆ L is a subfield of L. Then

K(a1, . . . , an)

Is the smallest subfield of L containing K and a1, . . . , an. (i.e. the intersection of all such
fields)

Remark. If S ⊆ L is any subset, we can define K(S) similarly.

Example. Q(
√

2) ⊆ C, what is this?
Say E ⊆ C is any subfield, and E ⊇ Q and E 3

√
2. Then E must contain ant number of

the form a+ b
√

2, a, b ∈ Q. However {a+ b
√

2 : a, b ∈ Q} is a field, so it must be Q(
√

2).

Example. Similarly Q( 3
√

2) = {a+ b 3
√

2 + c( 3
√

2)2 : a, b, c ∈ Q} (All these numbers must be
contained, and it is a field by 1.2)

14
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Example. Q(
√

2,
√

3) =?
Any subfield of C containing Q,

√
2 and

√
3 must firstly contain

√
2
√

3 =
√

6 and hence
must contain

{a+ b
√

2 + c
√

3 + d
√

6 : a, b, c, d ∈ Q}

Now check this is a ring. This is true, because if x, y ∈ {1,
√

2,
√

3,
√

6} then x, y ∈ E.
By 1.2 this is a field Q(

√
2
√

3).

Example. What is Q(π). Fact 6 ∃p ∈ Q[x] such that p 6= 0 but p(π) = 0 (Lindemann)
Say Q(π) = E. π ∈ E. So therefore E 3 π2, π3, . . . .

Claim. The set {1, π, π2, . . . } is a linearly independent set of vectors in the Q-vector space
E.

Proof. A non-trivial combination implies a counter example to Lindemann.

Notation. Q[π] = {p(π) : p ∈ Q[x]}, polynomials in π with rational coefficients

Q[π] is a ring Q[π] ∼= Q[x], dimQQ[π] = ∞. So we cannot apply 1.2 to deduce Q[x] is a
field and indeed Q[x] is not a field.
Division is the issue: If f(x) ∈ Q[x], g(x) ∈ Q[x] and g 6= 0 and g/f (in Q[π]) then
f(π)
g(π)
∈ Q[π]. But if g

∣∣- f it won’t be in Q[π]. In fact,

Q[π] =

{
f(π)

g(π)
: f, g ∈ Q[x], g 6= 0

}
as Q(π) clearly contains all f(π)/g(π) and conversely that is easily checked to be a field

Definition. (Notation K ⊆ L, both fields)We say an element a ∈ L is algebraic over K if
∃ a polynomial p(x) ∈ K[x] such that p 6= 0 but p(a) = 0.
If a ∈ L is not algebraic over K, we say it is transcendental over K.

Remark. If K = Q and L = C we usually just say a ∈ C is algebraic or transcendental.

Example.
√

2 is algebraic over Q. p(x) = x2 − 2.

Example. π is not algebraic over Q. (Lindemann)

Remark. However, π is algebraic over R:

p(x) = x− π ∈ R[x]

even iπ is algebraic over R: (x) = x2 + π2 ∈ R[x]

15
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Example. Are there any z ∈ C not algebraic over R? No

(x− z)(x− z̄) = x2 − (z + z̄)x+ (zz̄)

So all complex numbers are algebraic over R.

Definition. K ⊆ L, we say L is algebraic over K if all a ∈ L are algebraic over K. (e.g.
C is algebraic in R, but R is not algebraic over Q)

Remark. in fact, only countably many real numbers are algebraic over Q. Therefore 100%
of real numbers are not algebraic over Q.

Definition. Say K ⊆ L are fields and a ∈ L is algebraic over K. We say the minimum
polynomial of a over K is the non-zero polynomial p(x) ∈ K[x] such that

1. p(a) = 0,

2. p is monic,

3. p is irreducible over K.

Proposition 2.2. If a ∈ L is algebraic over K, then there exists a minimum polynomial for
a over K. This polynomial is unique and furthermore if p(x) is the minimum polynomial of
a and f(x) ∈ K[x] is any polynomial, then f(a) = 0 if and only if p(x) divides f(x) in K[x]

Proof. Set S = {f(x) ∈ K[x] : f(a) = 0, f 6= 0}. a ∈ L is algebraic over K, means that S is
non-empty. Therefore there exists a polynomial q(x) of smallest degree.

q(x) = λdx
d + . . .

Set

p(x) =
1

λd
q(x)

So p(x) is monic, and p(a) = 1/λdq(a) = 1/λd0 = 0.

Claim. p(x) is irreducible in K[x].

Well p(x) 6≡ 0 and p(a) = 0, so p(x) is not constant. Say p(x) = f(x)g(x), deg(f), deg(g) > 0.
Note that deg(p) = deg(f) + deg(g), so deg(f), deg(g) < deg(p).
Moreover p(a) = 0, so f(a)g(a) = 0, hence one of f(a) and g(a) = 0.
With out loss of generality f(a) = 0, so f ∈ S, but p is smallest degree in S, so we have
reached a contradiction.
Hence p is irreducible. So existence is done.
Now say f ∈ K[x]. We can write f(x) = q(x)p(x) + r(x), deg(r) < deg(p). If f(a) = 0, then
evaluating the right side for x = a, we get 0 = q(a)p(a) + r(a) = r(a), since p(a) = 0. So
r(a) = 0, but again, p is the polynomial of minimal degree, with a as a root, therefore r ≡ x.
Hence p

∣∣ f .
Conversely if p

∣∣ f and p(a) = 0, then f(a) = 0.
Uniqueness: If p1 and p2 are both minimal polynomials then p1

∣∣ p2 and p2
∣∣ p1, but since

they are both monic this means p1 = p2.

16
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Corollary. A consequence of this is the following: K ⊆ L, a ∈ L algebraic over K. Let
p(x) ∈ K[x] be the minimum polynomial of a over K and say p(x) has degree d > 1. Then
any element of L which can be expressed as a polynomial in a with coefficients in K can also
be written as a polynomial in a with coefficients in K and of degree < d.

Example. K = R, L = C, a = i, p(x) = x2 + 1, d = 2. The claim is that 53i9 + 27 12
den
i3 −

πi+
√

2 is of the form x+ iy, x, y ∈ R.

Proof. If the element of L is f(a), f(x) ∈ K[x], then write f(x) = q(x)p(x) + r(x). By 1.3
deg(r) < d and sub in a to get f(a) = 0 + r(a), because P (a) = 0.

Proposition 2.3. K ⊆ L, fields, a ∈ L.

(a) If a is algebraic over K then the field K(a) ⊆ L is finite-dimensional, as a K-vector
space and moreover dimK K(a) is the degree of the minimal polynomial of a over K.

(b) If a is transcendental over K, then K(a) is an infinite dimensional extension as a
K-vector space.

Proof.

(a) Say p(x) is the minimal polynomial of a, with degree ≥ 1. Let R be the K-vector
subspace of L spanned by ai, 0 ≤ i < d. Clearly dimK R ≤ d. In fact dimK R = d,
because any non-trivial linear combination of the ai is not zero, because a is not a
root of a polynomial in K[x] of degree less than d.

Claim. R = K(a).

Well, clearly R ⊆ K(a). It suffices to show that R is a field. 0, 1, +, − are trivial.
Is R closed under multiplication and division?
R = {f(a) : f ∈ K[x], deg(f) < d}. If f(a) and g(a) ∈ R, then f(a)g(a) is some
polynomial in a, therefore by the previous corollary it is equal to a polynomial in a of
degree < d, so it is in R.
So R is a ring, ⊆ L a field, dimK R <∞ so by 1.2 and the remark after it R is a field.

(b) If a ∈ L is not algebraic over K then K(a) ⊇ {1, a, a2, . . . } an infinite linearly inde-
pendent subset, therefore dimK K(a) =∞.

Definition. K ⊆ L, a ∈ L algebraic over K. The degree of a over K, is the degree of the
minimal polynomial of a over K.

Example. K = Q, L = C, a = 100
√

7, what can we prove about K(a)?

Claim.

Q(a) =

{
99∑
i=0

λia
i : λi ∈ Q

}
and {ai : 0 ≤ i ≤ 99} are a basis for a 100-dimensional Q-vector space Q(a).

17
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Here is why:
Clearly a100 = 7, therefore a is a root of p(x) = x100 − 7 ∈ Q[x], p(x) is irreducible by
Eisenstein.
So the degree of a over Q is 100 and ai : 0 ≤ i ≤ 99 are linearly independent over Q, by
2.3(a) and its proof.
Also by 2.3(a), Q(a) is spanned by {ai}99i=0, so it is what we claimed.

Example. K = Q, L = C,a = ςp = e2πi/p, p prime.
What is the dimension of Q(ςp)?
Clearly a is algebraic over Q, because ap = 1, therefore a is a root of xp − 1. However

xp − 1 = (x− 1)(xp−1 + xp−2 + · · ·+ x+ 1) ∈ Q[x]

which are both irreducible in Q[x], by linearity and Eisenstein-corollary respectively.
Which is the minimal polynomial of ςp? ςp must be a root of the irreducible polynomial, since
ςp 6= 1, the minimal polynomial is xp−1 + xp−2 + · · ·+ x+ 1.
Therefore the degree of ςp over Q is p− 1, so dimQQ(ςp) = p− 1, because xp−1 = −(xp−2 +
· · ·+ x+ 1), so a Q-basis for Q(ςp) is {1, ςp . . . , ςp−2p }

Up until now, our set-up has been K ⊆ L, a ∈ L, algebraic over K, p(a) is the minimal
polynomial of a, p(x) ∈ K[x], irreducible and p(x) has a root in L.
Now let us forget about L and say that all we have is a field K and an irreducible p(x) ∈ K[x].
Can we build K(a), a a root of p(x) in any meaningful way?

Example.

1. K = R, p(x) = x2 + 1

2. K = Z/5Z, p(x) = x2 − 2.

Idea (inspired by R ⊆ C and the above arguments): Set R = {f(x) ∈ K[x] : deg(f) < d},
where d = deg(p). dimK R = d, a basis is 1, x, . . . , xd−1.
Addition and subtraction are ok, and we can redefine multiplication as follows (similar to
before): f(x)× g(x) may have degree ≥ d, then we write f(x)g(x) = q(x)p(x) + r(x), with
deg(r) < d, so r(x) ∈ R, and define f(x)× g(x) = r(x).

Remark. This looks a bit like Z/nZ: e.g. Z/10Z = {0, 1, . . . , 9} and 6 × 7 = 42 ≥ 10, so
6× 7 = 2 in Z/10Z, because the remainder is 2.

Theorem 2.4 (Construction). Say K a field, p(x) ∈ K[x] an irreducible polynomial, degree
d ≥ 1. Let I be the subgroup of K[x], consisting of multiples of p(x). (K[x] is an abelian
group, with I some subgroup)
Consider the quotient group M = K[x]/(p). Then M is naturally a field, containing (a copy
of) K, and M contains a root α of p(x) (namely α = x+ I).
The K-dimension of M is d (the degree of p(x)).
Furthermore, M has the following “universal property”: If L is any field containing K and
a ∈ L is any root of p(x) in L, then there exists an isomorphism of fields M → K(a), which
is the identity on K and sends α to a.
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Proof. M is an abelian group. There is a map K →M (K ↪→ K[x]→ K[x]/(p)=M), so let us
define 1 ∈M to be the image of 1 in K.
Next let us define a multiplication on M :
Given m1, m2 ∈M , lift them to f1,f2 ∈ K[x]. Define m1×m2 as the image of f1× f2 under
the map K[x]→M .
But is this well-defined? Yes, if g1 and g2 are different lifts (pre-images), then g1 − f1 and
g2 − f2 are multiples of p(x), then

g1g2 − f1f2 = g1g2 − g1f1 + g1f2 − f1f2
= g1(g2 − f2) + (g1 − f1)f2

which is a multiple of p(x), so the images of g1g2 and f1f2 coincide.
Now M is a ring, because it inherits the axioms from K[x].
Note also: an element of M is a subset f + I of K[x].
If f = qp + r with deg(r) < d, then r ∈ f + I and (easy to check)r is the only element of
f + I with degree < d. Therefore as a set M ∼= {polynomials in K[x] of degree < d}.
This is an isomorphism of groups and of K-vector spaces, therefore dimKM = d and a basis
is

1, α, α2, α3, . . . , αd−1

M is a field, say 0 6= m ∈ M . Lift m to f ∈ K[x], f not a multiple of p(x). But p(x) is
irreducible, therefore hcf(f, p) = 1.

Remark. This is the first time we assume p(x) is irreducible

Therefore there exists λ, µ ∈ K[x] such that λf + µp = 1. (Cor 1.5) Set n = λ + I ∈ M ,
Then

mn = λf + I

= λf + µp+ I

= 1 + I

Example. R[x]/(x2+1)
∼= C (where (x2 + 1) is all the multiples of x2 + 1).

Set α = x+ I ∈M , then p(α) = p(x) + I = I = 0 + I, so α is a root of p(x) ∈M .
Finally, universal property, say K ⊆ L and a ∈ L is a root of p(x).
Define ϕ : K[x] → L, a ring homomorphism, defined by ϕ(f(x)) = f(a), ϕ is a group
homomorphism and even a ring homomorphism.
By the first isomorphism theorem K[x]Z/pZ Ker(φ) ∼= Imϕ.

Ker(ϕ) = {f(x) ∈ K[x] : f(a) = 0}
= multiples of p(x)

by 2.2

= I

Therefore we get an induced map M
ϕ
↪→ L, and M ∼= {f ∈ K[x] : deg f < d}, therefore

Imϕ = {polynomials in a, coefficients in K, degree smaller d} = K(a), by 2.3
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Example. q odd, prime and p(x) = x2 − n, where 0 < n < q is a quadratic non-residue,
p(x) irreducible, M = (Z/qZ)[x]

/
(multiples of p), a field of dimension 2 over Z/qZ, therefore a

field of size q2

We now have a trick:
Given K a field and p(x) ∈ K[x] a irreducible polynomial, we can build a bigger field M
where p has at least one root.
We can repeat this procedure and throw in more roots, so we should better be able to control
what happens if we have towers of fields, e.g. K ⊆ L ⊆M .

Example. not sure where to put this example...
K = Q, p(x) = x3 − 2, M = Q[x]/((multiples of x3 − 2) = I), and if α = x + I, then
dimQM = 3 and a basis is 1, α, α2.

Example. L = C and let a, b, c be three roots of p(x) a = 3
√

2 ∈ R, b = ωa, c = ω2a. Now
Q ⊂ Q(a),Q(b),Q(c) ⊂ C. Q(a),Q(b),Q(c) are all fields obtained by throwing in a root of
p(x) into Q.
Note a ∈ R and therefore Q ⊂ R, but b /∈ R, therefore Q(b) 6= Q(a).
However, both are isomorphic to M (by 2.4), and therefore isomorphic to each other Q(a) ∼=
Q(b), with λ+ µa+ γa2 7→ λ+ µb+ γb2.

Example. Variant p(x) = x2 − 2, two roots in C are +
√

2 and −
√

2, therefore Q(+
√

2) ∼=
Q(−
√

2), λ + µ
√

2 7→ λ − µ
√

2, Note Q(
√

2) = Q(−
√

2), but the isomorphism we just got
was not the identity.

Bits missing?

Tower Law

Notation. If K ⊆ L, then define [L : K] = dimK L, the dimension of L as a K-vector
space.

Basic idea: If K ⊆ L are fields and V is a vector space over L, then V is also a vector space
over K.

Notation. The dimension can change.
Indeed R ⊆ C and V = Cn ∼= R2n. dimC V = n, dimR V = 2n, because (dimR C = 2)

Example. [C : R] = 2, [Q( n
√

2) : Q] = n

Proposition 2.5. If K ⊆ L ⊆M are fields, then [M : K] = [L : K]× [M : L].

Remark. If K ⊆ L and V is a vector space over L then dimK V = dimL V × [L : K], and
the proof is the same.

Remark. If any of these quantities are infinite, then interpret the equation as ∞ =∞.
i.e. [M : K] =∞ ⇐⇒ [M : L] =∞ or [L : K] =∞.
The proof will only consider the result for finite extensions.
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Proof. Say [M : L] = d and [L : K] = e and d, e ∈ Z≥1.
Say m1,m2, . . . ,md is a basis for M considered as a vector space over L.
Say l1, l2, . . . , le is a basis for L as a vectors space over K.
Let us define nij = milj ∈M (for 1 ≤ i ≤ d and 1 ≤ j ≤ e), these are hence de elements nij.

Claim. The nij are a basis for M as a K-vector space.

Span: Say m ∈M , Then

m =
d∑
i=1

λimi

for some λi ∈ L, simply by the definition of mi. Furthermore, each λi ∈ L, therefore for each
λi we have

λi =
e∑
j=1

κijlj

for some kij ∈ K, by the definition of lj, so

m =
d∑
i=1

e∑
j=1

κijljmi

=
∑
ij

κijnij

Therefore the nij span M as a K-vector space.
Linear independence: Say αij ∈ K and

d∑
i=1

e∑
j=1

αijnij = 0

d∑
i=1

e∑
j=1

αijmilj = 0

d∑
i=1

(
e∑
j=1

αijlj

)
︸ ︷︷ ︸
call this λi∈L

mi = 0

But the mi are a basis for M as a L-vector space and λi ∈ L, therefore mi are linearly
independent over L, so all λi = 0.

Therefore
e∑
j=1

αijlj = 0 ∀i, but αij ∈ K and the lj are linearly independent over K, therefore

αij = 0 ∀j∀i, therefore nij are linearly independent.

Reminder of 2.3, a ∈ L is algebraic over K iff [K(a) : K] <∞
Set-up: K ⊆ L are fields, we say L is finite over K if [L : K] < ∞. We say L is algebraic
over K if ∀λ ∈ L, λ is algebraic over K

21



M3P11 CHAPTER 2. FIELD EXTENSIONS

Example. C is finite over R as [C : R] = 2. C is algebraic over R because if z = x+ iy ∈ C,
then z is the root of T 2 − 2xT + (x2 + y2).

Corollary 2.6. If L is a finite extension of K, then L is an algebraic extension of K.

Proof. Assume [L : K] is finite. Say λ ∈ L. Then K ⊆ K(λ) ⊆ L, therefore dimK K(λ) ≤
dimK L = [L : K] <∞.
So by 2.3(b), λ is algebraic over K.

Corollary 2.7. K ⊆ L, say α, β ∈ L are both algebraic over K. Then α + β, α − β, αβ,
α/β (if β 6= 0), are also algebraic over K.

Proof. α algebraic over K, so [K(α) : K] <∞, β is algebraic over K, therefore β is algebraic
over K(α). So K(α)(β) = K(α, β) is finite dimensional over K(α) [K(α, β) : K(α)] < ∞,
now by the tower law [K(α, β) : K] <∞.
By 2.6 K(α, β) is an algebraic extension over K, so α+ β, α− β, αβ, α/β (if β 6= 0) are all
in K(α, β), therefore are all algebraic over K.
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Chapter 3

Ruler and Compass constructions

Recall. The tower law: K ⊆ L ⊆M , fields. Then [M : K] = [M : L][K : L].

We can use this to resolve three questions which stymied the ancients:
You have a straight-edge and a pair of compasses. What can you do?
We can make a regular hexagon, bisect a line, bisect an angle.
We cannot trisect an angle, duplicate a cube (construct 3

√
2) or square the circle (given a

circle construct a square with the same area, construct length π, given 1).
Let us prove the latter are impossible to do.
Set-up: S ⊆ R2, a finite set of points. Idea: We say t ∈ R2 is constructible in one step from
S, if t is a point of intersection of two curves C1 and C2, where Ci is either

1. a line drawn between two distinct points s1, s2 ∈ S.

2. a circle, with centre s ∈ S, and radius being the distance between two points s1, s2 ∈ S.

We say u ∈ R2 is constructible from S, if there is a sequence t1, t2, . . . , tn = u such that each
ti ∈ R2 is constructible in one step from S ∪ {t1, . . . , ti−1}.
Now start with S = {(0, 0), (1, 0)}.
So what is constructible?
We can get (n, 0), n ∈ Z and then (q, 0),∈ Q.

Remark. We can only construct countably many points from {(0, 0), (0, 1)}, because we
always have a finite number of options, from a finite number of points, so there are points
we cannot construct.

Definition. If S = {p1, p2, . . . , pn} with pi = (xi, yi) ∈ R, then let us define Q(S) =
Q(x1, y1, x2, y2, . . . , xn, yn) ⊆ R.

Idea, we can say something about [Q(S) : Q].

Lemma 3.1. If S ⊆ R2 is a finite set of points, if K = Q(S) and if t is constructible in one
step from S, and t = (x, y), then [K(x) : K] = 1 or [K(y) : K] = 2.

Proof. t is on C1 and C2 (notation as above), therefore t is a solution to two equations.
Cases depending on the nature of the Ci (i.e. are they two lines, a line and a circle or two
circles?)

23



M3P11 CHAPTER 3. RULER AND COMPASS CONSTRUCTIONS

1. Say C1 is a line through s1, s2, with t = mX + c, with m, c ∈ K.
Say C2 is a circle, with centre (a, b) and radius

r =
√

(a3 − a4)2 + (b3 − b4)2

which is the distance between (a3, b3) and (a4, b4) ∈ S. So the equation is

(X − a)2 + (Y − b)2 = r2

So what is C1 ∩ C2? Substitute Y = mX + c into the C2-equation. So now we get a
new quadratic equation p(X) = 0, with p(X) ∈ K[X] a polynomial of degree 2.

(a) t is the root of p(X), if p(x) is irreducible then [K(t) : K] = 2, as p(x) is the
minimal polynomial of x over K.

(b) p(X) is reducible, then t ∈ K, so K(t) = K, and [K(t) : K] = 1

2. C1 and C2 are both lines, then C1∩C2 is a point and the coefficients (x, y) of the point
will be in K.

3. Last case C1 and C2 are both circles. We need to solve

(X − a)2 + (Y − b)2 = c (3.1)

and

(X − d)2 + (Y − e)2 = f (3.2)

with a, b, c, d, e, f ∈ K. If we try to solve these two equations, we can solve (3.2)-(3.1)
and (3.1), which is a line and a circle. And we have already done that in case 1.

Corollary 3.2. S, t, K as above. Then [K(x, y) : K] = 1, 2, 4.

Proof. [K(x) : K] = 1, 2, it equals iff K(x) = K iff x ∈ K.
If x ∈ K, then K(x, y) = K(y), so [K(x, y) : K] = [K(y) : K] = 1 or 2.
If x /∈ K, then [K(x) : K] = 2. Cases:

1. y ∈ K(x), then K(x, y) = K(x), and [K(x, y) : K] = [K(x) : K] = 2.

2. y /∈ K(x), therefore the minimal polynomial of y over K(x) has degree at least 2. But
y /∈ K(x), so y /∈ K, so [K(y) : K] = 2. So the minimal polynomial of y over K has
degree 2.
So there exists p(t) ∈ K[t], irreducible, degree 2, such that p(y) = 0. But K ⊆ K(x),
so we can think of p(t) as being in K(x)[t], and p(y) = 0, so the minimal polynomial
of y over K(x) has degree ≤ 2.
So it has degree 2.
Therefore [K(x, y) : K(x)] = [K(x)(y) : K(x)] = 2,by 2.3.
And [K(x) : K] = 2, so [K(x, y) : K] = [K(x, y) : K(x)][K(x) : K] = 2× 2 = 4
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Corollary 3.3. Say S is a finite set of points. S = {p1, p2, . . . , pm}, with pi = (xi, yi) and
let K = Q(x1, y1, x2, y2, . . . , xm, ym). Say t = (x, y) is constructible from S.
Then [K(x, y) : K] = 2d, for some d ∈ Z≥0.
Moreover, [K(x) : K] and [K(y) : K] are also powers of 2.

Lemma 3.4. K ⊆ L ⊆ M fields and [M : K] is a (finite and) a power of 2. Then [L : K]
is also a power of 2.

Proof. [M : K] = [M : L][L : K], by the tower law, the result follows immediately.

Proof of 3.3. K is a field generated by coordinates of points in S. t1, t2, . . . , tN = t. Say
ti = (αi, βi). By 3.2, [K(α1, β1) : K] = 1, 2, 4, a power of 2.
By 3.2 applied to S ∪ {t1} ∪ {t2} [K(α1, β1, α2, β2) : K(α1, β1)] = 1, 2, 4, a power of 2, so
by the tower law, [K(α1, β1, α2, β2) : K] = (1, 2, 4) × (1, 2, 4), a power of 2. By induction,
[K(α1, β1, . . . , αN , βN) : K] is a power of 2.
Set M = K(α1, β1, . . . , αN , βN) and apply the 3.4 to K(x), (y), K(x, y) ⊆M .

As a consequence, if we start with S = {(0, 0), (1, 0)}, (so K = Q) and we construct a point
t = (x, y) with ruler and compasses, then [Q(x) : Q] and [Q(y) : Q] must be powers of 2.

Now let us beat the ancient Greeks at their own game

Claim (1). You can not duplicate the cube. i.e. given S = {(0, 0), (1, 0)}, can not construct
2 points such that the distance between them is 3

√
2.

Proof. If we could, we would be able to construct the points ( 3
√

2, 0).
But if x = 3

√
2, then x is a root of t3 − 2 = 0 and t3 − 2 is irreducible (by Eisenstein, or

otherwise). So t3− 2 is the minimal polynomial of x, so [Q(x) : Q] = 3, which is not a power
of 2.

Claim (2). You cannot trisect a general angle.

Proof. From S = {(0, 0), (1, 0)}, we can easily build an angle of 60◦. Say this angle could be
trisected. Then it would be possible to construct the point (x, y) = (sin(20◦), cos(20◦)).
Recall cos 3θ = 4 cos3 θ − 3 cos θ. If x = cos(20◦), then 4x3 − 3x = cos(60◦) = 1

2
. Therefore

8x3 − 6x− 1 = 0. By earlier work, this is irreducible.
So [Q(x) : Q] = 3, which is a contradiction.

Claim (3). We can not square the circle

Proof. If x = π, then [Q(π) : Q] =∞ by Lindemann, which is not a power of 2.
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Chapter 4

Splitting Fields

Galois theory is the study of “permuting around” the roots of a polynomial.

Example. K = R, p(x) = x2 + 1. C is the field you get by throwing in all the roots of p(x).
Complex conjugation swaps the roots around.
Something about future isomorphisms. (Gal(C/R) ∼= C2

∼= S2)

Reminder:

If K is a field and p(x) ∈ K[x] is an irreducible polynomial, then we have seen two ways of
building a bigger field containing a root of p(x).
If K ⊆ C then life is easy, C is algebraically closed, so let z ∈ C be a root of p(x) and set
L = K(z). We saw that [L : K] = deg p(x).
We also saw the abstract approach. Set M = K[x]/I, where I is the ideal generated by p(x).
We showed (2.4), that M is a field, p(x) has a root in M , [M : K] = deg p.
We also showed that M ∼= L, if K ⊆ C.

Remark. K = Q, p(x) = x3 − 2, say z1 = 3
√

2 ∈ R ⊆ C and z2 = ω 3
√

2, ω = e2πi/3. Then
Q(z1) 6= Q(z2), but both are isomorphic to Q[x]/I, so Q(z1) ∼= Q(z2).

Definition. K a field, p(x) ∈ K[x] any non-zero polynomial (not necessarily irreducible).
We say that a field extension L ⊇ K is a splitting field for p(x) over K if

1. p(x) = c
d∏
i=1

(x− αi), αi ∈ L, c 6= 0, i.e. p factors into linear factors in L.

2. L = K(α1, α2, . . . , αd), in other words, L is generated by the roots of p(x).

Remark. We just saw above that Q(z1) ∼= Q(z2) and more generally, if you “throw in one
root, what you get is well-defined up to isomorphism”.

We want to show that, if L1 and L2 are both splitting field for K, then L1
∼= L2. Back to

this later.

26



M3P11 CHAPTER 4. SPLITTING FIELDS

Idle Question:

Say K = Q, p(x) an irreducible polynomial of degree 3. L is the splitting field. What is
[L : K]?

Example. Say p(x) = x3 − 2, K = Q. z1 = 3
√

2, z2 = ωz1, z3 = ω2z3. L = Q(z1, z2, z3).
M = Q(z1). Here, p(x) = (x − z1)q(x), where q(x) has degree 2. Roots of q(x) are z2 and
z3, but z2, z3 /∈ Q(z1) ⊆ R.
So q(x) ∈ M [x] has degree 2 and no roots, so it is irreducible, so [M(z2) : M ] = 2. Now
z2 ∈M(z2), and z3 = −z2− z1 ∈M(z2), So L = M(z2). By the tower law, the splitting field
has degree 6 (with respect to Q.)

Example. cos(20◦). From chapter 3, c = cos(20◦), 4c3−3c = 1/2. Set d = 2c, d3−3d−1 = 0
is irreducible.
Set p(x) = x3 − 3x− 1. What is the splitting field?
In M [x], p(x) factors as (x − d)q(x), but q is reducible in M [x], turns out the two roots of
q(x) are −1− 1/d and −1/(1 + d).
Indeed we check that these are in M . So the splitting field has dimension 3.

Example. p prime, f(x) = xp−1 + xp−2 + · · ·+ x+ 1, is irreducible by Eisenstein-corollary.
The roots of f(x) are ω, ω2, . . . , ωp−1, ω = e2πi/p, so Q(ω) is the splitting field, it contains
ω2, . . . because it is a field, so Q(ω) is the splitting field.

Say K is a field, p(x) ∈ K[x] is non-zero. K ⊆ L, K ⊆M .
Say p(x) = (p− l1)(p− l2) . . . (p− ld), li ∈ L and L = K(l1, l2, . . . , ld).
Say also p(x) = (x−m1)(x−m2) . . . (x−md), mi ∈M and say M = K(m1,m2, . . . ,md).
Is it clear that L ∼= M?, Is it even clear that [L : K] = [M : K]?

Definition. K a field, p(x) ∈ K[x] a non zero-polynomial. Say K ⊆ L. We say p(x) splits
completely in L if p(x) = c(x− l1)(x− l2) . . . (x− ld), li ∈ L.

Definition. Now say K is a field, p(x) ∈ K[x] a non-zero polynomial, and K ⊆ L, L
another field. We say that L has property ∗ for the pair (K, p(x)), whenever K ⊆ M , M
any field, then p(x) splits completely in M if and only if there is an injective homomorphism
of field α : L→M such that α restricted to K ⊆ L is the identity K → K.

Remark. Informally, K ↪→M , and K ↪→ L
α→M , and we want the two ways of going from

K to M to be the same map.

Remark. Say L has property ∗ for (K, p). Set M = L, α is the identity, then that means
that p(x) splits completely in L.

Lemma 4.1. Given a field K and p(x) ∈ K[x] non-zero, there exists a field L ⊇ K with
property ∗ for (K, p(x)) and furthermore [L : K] is finite.

Proof. We proof the following statement: Q(n) = “for any field K and any p(x) ∈ K[x] of
degree n, there exists L ⊇ K with property ∗ for (K, p) and [L : K] is finite.”
We will prove Q(n) by induction on n.
n = 0 and n = 1 are easy: Set L = K. (If deg(p(x)) ≤ 1 then all roots of p(x) are in K).
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Inductive step: n ≥ 0, and assume Q(n− 1) is true.
p(x) degree n ≥ 2 inK[x]. Choose q(x), an irreducible factor of p(x) inK[x]. Set F = K[t]/I,
where I = (q(t)), multiples of q(t). So F is K with one root of q(x) thrown in,call this root
a. In F [x], p(x) has a root, namely x = a.
So p(x) = (x− a)r(x) in F [x], with deg(r(x)) = n− 1. By induction there exists some field
L ⊇ F , satisfying property ∗ for (F, r(x)), with [L : F ] finite.

Claim. L satisfies property ∗ for (K, p(x)), and furthermore [L : K] is finite.

Firstly [L : K] = [L : F ][F : K], [L : F ] is finite by inductive hypothesis, and [F : K] is the
degree of q(x), which is finite.
(By the remark after the definition of property ∗, r(x) splits completely in L, a ∈ F ⊆ L,
therefore p(x) spits completely in L.)
Let us check that L satisfies ∗ for (K, p(x)), if M is a field and α : L ↪→ M is an injective
field homomorphism, which is the identity on K, then p(x) splits completely in M (roots in
L− {l1, l2, . . . , ln}, so the roots in M are α(l1), . . . , α(ln)).
Conversely, if K ⊆M and p splits complete in M , then (deg(p) ≥ 0) M contains a root b of
p(x). By 2.4, there exists a map F ↪→M , identity on K, sending a to b. By property ∗, r(x)

splits completely in M , so there exists a map L
α
↪→M , identity on F . Therefore α : L→M ,

is the identity on K ⊆ F .

Lemma 4.2. K, p(x) as above. Say L1 and L2 are two fields satisfying ∗ for (K, p) and
[L1 : K] <∞ and [L2 : K] <∞, then L1

∼= L2.

Proof. L1 satisfies ∗, therefore p(x) splits completely in L1. Applying ∗ to L2 with M = L1,
we deduce there si a map of fields L2 → L1 which is the identity on K.
Any field-map is injective, so [L2 : K] ≤ [L1 : K]. Similarly [L1 : K] ≤ [L2 : K], hence
[L2 : K] = [L1 : K], hence the injection L2 → L1 is a K-linear injection, between two vector
spaces of same dimension, hence it is a bijection, so it is an isomorphism.

Proposition 4.3. K a field, 0 6= p(x) ∈ K[x]. Then the following are equivalent for an
extension L of K:

1. L satisfies ∗ for (K, p).

2. L is a splitting field for p over K.

Proof.
1 =⇒ 2. Say L satisfies ∗. Then p(x) splits completely in L. Say p(x) = c(x−α1) . . . (x−αn),
αi ∈ L. Set M ⊆ L be the field K(α1, . . . , αn). We want M = L.
Note [M : K] < ∞ by the tower law. Moreover p(x) splits completely in M . Hence by ∗
there is a field map L→M , with the identity on K. Hence [L : K] ≤ [M : K], and M ⊆ L,
so [L : K] = [M : K], so L = M .
1 ⇐= 2. Say L is a splitting field for p(x) over K. p(x) = (x−α1) . . . (x−αn), αi ∈ L and
L = K(α1, . . . , αn). We want to show that L satisfies ∗. By 4.1 there does exist some field
L1 ⊃ K satisfying ∗ such that [L1 : K] < ∞. Now p(x) splits completely in L, therefore
there exists a field map L1 → L, identity on K.
Let us regard L1 as a subfield of L via this injection. (We want L1 = L)
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Clearly K ⊆ L1. Moreover L1 satisfies ∗, so p(x) splits completely in L1, so all the αi ∈ L1.
Hence L1 ⊇ K(α1, . . . , αn) = L. So L1 = L.

Remark. Prof. Buzzard: I apologize for this, but I don’t apologize that the course isn’t
completely content-free.

Corollary 4.4. If L1 and L2 are splitting fields for p(x) over K then L1
∼= L2.

Proof. [L1 : K] <∞ and [L2 : K] <∞, so the result follows from 4.3 and 4.2.

Algebraically closed fields & algebraic closures

Proofs were not covered in lectures. Potential mastery material.

Definition. A field K is algebraically closed if every 0 6= p(x) ∈ K[x] has all its roots in K.

Remark. Equivalently K is algebraically closed if every non-zero polynomial has at least
one root. Equivalently p(x) ∈ K[x] is irreducible if and only if deg p(x) = 1.

Example. K = C.

Exercise. If M = {x ∈ C : x is algebraic over Q} then M is algebraically closed. (Remark:
M is countable)

Fundamental Fact

If K is any field then ∃ M ⊇ K such that M is algebraically closed.

Proof. Transfinite Induction and Zorn’s Lemma. Keep adding roots of polynomials until you
have added them all.

In fact, we can then replace M by the subfield {x ∈ M : x algebraic over K} and get
“smallest” algebraically closed field containing K.

Notation. K is the “smallest” algebraically closed field containing K, call it the algebraic
closure of K.

bits missing! definition of algebraic extensions etc

Definition. Say K ⊆ L are fields and assume L/K is algebraic (L/K is notation for L over K).
We say L/K is a normal extension if the following is true: If p(x) ∈ K[x] is any irreducible
polynomial such that p(x) has a root in L then p(x) splits completely in L.

Remark. L/K is normal if ∀p(x) ∈ K[x] irreducible, then if p(x) has a root in L, p splits
completely in L.

Example. K = Q, L = Q( 3
√

2) ⊆ R. Then [L : K] = 3, so L/K is finite, hence algebraic.
Try p(x) = x3− 2 ∈ K[x] is irreducible, It has a root in L, but p(x) does not split completely
since the other two roots are not in R, let alone L. So L is not normal over K.
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Is Q(
√

2) a normal extension of Q?

It is not so clear how to do it. Is Q(
√

2,
√

3) a normal extension of Q? This might be hard.

Theorem 4.5. A finite extension L ⊇ K is normal if and only if ∃q(x) 6= 0 ∈ K[x] such
that L is a splitting field for q(x).

Proof. =⇒ K ⊆ L, [L : K] < ∞ and L is a normal extension of K. Pick a basis
e1, e2, . . . , ed ∈ L for L as a K-vector space.
L/K is finite and hence algebraic. Let pi ∈ K[x] be the minimal polynomial of ei over K.
L/K is normal, therefore pi(x) splits completely. Set p(x) =

∏
pi(x). Then p(x) also splits

completely in L. Moreover, the subfield generated by K and all the roots of p(x) contains
the sub K-vector space of L generated by the ei, so it is L.
So L is the splitting field of p(x).
⇐= Say L is a splitting field for some polynomial f(x) ∈ K[x]. Say p(x) ∈ K[x] is irreducible
and sa α ∈ L is a root of p(x).
Consider p(x) ∈ L[x]. Let is factor it in L[x], (x−α) us a factor. Let q(x) be any irreducible
factor of p(x) in L[x].
If we prove deg q(x) = 1 we are done. By 2.4 there exists a field M ⊇ L such that M contains
a root β of q(x), by shrinking M if necessary, we can assume M = L(β) and we know that
[M : L] = deg(q(x)).
Note, that f splits completely in L, so f splits completely inM , soM = L(β) ⊇ L. Moreover,
L is the splitting field for f over K, which implies L is the splitting field for f over K(α).
Also M = L(β) is the splitting field of f over K(β).
But K(α) ∼= K(β). By 4.4 [L : K(α)] = [L(β) : K(β)] also [K(α) : K] = [K(β) : K] by 2.4.
By the tower law

[L : K] = [l : K(α)][K(α) : K]

= [L(β) : K(β)][K(β) : K]

= [L(β) : K]

So dimK L = dimK L(β) = dimK(M) <∞. and L ⊆M so L = M .

Recall. L/K is a splitting field (for some 0 6= p(x) ∈ K[x]) if and only if L/K is normal.

Now say K ⊆ L ⊆M and some of these extensions M/L, M/K , L/K are normal, can we deduce
that some of the others are?

Lemma 4.6. Notation as above. Suppose M/K is normal. Then M/L is normal.

Remark. Follows from 4.5 (in the case that [M : K] < ∞), however we will do a direct
proof as well.

Proof. Say p(x) ∈ L[x] is irreducible and p(x) has a root α ∈ M . We want to show that
p(x) splits completely in M . Let q(x) be the minimal polynomial of α over K. Then q(x) is
irreducible and it has a root α ∈M .
By normality q(x) splits completely in M . However q(x) ∈ K[x] ⊆ L[x] and p(x) is irre-
ducible in L[x], therefore p(x) is the minimal polynomial of α over L. So p(x) divides q(x),
so p(x) splits completely in M .
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Remark. Some counter examples to other naive hopes about normality.

1. K = Q, L = Q( 3
√

2), then L/K is not normal. Set M = L(ω), ω = e2πi/3, so M =
Q( 3
√

2, ω 3
√

2, ω2 3
√

2). Then M is the splitting field of x3− 2 over K and L, so M/K and
M/L are normal.

2. K = Q, L = Q(
√

2), M = Q( 4
√

2). Then L/K is normal (L is the splitting field of x2−2
over K.) and M/L is normal (splitting field of x2 −

√
2 ∈ L[x]) but M/K is not normal,

because the irreducible polynomial x4 − 2 ∈ Q[x] = K[x] has a root in M but cannot
split completely because M ⊂ R and x4 − 2 has non-real roots.

Normal Closure

We will turn this into an example sheet question. Say L/K is a finite field extension, not
necessarily normal. For simplicity let us just embed L into its algebraic closure L.
What we want is the smallest subfield of L containing L and normal over K.
Here is how to get it: Let e1, . . . , en be a K-basis for L. Let pi ∈ K[x] be the minimal
polynomial of ei. And say p(x) =

∏
pi(x), so p(x) ∈ K[x], therefore p(x) ∈ L[x] so all the

roots of p(x) are in L ⊇ K. Set M = K(α1, α2, . . . ) ⊆ L, where αi are all the roots of p(x).
So M is the splitting field of p(x) over K, so M is normal. Moreover p(ei) = 0, so ei ∈M∀i
and K ⊆M , so L ⊆M . So M is called the normal closure of L over K.
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Chapter 5

Separable extensions

Galois Theory is about permuting the roots of polynomials (using field maps like complex
conjugation, which permutes the two roots of x2 + 1).
We “want enough roots”, more precisely can the following happen?
K a field, p(x) ∈ K[x], irreducible, L the splitting field of p(x) over K. Could p(x) have
repeated roots in L?

Set-up in this chapter and basic definitions

K is a field, f(x) ∈ K[x] an irreducible polynomial. We say f(x) is separable over K if all
the roots of f(x) in the splitting field are distinct. (By property ∗ this is equivalent to saying
that in any extension M ⊇ K where f splits completely, f has distinct roots)
A general (possibly reducible) non-zero polynomial f(x) ∈ K[x] is separable if all its irre-
ducible factors are.

Example. x2 is separable.

Example. x3 − 2 is separable over Q.

Is every polynomial separable?

Let us try and prove this using calculus. But first some more definitions.

Definition. Say K ⊆ L are fields and say α ∈ L is algebraic over K. We say α is separable
over K if the minimal polynomial of α over K is separable.

Definition. Say K ⊆ L are fields and L/K is algebraic (e.g. [L : K] < ∞). We say L/K is
separable if all α ∈ L are separable.

Lemma 5.1. Say K ⊆ L ⊆ M and M/K is finite (or more generally algebraic). Say M/K is
separable, then so are L/K and M/L.

Proof. M/K finite, implies L/K and M/L are finite (similarly M/K algebraic, implies L/K and M/L
are algebraic). Also L/K is clearly separable.
Let us now show that M/L is separable. Choose m ∈ M , let q(x) ∈ L[x] be the minimal
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polynomial of m over L.
We know M/K is separable. So let p(x) ∈ K[x] be the minimal polynomial of m over K.
M/K is separable, therefore if M ⊆ N , a field in which p(x) splits completely, (eg N is the
splitting field for p(x) over M) by separability we know p(x) has distinct roots in N . But
q(x) divides p(x), as p(x) ∈ L[x] and p(m) = 0. So q(x) also has distinct roots in N .

Exercise. Hard exercise: L/K and M/L separable implies M/K separable. (Currently this is
hard since we don’t yet know enough)

Formal Differentiation

Set-up: K: any field, f(x) ∈ K[x] a polynomial. What is df/ dx? If K 6= R or C doing
analysis is hard or even impossible. Let us circumvent this by:

Definition. Differentiation now means:

D : K[x]→ K[x]

D

(
n∑
i=0

aix
i

)
7→

n∑
i=1

iaix
i−1

Example. So D(x4) = 4x3.

Remark. We have to define what 4 is. We just mean 1 + 1 + 1 + 1, 1 is always in our fields.
In the definition by i we mean the image of i ∈ Z.

Lemma 5.2. If f and g ∈ K[x] then D(fg) = fD(g) + gD(f).

Proof. Step 1: Check it for f(x) = xm and g(x) = xn.

LHS = D(xm+n)

= (m+ n)xm+n−1

RHS = xnD(xm) + xmD(xn)

= mxm+n−1 + nxm+n−1

= (m+ n)xm+n−1

Step 2: g(x) = xn and f(x) ∈ K[x] arbitrary. Think of g(x) as fixed. The mapsK[x]→ K[x],
f 7→ D(fg) and f 7→ fD(g) + gD(f) are both easily checked to be K-linear and they agree
if f(x) = xm by step 1. Therefore they agree on a basis for K[x], hence they agree.
Step 3: Think of f(x) as fixed and consider g 7→ D(fg) and g 7→ fD(g) + gD(f). Both are
K-linear maps K[x]→ K[x] and they agree on a basis, therefore they agree.

Lemma 5.3. D((x− α)n) = n(x− α)n−1

Proof is left as an exercise.

Proposition 5.4. K a field, 0 6= f(x) ∈ K[x], K ⊆ L and f(x) splits completely in L.
Then the following are equivalent
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1. p(x) has a repeated root in L.

2. There exists α ∈ L such that f(α) = 0 and (Df)(α) = 0.

3. hcf(f,Df) has positive degree (i.e. is non-constant)

Proof. 1 =⇒ 2. 1 =⇒ p(x) = (x − α)ng(x), some g(x) ∈ L[x] and n ≥ 2, where α is the
repeated root. Then

Dp = D((x− α)n)g(x) + (x− α)nD(g(x))

= n(x− α)n−1g(x) + (x− α)nD(g(x))

n ≥ 2 implies that this is zero at α.
2 =⇒ 3. Let p(x) be the minimal polynomial of α, this exists because f(α) = 0. Then
2 =⇒ p(x)

∣∣ f(x) and p(x)
∣∣ (Df)(x), so p(x) divides the hcf(f,Df) and p(x) is non-

constant, so the hcf is non-constant.
3 =⇒ 1. Suppose h(x) has positive degree and h divides both f and Df . Then h splits
completely in L. Let α ∈ L be a root of h(x). Know f(α) = 0, so f(x) = (x− α)g(x), so

Df = D((x− α)g)

= (x− α)Dg + g

so (Df)(α) = 0 =⇒ (α− α)D(g) + g(α) = 0, so g(α) = 0, so f has a double root at α.

Corollary 5.5. Let K be a field and say f ∈ K[x] is an irreducible polynomial. Say f is
not separable. Then Df = 0.

Proof. f satisfies 5.4.1, therefore it satisfies 5.4.3, i.e. h = gcd(f,Df) > 0. But h divides f ,
and f is irreducible. Therefore deg h = deg f , (and h = cf , for some c 6= 0).
Also h divides Df . But deg(Df) < deg f . So Df = 0.

Example. This can happen: K = Z/pZ, f(x) = xp. Then Df = pxp−1, but p = 0 in K so
Df = 0. (However f is not irreducible.)

Remark. Clearly in general, if f 6= constant and if Df = 0, then K cannot have character-
istic 0, as a leading term of f is anx

n, an ∈ K, an 6= 0, n ≥ 1, n ∈ Z.
So if Df = 0, then nan = 0, so n = 0 in K.
So the map Z→ K has a non-zero Kernel.

Corollary 5.6. If f(x) ∈ K[x] is irreducible and separable, then K has characteristic p for
some prime number p, and

f(x) =
m∑
i=0

aix
pi

for some ai ∈ K.

Proof is left as an exercise.
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Definition. (really bad notation, in Prof Buzzards opinion) A field K is perfect, if every
finite extension L of K is separable.

Remark. Easy check, this is if and only if every 0 6= f ∈ K[x] is separable, if and only if
every irreducible f ∈ K[x] is separable.

Corollary 5.7. If K as characteristic 0, K is perfect.

Example. Q,R,Q(
√

2) are all perfect.

Proposition 5.8 (Frobenius Map). Let K be a field, of characteristic p > 0. Consider the
map Frob : K → K. Frob(λ) = λp. Then Frob is a homomorphism of fields.

Proof. Need to check Frob(0) = 0. Frob(1) = 1.
Frob(λµ) = Frob(λ)Frob(µ). Yes: (λµ)p = λpµp

Frob(λ+ µ) = Frob(λ) + Frob(µ)?
Now

(λ+ µ)p = λp +

(
p

1

)
λp−1µ+ · · ·+

(
p

i

)
λp−iµi + · · ·+ µp

But p divides
(
p
i

)
, for 1 ≤ i < p, so

= λp + µp

= Frob(λ) + Frob(µ)

Example. K = Z/pZ. Frob is the identity map by Fermat’s Little Theorem.

Example. K = (Z/3Z)(i), i2 = −1, the splitting field of x2 + 1 over Z/3Z.
K = {a+ bi : a, b ∈ Z/3Z}, 3 = 0 in K, so the characterstic of K is 3.
Frob(i) = i3 = −i = 2i 6= i. So Frob is not always the identity.

Lemma 5.9. If char(K) = p, then Frob is injective.

Proof. Frob : K → K is a group homomorphism. Kernel of Frob is {λ ∈ K : λp = 0} = {0}
as K is a field.

Lemma 5.10. Say K is a field of characteristic p > 0 and say K → K is surjective. Then
K is perfect.

Proof. Say f ∈ K[x] is irreducible and not separable. Then Df = 0, by 5.5. So

f = a0 + aix
p + a2x

2p + · · ·+ anx
np

Frob is surjective, so ai = (bi)
p for some bi ∈ K, so

= bp0 + bp1x
p + · · ·+ bpnx

np

= (b0 + b1x+ · · ·+ bnx)p

This is a contradiction as f is irreducible.

Corollary 5.11. If K is a finite field K is perfect.

Proof. Frob : K → K is injective by 5.9, therefore surjective as K is finite.
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Example of a non-separable polynomial

Example. We need a field K such that p = 0 in K for some prime number p, but needs to
be infinite.
Idea set K equals to the field of fractions of (Z/pZ)[T ], i.e.

K =

{
f(T )

g(T )
: f, g ∈ (Z/pZ)[T ], g 6= 0

}
Frob(f/g) = fp/gp the ratio of polynomials in T p, so Frob(λ) = T has no solution.
Set p(x) ∈ K[x] to be the polynomial xp − T . Claim: p(x) is irreducible and not separable.
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Chapter 6

Galois Extensions and the
Fundamental Theorem of Galois
Theory

Definition. An extension L ⊇ K is Galois if it is

• algebraic,

• normal,

• separable.

Definition. L/K is finite Galois if it is finite ([L : K] <∞), normal and separable.

Recall. An automorphism of an object X is an isomorphism X → X.

Definition. L ⊇ K, define AutK(L) = {isomorphisms φ : L→ L : φ|K = id}.

Definition. If L/K is Galois, we write Gal(L/K) = AutK(L).

Example. K = R, L = C. L is the splitting field of x2 + 1 over K, so [L : K] = 2 < ∞.
So C/R is finite and Galois.
Let us compute Gal(C/R).
Gal(C/R) is the field isomorphisms that are the identity on R, so id : C→ C is clearly a field
isomorphism in Gal(C/R).
Say φ : C→ C is in Gal(C/R). Then φ(r) = r for all r ∈ R. What about φ(i)?
Say φ(i) = z ∈ C. φ is a field homomorphisms so φ(i2) = φ(i)2 = z2, but i2 = −1 therefore
φ(i2) = φ(−1) = −1, so z2 = −1, z = ±i.
Moreover, if we know φ(i), we know all of φ, because a general complex number ω = a+ bi,
with a, b ∈ R so

φ(ω) = φ(a+ bi)

= φ(a) + φ(b)φ(i)

= a+ bφ(i)

= a+ bz
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Case 1: φ(i) = i, then φ(a+ bi) = a+ bi, so φ is the identity, which works.
Case 2: φ(i) = −i, then φ(a+ bi) = a− bi, so φ(ω) = ω̄.
Does this work? Is ω → ω an isomorphism? It is a bijection as ω = ω.
Furthermore 0 = 0, 1 = 1 and ξ + ω = ξ + ω and ξω = ξω. Hence complex conjugation is
indeed an automorphism of C. So Gal(C/R) = {id, complex conjugation}.

Remark. |Gal(C/R)| = 2 = [C : R].

Lemma 6.1. AutK(L) is a group under composition.

Proof. The identity map L→ L is the identity of the group.
Associativity is naturally true for composition of functions.
The inverse of an isomorphism is an isomorphism.
Hence Gal(L/K) is a group if L/K is finite Galois.

Example. Gal(C/R) ∼= C2.

Example. Let us see what happens when the extension is not normal. K = Q, L = Q( 3
√

2),
not normal, therefore not Galois.
What is AutK(L)? Say φ : L→ L, is an isomorphism and φ|Q is the identity. Say φ( 3

√
2) =

z ∈ L. As last time z3 = φ( 3
√

2)3 = φ( 3
√

2
3
) = φ(2) = 2.

But L ⊆ R and the only solution to z3 = 1 in R is z = 3
√

2. Therefore φ(a+ b 3
√

2 + c 3
√

2
2
) =

a+ b 3
√

2 + c 3
√

2
2
, so φ = id.

So AutK(L) = {id}, a group of size 1 < [L : K] = 3, but this happens because L/K is not
normal.

Example. A inseparable example.

L = (Z/pZ)(t) =

{
f(t)

g(t)
: f, g ∈ (Z/pZ)[x], g 6= 0

}
K ⊇ L = (Z/pZ)(tp) =

{
f(tp)

g(tp)
: f, g ∈ (Z/pZ)[x], g 6= 0

}
L = K(t), and tp ∈ K, so this is an finite extension, but it is not separable.
If φ ∈ AutK(L), then φ(t) = z ∈ L, satisfying zp = φ(tp) = tp, as tp ∈ K, so zp = tp, thus
zp − tp = 0 and furthermore (z − t)p = 0, hence z = t, so φ is the identity.
Again |AutK(L)| = 1 < [L : K] = p, but L/K was not separable.

Example. K = Q, L the splitting field of x3 − 2. L/K is finite (6) and normal (a splitting
field) and separable (characteristic 0).
What is Gal(L/K) = AutK(L)?
If ω = e2πi/3, α = 3

√
2 ∈ R. Then the roots of x3 − 2 are α, β = αω, γ = αω2. L =

Q(α, β, γ) = Q(α, ω).
Can we thing of any elements of Gal(L/K)? Identity, Complex conjugation (this will work
since ω → ω = ω2).
Say φ(l) = l. φ(α) = α, φ(β) = γ, φ(γ) = β.
Note, if ψ is any element of Gal(L/K), then ψ(α)3 = ψ(α3) = ψ(2) = 2. Therefore ψ(α) = α
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or β or γ. Similarly for β and γ, and ψ is a bijection. So ψ induces a permutation of
{α, β, γ}.
id→ identity permutation, complex conjugation induces swapping β and γ.
Is there a field isomorphism φ : L→ L such that ψ(α) = β, ψ(β) = γ, ψ(γ) = α?
Not sure...
Upshot: Injection Gal(L/K) ↪→ S3, |S3| = 6 = [L : K], the permutations of {α, β, γ}.

Example. f(x) = x5− 55x− 88 and g(x) = x5 + 55x− 88 (irreducible). Now choose one of
f and g, so there are five roots α, β, γ, δ, ε, L = Q(α, β, γ, δ, ε).
Now does there exist ψ : L → L, field automorphism such that ψ(α) = β, ψ(β) = α,
ψ(γ) = γ, ψ(δ) = δ, ψ(ε) = ε?
Answer, it does exist for one but not for the other.

Example. x3 − 2, roots α, β, γ. L = Q(α, β, γ), [L : Q] = 6. What are the subfields of L?
Some of them are Q(α),Q(β),Q(γ), Q(ω), ω = β/α.
Are there any more? No! But we do not yet know how to see this using the tools we have.

Fundamental Theorem of Galois Theory

Theorem. Say L/K is a finite Galois extension. Set G = Gal(L/K) Then

I. |G| = [L : K]

II. There is a natural order-reversing bijection between subgroups of G and fields M with
K ⊆ M ⊆ L (subextensions of L). (dictionary: H ⊆ G → {λ ∈ L : h(λ) = λ ∀h ∈
H})

III. If H ↔M is the dictionary of II then L/M is finite Galois, and Gal(L/M) = H (equals
not just isomorphic since L/M ⊆ G)

IV. H is a normal subgroup of G if and only if M is a normal extension of K and when
this happens Gal(M/K) ∼= G/H

Say L/K is finite. Here is a criterion for normality.

Lemma 6.2. L/K is normal if and only if for all field extensions M ⊇ L and for all field
maps α : L→M such that α|K is the identity, the image of α is L.

Example. K = Q, L = Q(α), α = 3
√

2, β = ωα, ω = e
2πi/3. Then L/K is not normal,

M = C, ψ : Ω(α)→ C, sends α to β. Then ψ is an isomorphism Q(α)→ Q(β) 6= Q(α), so
Im(ψ) 6= L.

Proof. Normality =⇒ Im(L) = L (exercise sheet 4)
Converse: Say the Image of α is always L and let us prove L/K is normal. So let us say
p(x) ∈ K[x] is irreducible and p(x) has a root γ ∈ L.
We want to show that p(x) splits completely in L. Set M = L, the algebraic closure of L.
We know L/K is finite. Write L = K(γ, δ1, δ2, . . . , δr). Say β ∈ L is a another rots of p(x).
Then we know there is a map K(γ)→ L, identity on K sending γ to β.
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Since L is algebraically closed we can extend this map to a map from L → L (define the
image of each δi recursively).
This gives us a map L→ L identity on K. By hypothesis, image of this map is L. But the
image contains β, therefore β ∈ L.

Example. Say L/K is finite. How many field maps L→ L are there, which are the identity
on K?
i.e. If p(x) ∈ K[x] irreducible and L = K(α) with α a roots of p(x) then to give a map
L→ L as above is to give the image of α, i.e. to give a root of p(x). Therefore the number
of maps is the number of roots.

Definition. Set [L : K]S the separable degree of L over K is the number of field maps
L→ L, identity on K.

Lemma 6.3. If L = K(α) then [L : K]S ≤ [L : K] with equality if and only if α is separable
over K.

Proof. If p(x) is the minimal polynomial of α, then [L : K]S is the numbr of roots of p(x)
by the above discussion. And [L : K] is the degree of p(x) by 2.3. The number of roots in L
is less or equal than the degree of p(x). With equality if and only if the roots are distinct.
Now the roots are distinct if and only if p(x) is separable if and only if α is separable over
K.

Lemma 6.4. If K ⊆ L ⊆M all finite then [M : K]S = [M : K]S[L : K]S

Proof. Think of a map M → M as first a map L → M ([L : K]S choices) followed by an
extension of this map to M →M ([M : L]S choices.)

Corollary 6.5. If L/K is finite then

i) [L : K]S ≤ [L : K].

ii) [L : K]S = [L : K] if and only if L is a separable extension of K.

Proof. L/K is finite so pick a basis e1, . . . , en. Thus L = K(e1, . . . , en), now K ⊆ K(e1) ⊆
K(e1, e2) ⊆ · · · ⊆ K(e1, . . . , en).

i) By 6.3 [K(e1, . . . , ei+1) : K(e1, . . . , ei)]S ≤ [K(e1, . . . , ei+1) : K(e1, . . . , ei)] for all i.
By 6.4 and tower law the result follows.

ii) =⇒ Says α ∈ L. We want to show that α is separable over K. Trick L ⊇ K(α) ⊇ K.
So

[L : K] = [L : K(α)][K(α) : K]

by the tower law

≥ [L : K(α)]S[K(α) : K]S

= [L : K]S

40



M3P11 CHAPTER 6. GALOIS EXTENSIONS

by 6.4.
But [L : K] = [L : K]S, therefore [K(α) : K]S = [K(α) : K] and by 6.3, α is separable.
⇐= Say L/K is separable. Therefore (with notation as above)K(e1, . . . , ei+1)/K(e1, . . . , ei)
is separable (by 5.1). Therefore [K(e1, . . . , ei+1) : K(e1, . . . , ei)]S = [K(e1, . . . ei+1) :
K(e1, . . . , ei)]. By 6.4 and the tower law, deduce [L : K]S = [L : K].

Theorem 6.6. Say L/K is finite, then AutK(L) is a finite group of size at most [L : K], with
equality if and only if L/K is finite Galois.

Proof.

AutK(L) = {φ : L→ L : φ|K = id}
⊆ {φ : L→ L : φ|K = id}

with equality if and only if L/K is normal by 6.2. But the size of {φ : L → L : φ|K = id} is
[L : K]S ≤ [L : K] with equality if and only if L/K is separable.

Remark. We just proved part I. of the fundamental theorem of Galois Theory.

The next part of the Fundamental Theorem of Galois Theory relates subfields to subgroups.

Set-up:
L/K finite and Galois. G = Gal(L/K). Set

X = {M : fields : K ⊆M ⊆ L}
Y = {H : subgroups of G}

Obviously Y is a finite set, we know nothing about X .
Fundamental Theorem of Galois Theory says that there exists a bijection X ↔ Y . Define

Θ : X → Y

Θ(M) = {g ∈ G : g(m) = m ∀m ∈M}

Define

Ψ : Y →X

Ψ(H) = {λ ∈ L : h(λ) = λ ∀h ∈ H}

By definition of G, K ⊆ Ψ(H). It is easy to check that Ψ(H) is a field (as h ∈ H is a field
map)
Goal: prove Θ ◦Ψ = idY and Ψ ◦Θ = idX .

Lemma 6.7.

i) Θ and Ψ are order-reversing.

ii) If M ∈X then Ψ(Θ(M)) ⊇M and similarly if H sin Y , then Θ(ψ(H)) ⊇ H.
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iii) Θ ◦Ψ ◦Θ = Θ and Ψ ◦Θ ◦Ψ = Ψ.

Proof.

i) is clear from the definitions.
e.g. if H1 ⊆ H2 then for λ ∈ L, y ∈ Ψ(H2), then h(λ) = λ for all h ∈ H2, therefore
h(λ) = λ for all H ∈ H1 ⊆ H1, so λ ∈ Ψ(H1).
The other argument is the same.

ii) Equally clear.
e.g. if m ∈ M then for all h ∈ Θ(M), h(m) = m, therefore m ∈ Ψ(Θ(M)) by
definition.

iii) Follows easily from i) and ii). Apply Θ again and get Θ(Ψ(Θ(M))) ⊆ Θ(M). Con-
versely, set H = Θ(M), then ii) implies Θ(Ψ(H)) ⊇ H.

Proposition 6.8. Ψ ◦Θ = idX .

Proof. Say m ⊆X . Then L/M is finite (L/K finite), normal (4.7) and separable (5.1) therefore
L/M is Galois. So by 6.6 we know |Gal(L/M)| = [L : M ].
Let N = Ψ(Θ(M)). By 6.7, M ⊆ N . We want to show M = N .
But by 6.7 iii) Θ(M) = Θ(N).
Therefore Gal(L/M) = Gal(L/N) as they are subgroups of Gal(L/K). Therefore [L : M ] = [L :
N ], but [L : M ] = [L : N ][N : M ] so [N : M ] = 1, therefore M = N .

Corollary 6.9. Θ is injective.

Proof. Θ(M1) = Θ(M2) =⇒ Ψ(Θ(M1)) = Ψ(Θ(M2)) =⇒ M1 = M2.

Y is finite, Θ : X → Y injective means X is finite.

Corollary 6.10. Say L/K is a finite separable extension. Then there are only finitely many
intermediate fields K ⊆M ⊆ L.

Proof. If L/K is Galois, then this follows from 6.9.
If L/K is not Galois then L/K is not normal.
Let N be the normal closure of L/K , M/K is finite, normal and separable. Therefore M/K has
only finitely many intermediate fields. So L/K does too.

Remark. Example of a non-separable finite extension with infinitely many intermediate
fields is on Example Sheet 5.

Corollary 6.11 (Theory of the Primitive Element). Say L/K is a finite separable extension.
Then there exists α ∈ L such that L = K(α).

Remark. The weird non-separable example earlier is not of this form.
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Proof. Case 1: K is finite (a finite set).
Then L is finite, so L× is a finite subgroup of a multiplicative group of a field, so L× is cyclic.
Then let α be a generator and L = K(α).
Case 2: K is infinite.
Then there are only finitely many M , subfields such that K ⊆ M ⊆ L by 6.10. Define
Z := {M : K ⊆M ⊂ L}.
Each M ∈ Z can be considered as a K-vector subspace of the K-vector space L.
Fact from Algebra: If K is an infinite field then a finite dimensional vector space V over K
cannot be the union of finitely many proper subspaces.

Hence L 6=
⋃

M∈Z

M so choose α ∈ L, α /∈ M for any M ∈ Z . Then K(α) s an intermediate

field that is not in Z , so K(α) = L.

Theorem 6.12. Let L be a field and let Aut(L) be the group of field automorphisms. Let
G ⊆ Aut(L) be a finite subgroup. Set K = {λ ∈ L : g(λ) = λ ∀g ∈ G}. (Easy check K is a
field).
Then L/K is a finite Galois extension, furthermore Gal(L/K) = G.

Proof. I claim that not only [L : K] <∞ but in fact [L : K] ≤ |G|. Say |G| = n.
Strategy: Take n + 1 arbitrary elements α1, . . . , αn+1 ∈ L. Then show they are K-linearly
dependent. Define V 6= 0 be the set of maps G→ L (not necessarily group homomorphisms).
Then V ∼= Ln so is naturally an n-dimensional vector space over L.
If φ1, φ2 ∈ V then define φ1 + φ2 by (φ1 + φ2)(g) = φ1(g) + φ2(g). If λ ∈ L then define λφ1

by λφ1(g) = φ1(g) · λ.
If 1 ≤ i ≤ n + 1, define φ1 ∈ V thus: φi(g) = g(αi). The φi give n + 1 elements of V ,
therefore there exists λi ∈ L not all zero, such that∑

λiφi ≡ 0

where 0 is the zero-function on G.
With out loss of generality choose the λi such that λi = 0 for all i > r, where r is as small
as possible. We have λr 6= 0. Therefore without loss of generality λr = 1.
We have ∑

λiφi = 0 (+)

so for all g ∈ G
r∑
i=1

λiφi(g) = 0 (×)

Choose h ∈ G and apply it to (×) ∑
h(λi)h(g(αi)) = 0 (××)

∴
∑

h(λi)φi ≡ 0 (++)
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Now looking at (+)− (++) implies∑
(λi − h(λi))φi ≡ 0

But λr = 1, so h(λr) = 1, so λr − h(λr) = 0, this contradicts the minimality of r unless
λi = h(λi) for all i and for all h.
So λi = h(λi) for all i, h. so λi ∈ K for all i.
Substitute g = id into (×) so

∑
λiαi = 0,where the λi are not all zero.

Say α ∈ L, set S = {g(α) : g ∈ G} (the orbit of α), then |S| < ∞ and |S| ≤ |G|, since
S ⊆ L.
Define p(x) =

∏
s∈S

(x− s) ∈ L[x].

Claim p(x) ∈ K[x].
For if g ∈ G, then g : S → S is a bijection, therefore g(p(x)) = p(x), so p(x) ∈ K[x], indeed,
as g was arbitrary.

Claim. p(x) is the minimal polynomial of α.

For if q(x) ∈ K[x] is any polynomial such that q(α) = 0, then α is a root of q(x). Now s ∈ S,
s = g(α), then s(α) is a root of g(q(x)) = q(x) as the coefficients of q are all in K.
Hence all s ∈ S are roots of q(x), and therefore p(x) divides q(x). Hence p(x) is the minimal
polynomial of α and in particular it is irreducible.
End of the proof of 6.12: L/K is finite of degree less or equal |G|.
Is L/K normal?
Say r(x) ∈ K[x] irreducible and monic and r(x) has a root α ∈ L. Let p(x) be as above,
then p(x) = r(x) as both are the minimal polynomial of α. Therefore all the roots of r(x)
are in L (as they are in S), so L/K is normal.
Is L/K separable?
Say α ∈ L. Then (with notation as above) its minimal polynomial of is p(x) which has
distinct roots by definition.
But by definition G ⊆ Gal(L/K), therefore G = Gal(L/K), since they have the same size.

Recall. The Fundamental Theorem of Galois Theory:
L ⊇ K finite and Galois, G = Gal(L/K), then

I. |G| = [L : K].

II. Θ and Ψ are order-reversing bijections {subgroups of G} ↔ {intermediate fields M , withK ⊆
M ⊆ L}.

III. If H ⊆ G corresponds to M via this bijection then L/M is Galois and Gal(L/M) = H.

IV. H is normal in G ⇐⇒ M/K is normal, and in this case Gal(M/K) ∼= G/H.

Proof of the Fundamental Theorem of Galois Theory.

I. is a consequence of 6.6.
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II. Ψ ◦Θ is the identity by 6.8. and Θ and Ψ are order reversing by 6.7.
So we still have to show that Θ ◦ Ψ is the identity too. In other words, we need
to check that if H ⊆ G and M = Ψ(H) = {λ ∈ L : h(λ) = λ ∀h ∈ H}, then
Θ(M) = {g ∈ G : g(m) = m ∀m ∈M} is again H.
But Θ(M) is the automorphisms of L that fix K and M , which is the automorphisms
of L that fix M , AutM(L).
Is L/M Galois? Yes, by 6.12.(G and K replaced by H and M respectively)
Therefore Θ(M) = Gal(L/M) = H by definition of M and 6.12.

III. If H ↔M , then by definition M = {λ ∈ LLh(λ) = λ ∀h ∈ H}, therefore Gal(L/M) =
H by 6.12.

IV. First say M/K is normal. M/K is separable by 5.1. and finite therefore M/K is Galois.
Set Q = Gal(M/K).
Now say g : L → L, what is the restriction of g to M? g|M : M → L, identity on
K. By 6.2. (?) the g(M) = M again. Therefore g induces a map M → M , a field
isomorphism, identity on K, i.e. an element φ(g) ∈ Q. So φ : G→ Q.
φ is easily checked to be a group homomorphism. SO Ker(φ)/G is a normal subgroup.
But Ker(φ) = {g ∈ G : g(m) = m ∀m ∈M} = Θ(M) = H.
Therefore H is normal, moreover, by the first isomorphism theorem G/H ∼= Im(φ) ⊆
Q.
But |G| = [L : K], |H| = [L : K] therefore |G/H| = [M : K] = |Q|.
So G/H ∼= H.
Conversely say H ⊆ G is normal. Set M = Ψ(H) = {λ ∈ L : h(λ) = λ ∀h ∈ H}.
Easy check: if g ∈ G then Ψ(gHg−1) = gM . (Because ∀m ∈ M , hm = m, so
(ghg−1)(gm) = ghm = gm)
In our case, H is normal, therefore gHg−1 = H for all g ∈ G and g(M) = M∀g ∈ G.
So we get a natural map Gal(L/K)→ AutK(M), g 7→ g|M : M →M . Hence we get a
group homomorphism G→ AutK(M), and the Kernel is Θ(M) = H.
So we get an injection G/H ↪→ AutK(M). But |G/H| = [L : K]/[L : M ] = [M : K],
therefore by 6.6. M/K is Galois and Gal(M/K) = AutK(M) = G/H.
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Chapter 7

Insolvability of the Quintic

Look at the group theory hand-out on the homepage.
The formula for roots of the quadratic is well known. Similar formulas exist for the cubic
and quadratic, only using +, −, ×, /, n

√
.

Theorem 7.1 (Ruffini, Abel 1823). No such formula exists for the quintic.

Remark. Galois gave a far more conceptual proof in the 1840s, which we will see now.

Strategy:
If there was a formula for the quintic, then the five complex roots of x5− 6x+ 3 would have
the form

3
√

29 +
4

√
1 +
√

2 · (1 +
7
√

91)

or something like that.

Definition. K: a field of characteristic 0. We say a finite extension L ⊇ K is an extension
by radicals if there exist fields

K = L0 ⊆ L1 ⊆ L2 ⊆ · · · ⊆ Ln = L

such that ∀0 ≤ i < N , Li+1 = Li(αi), where αi ∈ Li+1 and there exists ni ∈ Z≥1 such that
(αi)

n
i ∈ Li.

Example. Q ⊆ Q( 7
√

91) ⊆ Q( 7
√

91,
√

2) ⊆ Q( 7
√

91,
√

2, 4

√
1 +
√

2(1 + 7
√

91)) = L. Then L/Q
is an extension by radicals and L 3 . . . .

Our goal is proving that if α, β, γ, δ, ε are the five complex roots of x5 − 6x + 3, then the
splitting field Q(α, β, γ, δ, ε) is not contained in L, which is an extension of Q by radicals.
We have to do two things:

1. Compute Gal(M/Q), with M the splitting field of x5 − 6x+ 3.

2. Find a property of groups such that if L/K , an extension by radicals, then Gal(L/K) has
the property, but the group in 1. does not.
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Let us do 1. first. α, β, γ, δ, ε are the five roots of x5 − 6x + 3. Say M is its splitting field
over Q. By Eisenstein, x5 − 6x+ 3 is irreducible. Let us say that [M : Q] = D. M/Q is finite
and normal, it is characteristic 0, so it is separable too, therefore M/Q is Galois.
Furthermore M = Q(α, β, γ, δ, ε), therefore if g : M → M is an element of Gal(M/Q), then
we know that g(α) is a root of g(x5 − 6x+ 3) = x5 − 6x+ 3, so g(α) ∈ {α, β, γ, δ, ε}.
More generally g induces a permutation of {α, β, γ, δ, ε} and g is determined by this permu-
tation.
Upshot: Gal(M/Q) ⊆ S5.
By the tower law: [M : Q] = [M : Q(α)][Q(α) : Q], therefore 5

∣∣ [M : Q], so if G = Gal(M/Q),
5
∣∣ |G|, by the Fundamental Theorem of Galois Theory.

What are the roots of x5− 6x+ 3? Set f(x) = x5− 6x+ 3. Then f(−1000) < 0, f(−1) = 8,
f(1) = −2, f(1000) > 0. So there are at least three roots (with five being the other possi-
bility).
Now f ′(x) = 5x4 − 6, which has two real zeros, therefore f does not have 4 turning points,
so f has three roots. So complex conjugation is in Gal(M/Q) is a transposition, so it swaps 2
of {α, β, γ, δ, ε}.
So far G ⊆ S5, |G| is multiple of 5, so G 3 a transposition.
Fact: This implies G = S5. Proof: See proposition of group theory hand-out.

Part 2. Say K/L is Galois and an extension by radicals. Then Gal(L/K) is a solvable group.
Fact: A5 is not a solvable group. Proof: Proposition of hand-out.
Hence if you believe this, roots of x5 − 6x+ 3 are not in a radical extension of Q.

Definition. A finite group G is solvable if ∃{1} = G0 ⊆ G1 ⊆ G2 ⊆ · · · ⊆ GN = G where

1. G1 / Gi+1 for all i.

2. Quotient groups Gi+1/Gi are all abelian.

Extensions by radicals give us a bunch of subfields, which gives a bunch of subgroups of G
(by FTG).
What is left:

Lemma. Say K ⊆ L, and L = K(α) and α ∈ L, and β = αp = K, p prime. Say K contains
all the pthe roots of unity.
Then L/K is Galois and Gal(L/K) is abelian.

Proof. g(x) = xp − β.
Simple case α ∈ K, then L = K and we are finished.
Other case, then α /∈ K, Then g(α) is irreducible, because if g factored then loot a the
constant αm ∈ K for some 1 ≤ m < p and αp ∈ K, therefore αλm+µp ∈ K, but there exists
λ, µ such that λm+ µp = 1.
So g is irreducible, so L is the splitting field of g. and therefore [L : K] = deg(g) = p, so
|Gal(L/K)| = p. Therefore Gal(L/K) ∼= Cp, which is abelian.
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