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M2PM2 Algebra II, Solutions to Problem Sheet 9.

1. P =

(
1 0
−1 1

)
,

 1 0 0
1 1 0
0 0 1

 ,

 0 1 0
1 1 0
1 0 1

 (many other P ’s work).

2. As the only eigenvalue is 0, the char poly must be xn. So by Cayley–Hamilton,
An = 0.

3. By induction on n. The char poly is

p(x) = det


x 0 0 · · · 0 a0
−1 x 0 · · · 0 a1

· · ·
0 0 0 · · · −1 x+ an−1


Expand along the first row. By induction the det of the (1,1)-minor is xn−1 +
an−1x

n−2 + · · · + a1, and the (1, n)-minor is upper-triangular so has determinant
(−1)n−1. We deduce

p(x) = x (xn−1+an−1x
n−2+· · ·+a1)+(−1)n−1a0.(−1)n−1 = xn+an−1x

n−1+· · ·+a1x+a0.

Hence the result by induction.

4. (a)

 0 0 3
1 0 −2
0 1 7

 works (by Q3).

(b) If we find A with char poly x3 − 2x2 − 1 then A will satisfy the desired

equation by Cayley–Hamilton. So take A =

 0 0 1
1 0 0
0 1 2

.

(c) Multiplying through by B, the eqn is B4 + B − I = 0. So finding B with
char poly x4 + x− 1 will do. Use Q3 to do this.

(d) By Q3 the 2× 2 matrix A =

(
0 −1
1 −1

)
satisfies A2 + A+ I = 0. So take

C =

(
A 0
0 A

)
.

(e) Use Q3 to get a non-identity n× n matrix with char poly xn − 1.

5. (i) Yes: if B is similar to A then B3− I is similar to A3− I, so rank(B3− I) =
rank(A3 − I) (because they are both the rank of the same linear map).

(ii) Yes: same proof shows A + A5 and B + B5 are similar, so it suffices to
check that similar matrices have the same trace. But the trace is (up to sign) one
of the coefficients of the char poly!

(iii) No: eg

(
0 1
0 0

)
and

(
0 0
1 0

)
are similar but have different first column

sum.



(iv) No: eg let A =

(
0 1
1 0

)
and B =

(
0 2

1/2 0

)
. Then A and B are similar,

but A−AT = 0 has rank 0, whereas B −BT has rank 2.

(v) Yes: A and AT have the same diagonal entries, so trace(2A − AT ) =
trace(A), which is invariant as we saw in part (ii).

6. This question is fairly easy, but notationally awkward. Say each Ai is ni ×
ni, so A is n × n where n =

∑
ni. Write each column vector in Fn (F = R

or C) in the form v = (v1, v2, . . . , vk), where vi ∈ Fni for all i. Then Av =
(A1v1, A2v2, . . . , Akvk). Hence Av = λv if and only if Aivi = λvi for all i.

Let Eλ(Ai) be the λ-eigenspace of Ai, and let Bi be a basis of Eλ(Ai). Each
vector b ∈ Bi gives a vector (0, . . . , b, . . . 0) in Fn. Let B′i be the set of such vectors
obtained from Bi. By the previous observation, vectors in Eλ(A) are of the form
(v1, v2, . . . , vk) with vi ∈ Eλ(Ai). These are linear combinations of the vectors
in ∪B′i. Hence ∪B′i is a basis for Eλ(A). So dimEλ(A) =

∑
|B′i| =

∑
|Bi| =∑

dimEλ(Ai).

7. (i) There is one possibility for the 0-blocks, two for the −1 − i-blocks and
three for the 3-blocks, giving a total of 1 × 2 × 3 = 6 possibilities. In full, they
are J1(0)⊕ J1(−1− i)⊕2 ⊕ J1(3)⊕3, J1(0)⊕ J1(−1− i)⊕2 ⊕ J2(3)⊕ J1(3), J1(0)⊕
J1(−1− i)⊕2⊕J3(3), J1(0)⊕J2(−1− i)⊕J1(3)3, J1(0)⊕J2(−1− i)⊕J2(3)⊕J1(3),
J1(0)⊕ J2(−1− i)⊕ J3(3).

(ii) There are 3 possible JCFs with char poly x3 (J3(0), J2(0)⊕ J1(0) etc) and
11 with char poly (x − 1)6 (J6(1), J5(1) ⊕ J1(1) etc). So there are 33 JCFs with
char poly x3(x− 1)6.

8. In the proof of uniqueness of decomposition into Jordan blocks we saw that the
sizes of the blocks can be read off from the ranks of (A−λI)j for j = 1, 2, 3, 4, . . ..
Applying the technique in this proof gives:

J1(1)⊕J1(0)⊕J1(−1), J1(3)⊕J1(0)⊕2, J1(−1)⊕J2(2), J4(0)⊕J1(0), J3(−1)⊕
J1(−1)⊕ J2(i).

9. Let E be the standard basis in order e1, . . . , en and F the standard basis in
reverse order en . . . , e1. As Jen = en−1, Jen−1 = en−2, etc, the linear transfor-
mation T (v) = Jv satisfies [T ]E = J , [T ]F = JT . So if P is the change of basis
matrix from E to F , P−1JP = JT . Therefore J and JT are similar.

Finally,

P−1Jn(λ)P = P−1(J + λI)P = JT + λI = (J + λI)T = Jn(λ)T

so Jn(λ) and Jn(λ)T are similar.

10. Let A be an n × n matrix over C. By the JCF theorem A is similar to
a JCF matrix J = Jn1(λ1) ⊕ · · · ⊕ Jnk

(λk). By Q9, for each i, ∃Pi such that
P−1i Jni(λi)Pi = Jni(λi)

T . If we let P be the block-diagonal matrix P1 ⊕ · · · ⊕ Pk,
then P−1 = P−11 ⊕ · · · ⊕ P−1k and so

P−1JP = P−11 Jn1(λ1)P1⊕· · ·⊕P−1k Jnk
(λk)Pk = Jn1(λ1)

T ⊕· · ·⊕Jnk
(λk)

T = JT .

So J is similar to JT , and hence A is similar to JT , i.e. ∃Q such that Q−1AQ = JT .



Taking transposes, QTAT (Q−1)T = J . Since (Q−1)T = (QT )−1, this shows AT is
similar to J . So both A and AT are similar to J , whence A is similar to AT .

11. (i) E.g.

(
0 1
0 0

)
(ii) This is a really nice application of the JCF (and I’m not sure I know a

more satisfactory way to do the question). Here’s a sketch of the argument. Since
A is similar to a block diagonal sum of Jordan blocks Jr(λ) (with λ 6= 0 as A is
invertible), it is enough to show that each such Jordan block Jr(λ) has a square
root. Let µ be a square root of λ in C, so µ 6= 0. Consider Jr(µ) = J + µI where

J =

 0 1 0 · · ·
0 0 1 · · ·

· · ·

 .

Then Jr(µ)2 = J2 + 2µJ + µ2I. In particular Jr(µ)2 is upper-triangular and its
only eigenvalue is µ2. Next, check by looking at row or column ranks that the
rank of Jr(µ)2 − µ2I is r − 1 (this is where we assume µ 6= 0, and for you boffins
doing the entire course over an arbitrary abstract field it’s also the place where we
assume 2 6= 0) and hence the nullity is 1, so Jr(µ)2 has eigenvalue µ2 with algebraic
multiplicity r and geometric multiplicity 1. Hence its JCF must be Jr(µ

2) = Jr(λ).
Hence ∃P such that P−1Jr(µ)2P = Jr(λ), i.e. (P−1Jr(µ)P )2 = Jr(λ). Hence Jr(λ)
has a square root, as desired.


