M2PM2 Algebra II, Solutions to Problem Sheet 9.

1.
$$P = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
 (many other P 's work).

- **2.** As the only eigenvalue is 0, the char poly must be x^n . So by Cayley–Hamilton, $A^n=0$.
- **3.** By induction on n. The char poly is

$$p(x) = det \begin{pmatrix} x & 0 & 0 & \cdots & 0 & a_0 \\ -1 & x & 0 & \cdots & 0 & a_1 \\ & & & \cdots & & \\ 0 & 0 & 0 & \cdots & -1 & x + a_{n-1} \end{pmatrix}$$

Expand along the first row. By induction the det of the (1,1)-minor is $x^{n-1} + a_{n-1}x^{n-2} + \cdots + a_1$, and the (1,n)-minor is upper-triangular so has determinant $(-1)^{n-1}$. We deduce

$$p(x) = x (x^{n-1} + a_{n-1}x^{n-2} + \dots + a_1) + (-1)^{n-1}a_0 \cdot (-1)^{n-1} = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0$$

Hence the result by induction.

4. (a)
$$\begin{pmatrix} 0 & 0 & 3 \\ 1 & 0 & -2 \\ 0 & 1 & 7 \end{pmatrix}$$
 works (by Q3).

- (b) If we find A with char poly $x^3 2x^2 1$ then A will satisfy the desired equation by Cayley–Hamilton. So take $A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 2 \end{pmatrix}$.
- (c) Multiplying through by B, the eqn is $B^4 + B I = 0$. So finding B with char poly $x^4 + x 1$ will do. Use Q3 to do this.

(d) By Q3 the
$$2 \times 2$$
 matrix $A = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$ satisfies $A^2 + A + I = 0$. So take $C = \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}$.

- (e) Use Q3 to get a non-identity $n \times n$ matrix with char poly $x^n 1$.
- **5.** (i) Yes: if B is similar to A then $B^3 I$ is similar to $A^3 I$, so rank $(B^3 I) = \text{rank}(A^3 I)$ (because they are both the rank of the same linear map).
- (ii) Yes: same proof shows $A + A^5$ and $B + B^5$ are similar, so it suffices to check that similar matrices have the same trace. But the trace is (up to sign) one of the coefficients of the char poly!
- (iii) No: eg $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ are similar but have different first column sum.

- (iv) No: eg let $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 2 \\ 1/2 & 0 \end{pmatrix}$. Then A and B are similar, but $A A^T = 0$ has rank 0, whereas $B B^T$ has rank 2.
- (v) Yes: A and A^T have the same diagonal entries, so $\operatorname{trace}(2A A^T) = \operatorname{trace}(A)$, which is invariant as we saw in part (ii).
- **6.** This question is fairly easy, but notationally awkward. Say each A_i is $n_i \times n_i$, so A is $n \times n$ where $n = \sum n_i$. Write each column vector in F^n ($F = \mathbb{R}$ or \mathbb{C}) in the form $v = (v_1, v_2, \ldots, v_k)$, where $v_i \in F^{n_i}$ for all i. Then $Av = (A_1v_1, A_2v_2, \ldots, A_kv_k)$. Hence $Av = \lambda v$ if and only if $A_iv_i = \lambda v_i$ for all i.

Let $E_{\lambda}(A_i)$ be the λ -eigenspace of A_i , and let B_i be a basis of $E_{\lambda}(A_i)$. Each vector $b \in B_i$ gives a vector $(0, \ldots, b, \ldots 0)$ in F^n . Let B_i' be the set of such vectors obtained from B_i . By the previous observation, vectors in $E_{\lambda}(A)$ are of the form (v_1, v_2, \ldots, v_k) with $v_i \in E_{\lambda}(A_i)$. These are linear combinations of the vectors in $\bigcup B_i'$. Hence $\bigcup B_i'$ is a basis for $E_{\lambda}(A)$. So $\dim E_{\lambda}(A) = \sum |B_i'| = \sum |B_i| = \sum \dim E_{\lambda}(A_i)$.

- 7. (i) There is one possibility for the 0-blocks, two for the -1-i-blocks and three for the 3-blocks, giving a total of $1 \times 2 \times 3 = 6$ possibilities. In full, they are $J_1(0) \oplus J_1(-1-i)^{\oplus 2} \oplus J_1(3)^{\oplus 3}$, $J_1(0) \oplus J_1(-1-i)^{\oplus 2} \oplus J_2(3) \oplus J_1(3)$, $J_1(0) \oplus J_1(-1-i)^{\oplus 2} \oplus J_2(3) \oplus J_1(3)$, $J_1(0) \oplus J_2(-1-i) \oplus J_2(3) \oplus J_1(3)$, $J_1(0) \oplus J_2(-1-i) \oplus J_3(3)$.
- (ii) There are 3 possible JCFs with char poly x^3 ($J_3(0)$, $J_2(0) \oplus J_1(0)$ etc) and 11 with char poly $(x-1)^6$ ($J_6(1)$, $J_5(1) \oplus J_1(1)$ etc). So there are 33 JCFs with char poly $x^3(x-1)^6$.
- 8. In the proof of uniqueness of decomposition into Jordan blocks we saw that the sizes of the blocks can be read off from the ranks of $(A \lambda I)^j$ for $j = 1, 2, 3, 4, \ldots$ Applying the technique in this proof gives:
- $J_1(1) \oplus J_1(0) \oplus J_1(-1), J_1(3) \oplus J_1(0)^{\oplus 2}, J_1(-1) \oplus J_2(2), J_4(0) \oplus J_1(0), J_3(-1) \oplus J_1(-1) \oplus J_2(i).$
- **9.** Let E be the standard basis in order e_1, \ldots, e_n and F the standard basis in reverse order e_n, \ldots, e_1 . As $Je_n = e_{n-1}$, $Je_{n-1} = e_{n-2}$, etc, the linear transformation T(v) = Jv satisfies $[T]_E = J$, $[T]_F = J^T$. So if P is the change of basis matrix from E to F, $P^{-1}JP = J^T$. Therefore J and J^T are similar.

Finally,

$$P^{-1}J_n(\lambda)P = P^{-1}(J + \lambda I)P = J^T + \lambda I = (J + \lambda I)^T = J_n(\lambda)^T$$

so $J_n(\lambda)$ and $J_n(\lambda)^T$ are similar.

10. Let A be an $n \times n$ matrix over \mathbb{C} . By the JCF theorem A is similar to a JCF matrix $J = J_{n_1}(\lambda_1) \oplus \cdots \oplus J_{n_k}(\lambda_k)$. By Q9, for each i, $\exists P_i$ such that $P_i^{-1}J_{n_i}(\lambda_i)P_i = J_{n_i}(\lambda_i)^T$. If we let P be the block-diagonal matrix $P_1 \oplus \cdots \oplus P_k$, then $P^{-1} = P_1^{-1} \oplus \cdots \oplus P_k^{-1}$ and so

$$P^{-1}JP = P_1^{-1}J_{n_1}(\lambda_1)P_1 \oplus \cdots \oplus P_k^{-1}J_{n_k}(\lambda_k)P_k = J_{n_1}(\lambda_1)^T \oplus \cdots \oplus J_{n_k}(\lambda_k)^T = J^T.$$

So J is similar to J^T , and hence A is similar to J^T , i.e. $\exists Q$ such that $Q^{-1}AQ = J^T$.

Taking transposes, $Q^T A^T (Q^{-1})^T = J$. Since $(Q^{-1})^T = (Q^T)^{-1}$, this shows A^T is similar to J. So both A and A^T are similar to J, whence A is similar to A^T .

11. (i) E.g.
$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

(ii) This is a really nice application of the JCF (and I'm not sure I know a more satisfactory way to do the question). Here's a sketch of the argument. Since A is similar to a block diagonal sum of Jordan blocks $J_r(\lambda)$ (with $\lambda \neq 0$ as A is invertible), it is enough to show that each such Jordan block $J_r(\lambda)$ has a square root. Let μ be a square root of λ in \mathbb{C} , so $\mu \neq 0$. Consider $J_r(\mu) = J + \mu I$ where

$$J = \begin{pmatrix} 0 & 1 & 0 & \cdots \\ 0 & 0 & 1 & \cdots \\ & & & \cdots \end{pmatrix}.$$

Then $J_r(\mu)^2 = J^2 + 2\mu J + \mu^2 I$. In particular $J_r(\mu)^2$ is upper-triangular and its only eigenvalue is μ^2 . Next, check by looking at row or column ranks that the rank of $J_r(\mu)^2 - \mu^2 I$ is r-1 (this is where we assume $\mu \neq 0$, and for you boffins doing the entire course over an arbitrary abstract field it's also the place where we assume $2 \neq 0$) and hence the nullity is 1, so $J_r(\mu)^2$ has eigenvalue μ^2 with algebraic multiplicity r and geometric multiplicity 1. Hence its JCF must be $J_r(\mu^2) = J_r(\lambda)$. Hence $\exists P$ such that $P^{-1}J_r(\mu)^2P = J_r(\lambda)$, i.e. $(P^{-1}J_r(\mu)P)^2 = J_r(\lambda)$. Hence $J_r(\lambda)$ has a square root, as desired.