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M2PM2 Algebra II: Solutions to Problem Sheet 8

1. Define A ∼ B if ∃P invertible such that B = P−1AP .

Then A ∼ A as A = I−1AI.

And A ∼ B ⇒ B = P−1AP ⇒ A = PBP−1 ⇒ B ∼ A.

Finally A ∼ B, B ∼ C ⇒ B = P−1AP, C = Q−1BQ ⇒ C = Q−1P−1APQ =
(PQ)−1A(PQ)⇒ A ∼ C.

Hence ∼ is an equivalence relation.

2. Routine first year stuff: P =

(
1 2
3 5

)
, Q =

(
−5 2
3 −1

)
, [v]E = (a, b)T ,

[v]F = (−5a+ 2b, 3a− b)T , [T ]E =

(
0 2
3 −1

)
, [T ]F =

(
−30 −48
18 29

)
.

3. (i) The determinant must be 0 because T is not surjective. More precisely,
if T (x1, x2, x3) = (y1, y2, y3) with yi defined as in the question, then one spots
y1 + y2 + y3 = (x1− x2 + 2x3) + (−x1− 3x3) + (x2 + x3) = 0. This means that the
image of T is contained in the 2-dimensional subspace of R3 consisting of vectors
whose entries sum to zero. Because the image of T cannot be 3-dimensional, the
Rank-Nullity theorem tells us that the kernel cannot be 0-dimensional. So there
are vectors in the kernel of T , which means that T cannot be invertible and the
determinant must then be zero.

Alternatively, just bash it out. Write down the matrix representing T with
respect to the obvious basis and then observe that the three rows of the resulting
matrix sum to zero, so the determinant must be zero.

(ii) The matrix of T w.r.t the usual basis 1, x, x2, x3 is triangular with diagonal
entries all 1, so has determinant 1.

(iii) Matrix of T w.r.t. basis

(
1 0
0 0

)
,

(
0 0
1 0

)
,

(
0 1
0 0

)
,

(
0 0
0 1

)
is A =

1 −2 0 0
1 4 0 0
0 0 1 −2
0 0 1 4

, which has determinant equal to (det(M))2 = 36.

4. The T of Q3(ii) satisfies T (1) = 1, T (x) = x, T (x2) = x2 + 4x − 1, and
T (x3) = x3 + 9x− 2, so matrix of T w.r.t. basis 1, x, x2, x3 is

1 0 −1 −2
0 1 4 9
0 0 1 0
0 0 0 1


The only eigenvalue is 1, and basis for 1-eigenspace of T is checked to be 1, x
without too much trouble. There is hence no basis of evectors: g(1) < a(1).

The T of Q3(iii) has matrix A as in the solution above. The characteristic

polynomial of the matrix

(
1 −2
1 4

)
is (x − 2)(x − 3) so this matrix has distinct



evalues so can be diagonalised, say by a 2 × 2 matrix P . Then the 4 × 4 matrix(
P 0
0 P

)
diagonalises A. The eigenspaces are

(
−2a −2b
a b

)
and

(
a b
−a −b

)
.

5. (a)(i) Characteristic polynomial is (x+1)2(x−2), so eigenvalues are −1, 2 with
algebraic multiplicities 2,1 respectively. The geometric multiplicity of the evalue
−1 is dimension of the −1 eigenspace, which is easily checked to be 1; the geometric
multiplicity of 2 must also be 1 (as 1 ≤ g(2) ≤ 1). Since the geom multiplicity of
−1 is less than the algebraic multiplicity, there is no basis of eigenvectors.

(ii) T sends 1→ 0, x→ 3x, x2 → x+ 6x2, so matrix of T wrt basis 1, x, x2 is 0 0 0
0 3 1
0 0 6

. This has distinct eigenvalues 0,3,6, all with algebraic and geometric

multiplicity 1, and there is a basis of eigenvectors.

(b) The char poly is (x+ 1)2(x− 1), so (as in part (a)(i) above) A is diagonal-
isable iff the −1 eigenspace has dimension 2. This eigenspace consists of solutions

to the system

 0 a b
0 2 c
0 0 0

 v = 0, so it is 2-dimensional iff ac− 2b = 0.

6. (i) Well-definedness of multiplication (i.e. “closure”): S, T ∈ GL(V ) implies
that ST is a linear transformation, and it is invertible as (ST )−1 = T−1S−1, so
ST ∈ GL(V ).

Associativity: follows from associativity of composition.

Identity: is identity map I(v) = v∀v ∈ V .

Inverse: exists by defition.

Hence GL(V ) is a group.

(ii) If T,U ∈ GL(V ) then det(TU) = det(T )det(U) by lectures, so det is
a homomorphism. Let B = {v1, . . . , vn} be a basis of V . For λ ∈ R∗, define
T : V → V to be the linear map which sends

v1 → λv1, v2 → v2, . . . , vn → vn.

Then det(T ) = λ. Hence det is surjective.

(iii) Fix a basis B of V . Then the map T → [T ]B is an isomorphism from
GL(V ) to GL(n,R).


