M2PM2 Algebra II, Solutions to Sheet 4.

- 1. (a) D_{20} has an element of order 10, and S_5 doesn't (check cycle types for example). So S_5 has no subgroup isomorphic to D_{20} .
- (b) Let x = (123)(45) and y = (12). Then x has order 6, y has order 2, and check that $yx = x^{-1}y$. These are the equations which determine the multiplication table of D_{12} , so $\{e, x, x^2, \dots, x^5, y, xy, \dots, x^5y\}$ is a subgroup of S_5 isomorphic to D_{12} .
- **2.** (a) $C_{p^r} = \{x \in \mathbb{C} : x^{p^r} = 1\}$. This has a subgroup $C_{p^{r-1}}$, and I claim that all elements not in this subgroup have order p^r . For if $z \in C_{p^r}$ then the order of z is some divisor of p^r , so it's p^s for some $0 \le s \le r$, and s < r if and only if the order divides p^{r-1} if and only if $z \in C_{p^{r-1}}$.

So the number of elements of order p^r is $p^r - p^{r-1}$. Similarly (applying the argument to $C_{p^{r-1}}$, $C_{p^{r-2}}$ and so on) for each $1 \le i \le r$, number of elements of order p^i is $p^i - p^{i-1}$. (And of course there is 1 element of order 1.)

- (b) Pretty much the same as in (a). If $g \in (C_{p^r})^k$ then $g^{p^r} = 1$ so g has order p^s for some $s \le r$, and s < r if and only if $g \in (C_{p^{r-1}})^k$. So there are $p^{(r-1)k}$ elements of order less than p^r , leaving $p^{rk} p^{(r-1)k}$ elements of order exactly p^r .
- **3.** Need to prove $G_{\mathbf{a}} \cong G_{\mathbf{b}} \Rightarrow \mathbf{a} = \mathbf{b}$ (reverse is trivial).

This is tough. Here's the trick. The elements of order dividing p^n in $G_{\mathbf{a}}$ are simply the subgroup $C_{p^{\min\{n,a_1\}}} \times C_{p^{\min\{n,a_2\}}} \times \cdots \times C_{p^{\min\{n,a_k\}}}$, which has size $p^{A(n)}$, with $A(n) = \sum_{i=1}^k \min\{n,a_i\}$. Letting B(n) denote the corresponding function for $G_{\mathbf{b}}$, we deduce A(1) = B(1), A(2) = B(2) and so on. Now A(1) = k and B(1) = l so k = l. Similarly A(2) = A(1) + (k - t) where t is the number of i such that $a_i = 1$, and so A(2) = B(2) implies that the number of a_i which are 1 equals the number of b_i which are 1. Continuing this way, get $\mathbf{a} = \mathbf{b}$.

4. This is tougher! Here is a very brief sketch of the solution. By the structure theorem, and the fact that $C_m \times C_n \cong C_{mn}$ if hcf(m,n)=1 (applied repeatedly) we can deduce that every group is a product of cyclic groups of prime power order. Hence every group is isomorphic to a group of the form mentioned in the question.

Now uniqueness. Note first that given an abelian group G and a prime dividing the order of G, we know from the paragraph about that we can write $G \cong G_{\bf a} \times H$ with $G_{\bf a}$ of the type in Q3 (we write G as a product of cyclic groups of prime power order and then just group together the ones for which the order is a power of our fixed prime p). What we want to do of course is to figure out the subgroup $G_{\bf a}$ attached to p in this way, intrinsically in terms of G only. A little more precisely: we need to show that if if $G \cong G_{\bf a} \times H_1 \cong G_{\bf b} \times H_2$ with the orders of $G_{\bf a}$ and $G_{\bf b}$ a power of p, and the orders of H_1 and H_2 both prime to p, then $G_{\bf a}$ and $G_{\bf b}$ are isomorphic. The reason for this is that both

of these groups are isomorphic to the subgroup of G consisting of elements of order some power of p! So $G_{\mathbf{a}} \cong G_{\mathbf{b}}$. Now we use Q3 and then repeat for each prime dividing the order of G to finish.

5 and **6**: see **7**!

7. Let |G| = 2p with G non-abelian and p prime. The non-identity elements of G have orders 2, p or 2p. There isn't one of order 2p (otherwise G would be cyclic, hence abelian). Not all have order 2, otherwise G would be abelian by Sheet 2, Q6. Hence G has an element x of order p. It also has an element y of order 2 by Proposition 5.2.

Let H be the cyclic subgroup $\langle x \rangle = \{e, x, x^2, \dots, x^{p-1}\}$ of G. Then $y \notin H$, so H and Hy are the two different right cosets of H in G, so

$$G = H \cup Hy = \{e, x, x^2, \dots, x^{p-1}, y, xy, x^2y, \dots, x^{p-1}y\}.$$
 (1)

Now consider the element $yx \in G$. It is in the above list, and is not equal to any x^i (as $y \notin \langle x \rangle$). If yx = xy we easily see that G is abelian, a contradiction. So $yx = x^iy$ for some i with $2 \le i \le p-1$.

Now we need to think a little – this is where the general case gets trickier than the |G|=6 case. What is the order of yx? Well, $(yx)^2=yxyx=x^iyyx=x^{i+1}$. If i< p-1 then x^{i+1} has order p, but yx can't have order p, because if it did then we get the following contradiction: p is odd so $(yx)^p=x^jy^p=x^jy$ (for some j), and x^jy can't be the identity element. Hence yx has order 2p and G is cyclic.

The remaining case is when i = p - 1; then and $yx = x^{p-1}y = x^{-1}y$. We now have all the equations defining the dihedral group D_{2p} : $x^p = y^2 = e$ and $yx = x^{-1}y$, and hence $G \cong D_{2p}$.

8. (a) Easy.

(b) By (a) we will get all the matrices A^rB^s if we take $0 \le r \le 3$ and $0 \le s \le 1$ (note the upper limit 1 rather than 3 for s, since we can replace B^2 by A^2). These matrices are

$$\pm I$$
, $\pm \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, $\pm \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $\pm \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$

- (c) We check the 3 subgroup properties:
- (1) $I \in Q_8$
- (2) Closure: using the equation $BA = A^3B$, we see that any product $(A^rB^s)(A^tB^u)$ is again of the form A^mB^n , so is in Q_8 .
- (3) Inverses: the inverse of A^rB^s is $B^{-s}A^{-r}$, and using the equation $BA = A^3B$, we see this is again of the form A^mB^n , so is in Q_8 .

Hence Q_8 is a subgroup of $GL(2,\mathbb{C})$.

(d) Check from the list of matrices in (b) that Q_8 has only 1 element of order 2 (namely -I). Since D_8 has 5 elements of order 2, it follows that $Q_8 \not\cong D_8$.

- **9.** (a) Let G be a non-abelian group with |G|=8. The elements of G have order 1,2,4 or 8 by Lagrange. Now G has no element of order 8 (otherwise $G\cong C_8$ which is abelian), and not every element x satisfies $x^2=e$ (otherwise G would be abelian by Sheet 2, Q6). Hence G has an element x of order 4.
- (b) We are given that $y \neq x^2$, and also $y \neq x$ or x^{-1} as these have order 4. So $y \in G \langle x \rangle$ and

$$G = \langle x \rangle \cup \langle x \rangle y = \{e, x, x^2, x^3, y, xy, x^2y, x^3y\}.$$

Consider the product yx. It is clearly not e, x, x^2, x^3 or xy (the last would force G to be abelian). So $yx = x^2y$ or x^3y . If $yx = x^2y$ then there are lots of ways of fiddling around to get a contradiction. Here's one:

$$yx = x^2y \Rightarrow x^2 = yxy^{-1} \Rightarrow e = (x^2)^2 = (yxy^{-1})(yxy^{-1}) = yx^2y^{-1} \Rightarrow x^2 = e$$

which is a contradiction.

Hence $yx = x^3y$. Now we have the equations

$$x^4 = e, y^2 = e, yx = x^3y.$$

These equations determine the multiplication table of G, and as they are also the equations determining the multiplication table of D_8 , it follows that $G \cong D_8$.

10. By Q9(a), G has an element x of order 4. Pick $y \in G - \langle x \rangle$. Then

$$G = \langle x \rangle \cup \langle x \rangle y = \{e, x, x^2, x^3, y, xy, x^2y, x^3y\}.$$

Consider the product yx. Show exactly as in Q9(b) that $yx = x^3y$.

If y has order 2 then $G \cong D_8$ by Q9(b). The only other possibility is that y has order 4, so assume this now. Consider y^2 . It cannot be equal to e, x or x^3 (the latter two have order 4). It cannot be y, xy, x^2y, x^3y as $y \notin \langle x \rangle$. So $y^2 = x^2$. We now have the equations

$$x^4 = e, x^2 = y^2, yx = x^3y.$$

These equations determine the mult table of G, and as they are also the equations determining the mult table of Q_8 , it follows that $G \cong Q_8$.