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M2PM2 Algebra II, Solutions to Sheet 4.

1. (a) D20 has an element of order 10, and S5 doesn’t (check cycle types for
example). So S5 has no subgroup isomorphic to D20.

(b) Let x = (1 2 3) (4 5) and y = (1 2). Then x has order 6, y has order
2, and check that yx = x−1y. These are the equations which determine the
multiplication table of D12, so {e, x, x2, . . . , x5, y, xy, . . . , x5y} is a subgroup of
S5 isomorphic to D12.

2. (a) Cpr = {x ∈ C : xpr

= 1}. This has a subgroup Cpr−1 , and I claim that
all elements not in this subgroup have order pr. For if z ∈ Cpr then the order
of z is some divisor of pr, so it’s ps for some 0 ≤ s ≤ r, and s < r if and only if
the order divides pr−1 if and only if z ∈ Cpr−1 .

So the number of elements of order pr is pr − pr−1. Similarly (applying the
argument to Cpr−1 , Cpr−2 and so on) for each 1 ≤ i ≤ r, number of elements of
order pi is pi − pi−1. (And of course there is 1 element of order 1.)

(b) Pretty much the same as in (a). If g ∈ (Cpr )k then gp
r

= 1 so g has
order ps for some s ≤ r, and s < r if and only if g ∈ (Cpr−1)k. So there are

p(r−1)k elements of order less than pr, leaving prk − p(r−1)k elements of order
exactly pr.

3. Need to prove Ga
∼= Gb ⇒ a = b (reverse is trivial).

This is tough. Here’s the trick. The elements of order dividing pn in Ga are
simply the subgroup Cpmin{n,a1} × Cpmin{n,a2} × · · · × Cpmin{n,ak} , which has size

pA(n), with A(n) =
∑k

i=1 min{n, ai}. Letting B(n) denote the corresponding
function for Gb, we deduce A(1) = B(1), A(2) = B(2) and so on. Now A(1) = k
and B(1) = l so k = l. Similarly A(2) = A(1) + (k − t) where t is the number
of i such that ai = 1, and so A(2) = B(2) implies that the number of ai which
are 1 equals the number of bi which are 1. Continuing this way, get a = b.

4. This is tougher! Here is a very brief sketch of the solution. By the structure
theorem, and the fact that Cm×Cn

∼= Cmn if hcf(m,n) = 1 (applied repeatedly)
we can deduce that every group is a product of cyclic groups of prime power
order. Hence every group is isomorphic to a group of the form mentioned in the
question.

Now uniqueness. Note first that given an abelian group G and a prime
dividing the order of G, we know from the paragraph about that we can write
G ∼= Ga × H with Ga of the type in Q3 (we write G as a product of cyclic
groups of prime power order and then just group together the ones for which
the order is a power of our fixed prime p). What we want to do of course is to
figure out the subgroup Ga attached to p in this way, intrinsically in terms of G
only. A little more precisely: we need to show that if if G ∼= Ga×H1

∼= Gb×H2

with the orders of Ga and Gb a power of p, and the orders of H1 and H2 both
prime to p, then Ga and Gb are isomorphic. The reason for this is that both



of these groups are isomorphic to the subgroup of G consisting of elements of
order some power of p! So Ga

∼= Gb. Now we use Q3 and then repeat for each
prime dividing the order of G to finish.

5 and 6: see 7!

7. Let |G| = 2p with G non-abelian and p prime. The non-identity elements
of G have orders 2, p or 2p. There isn’t one of order 2p (otherwise G would be
cyclic, hence abelian). Not all have order 2, otherwise G would be abelian by
Sheet 2, Q6. Hence G has an element x of order p. It also has an element y of
order 2 by Proposition 5.2.

Let H be the cyclic subgroup 〈x〉 = {e, x, x2, . . . , xp−1} of G. Then y 6∈ H,
so H and Hy are the two different right cosets of H in G, so

G = H ∪Hy = {e, x, x2, . . . , xp−1, y, xy, x2y, . . . , xp−1y}. (1)

Now consider the element yx ∈ G. It is in the above list, and is not equal to
any xi (as y 6∈ 〈x〉). If yx = xy we easily see that G is abelian, a contradiction.
So yx = xiy for some i with 2 ≤ i ≤ p− 1.

Now we need to think a little – this is where the general case gets trickier than
the |G| = 6 case. What is the order of yx? Well, (yx)2 = yxyx = xiyyx = xi+1.
If i < p − 1 then xi+1 has order p, but yx can’t have order p, because if it did
then we get the following contradiction: p is odd so (yx)p = xjyp = xjy (for
some j), and xjy can’t be the identity element. Hence yx has order 2p and G
is cyclic.

The remaining case is when i = p − 1; then and yx = xp−1y = x−1y. We
now have all the equations defining the dihedral group D2p: xp = y2 = e and
yx = x−1y, and hence G ∼= D2p.

8. (a) Easy.

(b) By (a) we will get all the matrices ArBs if we take 0 ≤ r ≤ 3 and
0 ≤ s ≤ 1 (note the upper limit 1 rather than 3 for s, since we can replace B2

by A2). These matrices are

±I, ±
(
i 0
0 −i

)
, ±

(
0 1
−1 0

)
, ±

(
0 i
i 0

)
(c) We check the 3 subgroup properties:

(1) I ∈ Q8

(2) Closure: using the equation BA = A3B, we see that any product (ArBs)(AtBu)
is again of the form AmBn, so is in Q8.

(3) Inverses: the inverse of ArBs is B−sA−r, and using the equation BA = A3B,
we see this is again of the form AmBn, so is in Q8.

Hence Q8 is a subgroup of GL(2,C).

(d) Check from the list of matrices in (b) that Q8 has only 1 element of order
2 (namely −I). Since D8 has 5 elements of order 2, it follows that Q8 6∼= D8.



9. (a) Let G be a non-abelian group with |G| = 8. The elements of G have order
1,2,4 or 8 by Lagrange. Now G has no element of order 8 (otherwise G ∼= C8

which is abelian), and not every element x satisfies x2 = e (otherwise G would
be abelian by Sheet 2, Q6). Hence G has an element x of order 4.

(b) We are given that y 6= x2, and also y 6= x or x−1 as these have order 4.
So y ∈ G− 〈x〉 and

G = 〈x〉 ∪ 〈x〉y = {e, x, x2, x3, y, xy, x2y, x3y}.

Consider the product yx. It is clearly not e, x, x2, x3 or xy (the last would force
G to be abelian). So yx = x2y or x3y. If yx = x2y then there are lots of ways
of fiddling around to get a contradiction. Here’s one:

yx = x2y ⇒ x2 = yxy−1 ⇒ e = (x2)2 = (yxy−1)(yxy−1) = yx2y−1 ⇒ x2 = e

which is a contradiction.

Hence yx = x3y. Now we have the equations

x4 = e, y2 = e, yx = x3y.

These equations determine the multiplication table of G, and as they are also the
equations determining the multiplication table of D8, it follows that G ∼= D8.

10. By Q9(a), G has an element x of order 4. Pick y ∈ G− 〈x〉. Then

G = 〈x〉 ∪ 〈x〉y = {e, x, x2, x3, y, xy, x2y, x3y}.

Consider the product yx. Show exactly as in Q9(b) that yx = x3y.

If y has order 2 then G ∼= D8 by Q9(b). The only other possibility is that
y has order 4, so assume this now. Consider y2. It cannot be equal to e, x or
x3 (the latter two have order 4). It cannot be y, xy, x2y, x3y as y 6∈ 〈x〉. So
y2 = x2. We now have the equations

x4 = e, x2 = y2, yx = x3y.

These equations determine the mult table of G, and as they are also the equa-
tions determining the mult table of Q8, it follows that G ∼= Q8.


