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M2PM2 Algebra II Solutions to Sheet 2

1. (a) Induction on n works. The base case is clear, and if it’s true for n − 1 then
f(gn−1) = hn−1 and f(g) = h so f(gn) = f(gn−1g) = f(gn−1)f(g) = hn−1h = hn.

2. We must show three things: (i) G ∼= G, (ii) G ∼= H ⇒ H ∼= G, and (iii) G ∼= H, H ∼=
K ⇒ G ∼= K.

For (i), observe that the identity function f(x) = x (x ∈ G) is an isomorphism from G
to G.

For (ii), let φ : G→ H be an isomorphism. We claim φ−1 is an isomorphism H → G.
It is a bijection (by M1F). And for a, b ∈ H, we have a = φ(c), b = φ(d) for some c, d ∈ G,
hence φ−1(ab) = φ−1(φ(c)φ(d)) = φ−1(φ(cd)) = cd = φ−1(a)φ−1(b). Hence φ−1 : H → G
is an isomorphism, so H ∼= G.

For (iii), let φ : G → H and ψ : H → K be isomorphisms. Then ψ ◦ φ : G → K is a
bijection (M1F again), and is an isomorphism since for all x, y ∈ G,

(ψ ◦ φ)(xy) = ψ(φ(xy)) = ψ(φ(x)φ(y)) = ψ(φ(x))ψ(φ(y)) = (ψ ◦ φ)(x) (ψ ◦ φ)(y).

Hence G ∼= K.

3. (a) φ(eG) = eH as shown in lectures, so eH = φ(gg−1) = φ(g)φ(g−1) hence φ(g−1) =
φ(g)−1. (b) Say φ(g) had finite order. Then φ(g)n = eH for some positive integer n, and
hence φ(gn) = eH = φ(eG). Because φ is a bijection, this implies gn = eG, so g has finite
order, a contradiction.

4. This question is rather tricky. All the groups are infinite an abelian, so you have very
little weaponry available to prove that two elements in the list are not isomorphic.

Call these groupsG1, . . . , G6 in the order they are listed. ThenG2 = (Z,+) ∼= 〈π〉 = G5

as they are both infinite cyclic. Also G3 = (Q∗,×) ∼= G6, an isomorphism being a 7→ a−1
(one has to check that (a− 1) ∗ (b− 1) = ab− 1 to check that this map is an isomorphism,
but this is easy). There are no further isomorphisms between these groups: G2 is not
isomorphic to any of G1, G3, G4 as it is cyclic and the others aren’t (what could a
generator be?); G3 is not isom to G1, G4 as it has an element of order 2 (namely −1)
and the others don’t; and finally G1 6∼= G4 – this is tricky, here’s an argument. Spose
φ : Q → Q>0 is an isomorphism, sending 1 to f say. Then f 6= 1 (as φ(0) = 1), and for
any n ∈ N, φ must send 1/n to the nth root of f ; this cannot lie in Q for all n (consider
the prime factorization of numerator and denominator).

5. (a) D120 has elements of order 60, whereas S5 does not, so S5 6∼= D120 by Prop 2.1
of lectures. And C120 is not isomorphic to either of these groups as it is abelian and the
others are not.

(b) Isomorphism φ : D6 → S3 is given by sending each element of D6 to the corre-
sponding permutation of the corners of the triangle.

(c) Isomorphism x→ ex shows (R,+) ∼= (R>0,×). But (Q,+) 6∼= (Q>0,×) by Q3.

(d) One subgroup of size 4 is 〈ρ〉, the subgroup consisting of all rotations. Another is the
subgroup consisting of the symmetries e, ρ2, σ, σρ2. These subgroups are not isomorphic
as one is cyclic and the other is not.

6. (a) Let x, y ∈ G. Then x2 = y2 = (xy)2 = e. So e = xxyy = xyxy. Multiply on left by
x−1 and on right by y−1, to get xy = yx. Hence G is abelian.

(b) Suppose |G| > 2. Pick non-identity x, y ∈ G, x 6= y. Then check {e, x, y, xy} is
a subgroup (closure - write down mult table; inverses - each element is its own inverse).
Hence 4 divides |G| by Lagrange.

7. (i) The trick I explained in lectures (there are infinitely many groups of size 1) easily



generalises.

(ii) As we are considering groups up to isomorphism, we can assume that our group
elements are a fixed set, say {a1, . . . , an}. Clearly there are only finitely many possible
mult tables for this set, hence only finitely many possible groups with these elements.

Note: the function sending a positive integer n to the number of groups of order n up
to isomorphism is quite interesting. It is sequence A000001 (the first one!) in the online
encyclopedia of integer sequences (oeis.org). No closed form for it is known and unless
I’m out of date, we don’t know how many groups there are of order 2048. The number
of groups of order 1024 is 49487365422 and I believe the proof of this was a brute force
computer calculation.

8. (a) Both +1 (because there are an even number of even cycles in both cases – it doesn’t
matter that the cycles aren’t disjoint).

(b) e, (3) (i.e. “a 3-cycle”),(5), (7), (2, 2), (2, 4), (3, 3), (2, 2, 3).

(c) Elements of order 2 are those of cycle-shape (2, 2). The number of these is
(
7
2

)
×(

5
2

)
× 1

2 = 105.

9. As g has odd order, it is a product of disjoint cycles, all of odd length. These are all
even perms., therefore g is even.

Alternatively argue by contradiction: if g has order m, odd, and sgn(g) = −1, then
gm = e gives −1 = (−1)m = sgn(e) = +1, a contradiction.


