M2PM2 Algebra II

Solutions to Sheet 1

- 1. FTFFTFTTTTT if I got them all right...
- **2.** (a) is easily checked using the permutations representing the group elements given in lectures.
- (b) If $H = \langle \rho \rangle$ then as $|D_8 : H| = 2$, the right coset $H\sigma = \{\sigma, \rho\sigma, \rho^2\sigma, \rho^3\sigma\}$ is equal to $D_8 H$ which is $\{\sigma_1, \sigma_2, \sigma_3, \sigma_4\}$.
- (c) Using (a) we get $\sigma \rho^n = \rho^{-n} \sigma$ for all n. Hence $\sigma_i \sigma_j = (\sigma \rho^m)(\sigma \rho^n)$ (for some m, n) = $\sigma \sigma \rho^{-m} \rho^n = \rho^{n-m}$, which is a rotation.
- (d) e has order 1; ρ and ρ^3 have order 4; and the other 5 elements ρ^2, σ_i (i = 1, 2, 3, 4) have order 2.
 - (e) The seven cyclic subgroups are $\langle e \rangle$, $\langle \rho \rangle$, $\langle \rho^2 \rangle$, $\langle \sigma_i \rangle$ (i = 1, 2, 3, 4).
- **3.** Argue as in Q2. For part (a) you can either think about permutations of vertices, or maybe use matrices, or maybe use complex numbers....
- **4.** $G(\Pi)$ contains a translation τ moving each D one place to the right, and a reflection σ in the horizontal line bisecting all of the D's. Now let's fix one of the D and call it D_0 . Choose any $g \in G$ and consider where it takes D_0 . It takes it to a random D, which we could call $g(D_0)$. Now there's definitely a translation which takes $g(D_0)$ back to D_0 ; if this translation is τ^{-n} then $\tau^{-n}g$ must send D_0 to itself. But the only symmetries of the D_0 are e and σ , so either $\tau^{-n}g$ or $\sigma\tau^{-n}g$ must send every point of D_0 to itself, and hence by Proposition 1.3 it must be the identity. It now follows easily that $g = \tau^n$ or $\tau^n \sigma$.

Finally, check geometrically that $\tau \sigma = \sigma \tau$. From this it is easy to check that $G(\pi)$ is abelian.

- **5.** (a) Group has size 4 (identity, a rotation, two reflections), abelian.
- (b) This group is infinite and non-abelian. The elements are of two kinds: firstly rotations by some angle $\theta \in [0, 2\pi)$, and secondly reflections about a line through the origin (and any such line will do). To see the group isn't abelian, see what happens if you choose a rotation and a reflection and then see if they commute in general.
 - (c) Same as (a).
 - (d) Just the one reflection, so cyclic of order 2 and abelian.
- (e) Group is infinite (it contains all translations of the form $x \mapsto x + (m, n)$ with $m, n \in \mathbb{Z}$) and non-abelian (consider translation by the vector (0, 1) and rotation by 90 degrees and check they don't commute).