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Q1.

i. The determinant of A = (aij) is
∑

σ∈Sn
sgn(σ)a1σ(1)a2σ(2) · · · anσ(n). One mark.

ii. If B is the matrix obtained from A by switching columns s and t, and if τ is the
transposition (s t) ∈ Sn, then one checks easily that bij = aiτ(j) for 1 ≤ i, j ≤ n. Hence

det(B) =
∑
σ∈Sn

sgn(σ)b1σ(1)b2σ(2) · · ·

=
∑
σ

sgn(σ)a1τσ(1)a2τσ(2) · · ·

=
∑
π

sgn(τπ)a1π(1)a2π(2) · · ·

(with π = τσ = τ−1σ) and because sgn(τπ) = − sgn(π) the result follows. Two marks.
iii. det(C) =

∑
π∈Sn

sgn(π)c1π(1)c2π(2) · · · . If π ∈ Sn and π 6= σ then there exists some i
such that π(i) 6= σ(i) and hence ciπ(i) = 0, meaning that the term in the sum corresponding
to π is zero. The only possible non-zero term then in the sum is the term for π = σ, giving

det(C) = sgn(σ)c1σ(1)c2σ(2) · · · = sgn(σ)

as required. Two marks.
iv. If the matrix is A, and if v is the column vector v = (1 − 2 1)T , then Av = 0, so

det(A) must be zero. One mark. Of course there are plenty of other ways of getting this
mark – for example you can do some row operations, or explicitly compute the determinant.

v. For m ≥ 3, let Em−1 be the (1, 2) minor of Dm. Note that the first column of Em−1
just has one non-zero entry, namely the top left hand corner, so expanding down the first
column we see det(Em−1) = det(Dm−2).

Now say n ≥ 1. Expanding det(Dn+2) along the first row we see that det(Dn+2) =
det(Dn+1) − det(En+1), hence (setting m = n + 2) det(Dn+2) = det(Dn+1) − det(Dn), as
required. Two marks.

vi. We check by hand that δ1 = 1 and δ2 = 0. Hence (using the recurrence proved in
part (v)) δ3 = −1, δ4 = −1, δ5 = 0 and δ6 = 1. Hence D5 is not invertible but D6 is, because
we know a square matrix is invertible iff it has non-zero determinant. Two marks.
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Q2.

i. An eigenvector with eigenvalue λ is a non-zero v ∈ V such that Tv = λv. One mark,
but zero marks if you forget the magic word “non-zero”.

ii. The algebraic multiplicity of λ is the number of times (x−λ) goes into the characteristic
polynomial of T . More explicitly, if the char poly of T is p(x) then p(x) = (x−λ)aq(x) with
q(λ) 6= 0, and the algebraic multiplicity is a. One mark.

The geometric multiplicity of λ is the dimension of the space Eλ := {v ∈ V : Tv = λv}.
One mark.

iii. If we write p(x) = (x − λ1)a1 · · · (x − λr)ar , which we can do because our base field
is the complexes, then a(λi) = ai and so

∑
i a(λi) = deg(p(x)) = n. One mark.

iv. λ is an eigenvalue, so there exists some eigenvector v with Tv = λv. Hence 0 6= v ∈ Eλ
and hence the dimension of Eλ is strictly positive, so g(λ) > 0. One mark.

v. The eigenvalues of an upper triangular matrix are just the diagonal entries, so they
are 1 and 2. The characteristic polynomial of A is (x − 1)3(x − 2) and hence a(1) = 3 and
a(2) = 1. We know that 1 ≤ g(2) ≤ a(2) = 1 from lectures, and hence g(2) = 1. To compute
g(1) we need to do a calculation. Say v = (a b c d)t is in E1. Then Tv = v and multiplying
this out, we get the equations

a+ b+ c+ d = a

b+ c+ d = b

c+ d = c

2d = d

The last two equations are equivalent to d = 0, the second then implies c = 0 and the first
implies b = 0. Conversely any matrix (a 0 0 0)t is clearly an eigenvector with eigenvalue 1.
We deduce that E1 is 1-dimensional, so g(1) = 1.

One mark for getting both a’s right, one for g(2) = 1, and one for g(1) = 1.
vi. An explicit computation shows that the characteristic polynomial of B is det(xI −

B) = x3−2b2x, which factors as x(x+b
√

2)(x−b
√

2). If b 6= 0 then the char poly has distinct
roots, and hence B is diagonalisable by a result in lectures. If b = 0 then the char poly does
not have distinct roots but the matrix is diagonal anyway. Hence B is diagonalizable for all
b ∈ C. Two marks.
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