Imperial College London
M2PM2 Algebra II, Progress Test 3, 7/12/2012, solutions.

Q1.

i. The determinant of A = (a;;) is ZUESn sgn(0)a15(1)A20(2) * * * Ano(n)- One mark.
ii. If B is the matrix obtained from A by switching columns s and ¢, and if 7 is the
transposition (s t) € S, then one checks easily that b;; = air(j) for 1 <4, j < n. Hence

det(B) = Z sgn(0)bis1)b2c(2) - - -

O’ESn

= Z sgn(0)a1r0(1)A2r0(2) * * -

= Z Sgn(TW)a1w(1)a2n(2) e

(with 7 = 70 = 7710) and because sgn(77) = — sgn(m) the result follows. Two marks.

iii. det(C) =) g sen(m)ciza)Con(e) -+ If m € S, and 7 # o then there exists some i
such that (i) # o (i) and hence c;r(;) = 0, meaning that the term in the sum corresponding
to 7 is zero. The only possible non-zero term then in the sum is the term for 7 = o, giving

det(C) = sgn(o)cip(1)C20(2) - - = sgn(o)

as required. Two marks.

iv. If the matrix is A, and if v is the column vector v = (1 — 2 1)7, then Av = 0, so
det(A) must be zero. One mark. Of course there are plenty of other ways of getting this
mark — for example you can do some row operations, or explicitly compute the determinant.

v. For m > 3, let E,, 1 be the (1,2) minor of D,,. Note that the first column of FE,, 4
just has one non-zero entry, namely the top left hand corner, so expanding down the first
column we see det(E,,_1) = det(D,,_2).

Now say n > 1. Expanding det(D,2) along the first row we see that det(D, o) =
det(Dy41) — det(E,41), hence (setting m = n + 2) det(D,42) = det(D,41) — det(D,,), as
required. Two marks.

vi. We check by hand that ; = 1 and d, = 0. Hence (using the recurrence proved in
part (v)) 03 = —1, 9, = —1, 95 = 0 and ds = 1. Hence Dj is not invertible but Dg is, because
we know a square matrix is invertible iff it has non-zero determinant. Two marks.
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Q2.

i. An eigenvector with eigenvalue A is a non-zero v € V such that Tv = Av. One mark,
but zero marks if you forget the magic word “non-zero”.

ii. The algebraic multiplicity of X is the number of times (z—\) goes into the characteristic
polynomial of T'. More explicitly, if the char poly of T is p(x) then p(z) = (z — A\)%g(z) with
q(A) # 0, and the algebraic multiplicity is a. One mark.

The geometric multiplicity of X is the dimension of the space F\ :={v €V : Tv = \v}.
One mark.

iii. If we write p(z) = (z — A\)™ -+ (z — \)*, which we can do because our base field
is the complexes, then a(\;) = a; and so ) . a()\;) = deg(p(z)) = n. One mark.

iv. Ais an eigenvalue, so there exists some eigenvector v with Tv = Av. Hence 0 # v € E),
and hence the dimension of E) is strictly positive, so g(A) > 0. One mark.

v. The eigenvalues of an upper triangular matrix are just the diagonal entries, so they
are 1 and 2. The characteristic polynomial of A is (z — 1)*(z — 2) and hence a(1) = 3 and
a(2) = 1. We know that 1 < ¢g(2) < a(2) = 1 from lectures, and hence ¢g(2) = 1. To compute
g(1) we need to do a calculation. Say v = (a b ¢ d)" is in E;. Then Tv = v and multiplying
this out, we get the equations

at+b+c+d=a

b+c+d=b
c+d=c
2d =d

The last two equations are equivalent to d = 0, the second then implies ¢ = 0 and the first
implies b = 0. Conversely any matrix (a 0 0 0)! is clearly an eigenvector with eigenvalue 1.
We deduce that E; is 1-dimensional, so ¢g(1) = 1.

One mark for getting both a’s right, one for g(2) = 1, and one for g(1) = 1.

vi. An explicit computation shows that the characteristic polynomial of B is det(z] —
B) = 2 —2b%z, which factors as z(z+bv/2)(x—bv/2). If b # 0 then the char poly has distinct
roots, and hence B is diagonalisable by a result in lectures. If b = 0 then the char poly does
not have distinct roots but the matrix is diagonal anyway. Hence B is diagonalizable for all
b € C. Two marks.



