

Name (IN CAPITALS!): CID:

Marker's initials:

Throughout this test, you may assume any standard results from the course, unless you are explicitly asked to prove them.

Q1. [10 marks]

- i. Define the *determinant* $\det(A)$ of an $n \times n$ matrix A .
- ii. Prove that if B is the matrix obtained from A by swapping two columns, then $\det(B) = -\det(A)$.
- iii. Let σ be a permutation of the set $\{1, 2, 3, \dots, n\}$ and define an $n \times n$ matrix C as follows: the (i, j) th entry c_{ij} of C is zero unless $j = \sigma(i)$, in which case it is 1. Prove that $\det(C) = \text{sgn}(\sigma)$.
- iv. Compute the determinant of

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

- v. Let D_n be the $n \times n$ matrix with (i, j) th entry d_{ij} given by the formula: $d_{ij} = 1$ if $|i - j| \leq 1$ and $d_{ij} = 0$ otherwise, so D_n looks like this:

$$\begin{pmatrix} 1 & 1 & 0 & 0 & \dots & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & \dots & 0 & 0 & 0 \\ & & & & \dots & & & \\ 0 & 0 & 0 & 0 & \dots & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & \dots & 0 & 1 & 1 \end{pmatrix}$$

If $\delta_n = \det(D_n)$ then prove that $\delta_{n+2} = \delta_{n+1} - \delta_n$ for $n \geq 1$.

- vi. With notation as in the previous part, is the matrix D_5 invertible? What about the matrix D_6 ?

Name (IN CAPITALS!): CID:

Marker's initials:

Q2. [10 marks]

Reminder: you may assume any standard results from the course, unless you are asked to prove them.

Let V be a finite-dimensional vector space over the complex numbers, and let $T : V \rightarrow V$ be a linear map.

- i. Define what it means for $v \in V$ to be an *eigenvector* for T , with eigenvalue λ .
- ii. If λ is an eigenvalue of T then define the *algebraic multiplicity* $a(\lambda)$ and the *geometric multiplicity* $g(\lambda)$ of λ .
- iii. Let the eigenvalues of T be $\lambda_1, \lambda_2, \dots, \lambda_r$, with the λ_i all distinct. Prove that the sum of the algebraic multiplicities $a(\lambda_i)$ is equal to n .
- iv. Prove that if λ is an eigenvalue of T then $g(\lambda) > 0$.
- v. Let A denote the matrix

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

and let $T : \mathbf{C}^4 \rightarrow \mathbf{C}^4$ denote the corresponding linear map. What are the eigenvalues of T ? For each eigenvalue, compute its algebraic and geometric multiplicity.

- vi. Let B denote the matrix

$$\begin{pmatrix} 0 & b & 0 \\ b & 0 & b \\ 0 & b & 0 \end{pmatrix}$$

with b a complex number. For which values of $b \in \mathbf{C}$ is the matrix B diagonalizable over the complexes?