

Name (IN CAPITALS!): ..... CID: .....

Marker's initials: .....

**Q1. [8 marks]**

- i. Let  $G$  be a group. Define what it means for  $G$  to be *abelian*.
- ii. If  $G$  and  $H$  are groups, and  $\phi : G \rightarrow H$  is a map between them, then define what it means for  $\phi$  to be a *group homomorphism*.

For the rest of this question we will consider the case  $G = H$ , and analyse certain maps  $\phi : G \rightarrow G$ .

- iii. Define  $\phi : G \rightarrow G$  by  $\phi(g) = g^{-1}$ . Prove that  $\phi$  is a group homomorphism if and only if  $G$  is abelian.
- iv. Define  $\psi : G \rightarrow G$  by  $\psi(g) = g^2$ . Prove that  $\psi$  is a group homomorphism if and only if  $G$  is abelian.
- v. Give an example of a group  $G$  that is not abelian, but which has the following property: if  $\alpha : G \rightarrow G$  is defined by  $\alpha(g) = g^6$ , then  $\alpha$  is a group homomorphism.

Name (IN CAPITALS!): ..... CID: .....

Marker's initials: .....

**Q2. [5 marks]**

Let  $G$  be a group.

- i. Define what it means for a subgroup  $N \subseteq G$  to be a *normal subgroup*.
- ii. Now say  $N$  is a normal subgroup of  $G$ . Prove that if  $m \in G$  and  $n \in N$ , then there exists an element  $n' \in N$  such that  $nm = mn'$ .
- iii. Now say  $M$  and  $N$  are subgroups of  $G$ , and that  $N$  is normal. Let  $H$  denote the set of products  $\{mn : m \in M, n \in N\}$ . Prove that  $H$  is also a subgroup of  $G$ .

Name (IN CAPITALS!): ..... CID: .....

Marker's initials: .....

**Q3. [7 marks]**

Let  $G$  be a group.

**i.** Define what it means for elements  $x$  and  $y \in G$  to be *conjugate*.

Now say  $G$  is a group and fix  $x \in G$ . Consider the following subset  $H$  of  $G$  defined thus:

$$H = \{g \in G : xg = gx\}.$$

In words,  $H$  is the set of elements of  $G$  that commute with  $x$ .

**ii.** Prove that  $H$  is a subgroup of  $G$ .

**iii.** Prove that if  $g_1$  and  $g_2$  are elements of  $G$ , then  $Hg_1 = Hg_2$  if and only if  $g_1^{-1}xg_1 = g_2^{-1}xg_2$ .

**iv.** Deduce that if  $G$  is a finite group of size  $n$ , then the size of the conjugacy class of  $x$  is equal to the number of right cosets of  $H$  in  $G$  – and in particular it divides  $n$ .