

Imperial College London
M2PM2 Algebra II, Progress Test 1, 26/10/2012.

Name (IN CAPITALS!): CID:

Q1. [5 marks]

True or false? Just write the answers in this question – no working needed. **A right answer gains you $\frac{1}{2}$ of a mark – but a wrong answer loses you $\frac{1}{2}$ of a mark**, so if you're really not sure then you might want to leave the question out (and get 0 marks).

- i. Every group of order 6 has a subgroup of order 4.
- ii. If G and H are two groups of order 8 then G is isomorphic to H .
- iii. If G is a group and $g \in G$ is an element of order 4, then G must be finite.
- iv. If G and H are groups, and $f : G \rightarrow H$ satisfies $f(xy) = f(x)f(y)$ for all $x, y \in G$, then G is isomorphic to H .
- v. If σ is a 2012-cycle in a symmetric group, then $\text{sgn}(\sigma) = -1$.
- vi. If G , H and K are groups, and $G \cong H$ and $H \cong K$, then $K \cong G$.
- vii. Every symmetric group S_n , $n \geq 1$, contains an element of signature -1 .
- viii. If $g \in S_n$ then $\text{sgn}(g^3) = \text{sgn}(g)$.
- ix. There exists a symmetric group that contains at least a million elements with signature -1 .
- x. There are subgroups X of S_{10} and Y of S_{11} such that $X \cong Y$.

Imperial College London
M2PM2 Algebra II, Progress Test 1, 26/10/2012.

Name (IN CAPITALS!): CID:

Q2. [10 marks]

This question is about the dihedral group D_{10} . You may assume any results from the course (but it would be great if you stated them clearly). Let's use the standard notation from the course, so D_{10} contains ρ (a rotation by the angle $2\pi/5$), and a reflection σ .

- i. Say $H \subseteq D_{10}$ is a subgroup, and assume $H \neq D_{10}$. Prove that H is cyclic. Hint: consider the possibilities for the order of H .
- ii. List all the subgroups of D_{10} . How many are there? How many are there up to isomorphism?
- iii. On the first example sheet you proved that $\sigma\rho = \rho^{-1}\sigma$, and you can *assume* that here. The element $\rho\sigma\rho^2\sigma\rho^3\sigma\rho^4\sigma$ is a power of ρ – which one?

Imperial College London
M2PM2 Algebra II, Progress Test 1, 26/10/2012.

Name (IN CAPITALS!): CID:

Q3. [10 marks]

In this question, you can again assume any results from the course without proof. Notation: S_n denotes the usual symmetric group.

- i. Proof or counterexample: if $g, h \in S_n$, then does $\text{sgn}(gh) = \text{sgn}(hg)$?
- ii. List all the possible cycle-shapes for the elements of S_4 . For every one of these cycle-shapes, say whether an element with this cycle shape is even or odd.
- iii. Prove that if $g \in S_4$ and $\text{sgn}(g) = +1$ then g can be written as the product of two 2-cycles.
- iv. Is it true that every $g \in S_5$ with $\text{sgn}(g) = +1$ can be written as a product of two 2-cycles? Proof or counterexample required.