M2PM2 Algebra II, Progress Test 2, 25/11/2014.

This test has two questions, Q1 and Q2. They are worth the same number of marks.

- Q1. In this question you may assume any results from the course that you need, including the fundamental fact that a finite abelian group is isomorphic to a product of cyclic groups. You can't assume results from problem sheets though, unless you supply proofs.
- i) Up to isomorphism, how many abelian groups of order 12 are there? Justify your answer.
 - ii) How many different isomorphisms are there from C_6 to C_6 ? Justify your answer.
- iii) Construct a group of order greater than 100 such that every element has order 1 or 2. Justify your answer.
- iv) Let G be a group, let $g \in G$ be a fixed element of this group, and define a map $\phi: G \to G$ by $\phi(x) = g^{-1}xg$. Prove that ϕ is an isomorphism.
- Q2. In this question you may also assume any results from the course that you need.
- i) Give an example of groups G and H, such that there is an element $g \in G$ of order 4, an element $h \in H$ of order 2, and a group homomorphism $\phi : G \to H$ sending g to h. Justify your answer.
- ii) Do there exist groups G and H, and elements $g \in G$ of order 4 and $h \in H$ of order 3, and a group homomorphism $\phi: G \to H$ sending g to h? Justify your answer.
- iii) Let G be a group, and let N and M be normal subgroups of G. Prove that $M \cap N$ is a normal subgroup of G (you may assume that $M \cap N$ is a subgroup of G).
- iv) Let G be a group, and let M and N be normal subgroups of G. Let X be the set $\{mn: m \in M, n \in N\}$. Prove that X is a subgroup of G. Hint: prove the following lemma first: if $m \in M$ and $n \in N$ then $nm \in X$.