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Q1.
i) The only ways of breaking up 12 into factors: 12 = 12 = 2×6 = 3×4 = 2×2×3. So

by the fundamental theorem, all abelian groups of order 12 are isomorphic to C12, C2×C6,
C3 ×C4 or C2 ×C2 ×C3. However some of these groups might be isomorphic, and indeed
some of them are: C3×C4

∼= C12 by the result in lectures saying that if a and b are coprime
then Ca × Cb

∼= Cab. Similarly C2 × C3
∼= C6 so C2 × C2 × C3

∼= C2 × C6 (if G ∼= H then
K ×G ∼= K ×H and the proof is not hard; I’m happy for the students to assume this).

So far we have deduced that every abelian group of order 12 is isomorphic to either
C12 or C2 × C6. However these last two groups are not isomorphic – indeed C12 has an
element of order 12, but for any (x, y) ∈ C2×C6 we see (x, y)6 is the identity, so there are
no elements of order 12 in C2 × C6. Two marks only for this question – not because I’m
mean, but because a harder version of this question was on an example sheet.

ii) Say C6 = 〈x〉, so x has order 6. Say φ : C6 → C6 is an isomorphism. Then φ(x)
will also have order 6; this is a basic fact about isomorphisms, proved in lectures. But
C6 = {1, x, x2, x3, x4, x5} and one checks easily that x2, x4 have order 3 and x3 has order 2,
and 1 of course has order 1, so the only elements of order 6 in C6 are x and x5. Next note
that if φ : C6 → C6 is an isomorphism and if we know φ(x) = y then we know φ completely,
because φ(xn) = yn for all n.

So now we know what to do – we need to see if there is an isomorphism sending x to x,
and see if there is an isomorphism sending x to x−1. Let’s consider an isomorphism sending
x to x. Is ther one? Yes – the identity is one, and by the above remark it’s the only one.
So there’s one isomorphism. What about an isomorphism sending x to x5 = x−1? Again
there can be at most one, and indeed there is exactly one; it’s the map sending xn to x−n

for all n; I would be happy if people said that this was “obviously” an isomorphism, but
a formal proof would be to note that xa goes to x−a, and xb goes to x−b, and xa+b goes
to x−(a+b) which is indeed x−ax−b. So there are two isomorphisms from C6 to C6. Three
marks.

iii) How about C2×C2×C2×· · ·×C2, where there are 7 (or more) terms in the product;
this group has order 27 (or more) which is bigger than 100, but clearly the square of any
element in this group is the identity, so all but one element has order 2 and the other one
has order 1. Two marks.

iv) φ is a bijection because if ψ is the map sending y to gyg−1 then I claim φ and
ψ are inverses. Indeed φ(ψ(y)) = φ(gyg−1) = g−1gyg−1g = y, and similarly ψ(φ(x)) =
gg−1xgg−1 = x. Alternatively just prove injectivity and surjectivity by hand.

Next φ is an isomorphism because φ(xy) = g−1xyg and φ(x)φ(y) = g−1xgg−1yg =
g−1xyg = φ(xy). Three marks because this is a bit abstract.

Q2.

i) Let G be C4, generated by g of order 4 (if we consider C4 to be the 4th roots of unity,
as we did in the course, then g can be i) and let H be C2, generated by h of order 2 (so
h = −1). Consider the map G→ H sending z to z2. This is easily checked to be a group



homomorphism ((zw)2 = z2w2) and it sends G to H because if z4 = 1 then (z2)2 = 1.
Finally it sends g to h, so we’re done. Two marks.

ii) There does not, because a result from the course says that the order of φ(g) divides
the order of g, and 3 does not divide 4. Two marks.

iii) Set H = M ∩ N . If g ∈ G then, by a result in the course, we need to check that
gHg−1 ⊆ H, so we need to check gHg−1 ⊆ M and gHg−1 ⊆ N . But this is clear because
gHg−1 ⊆ gMg−1 = M (as M is normal) and gHg−1 ⊆ gNg−1 = N (as N is normal), so
we’re done. Two marks.

iv) This is a bit of a curveball because I hadn’t mentioned this result at all in the
course. I’ll give four marks for it, so there’s plenty of scope for partial credit.

To check X is a subgroup we need to check that it contains the identity, and if x, y ∈ X
then so are xy and x−1. The identity is fine: M and N are normal subgroups, and e ∈M ,
e ∈ N , so e = e2 ∈ X.

The other arguments are a bit harder. Let’s prove the lemma first. Say m ∈ M and
n ∈ N . Because M is normal we have g−1Mg = M for all g, so (multiplying on the left by
g) we have Mg = gM . Now set g = n and we deduce that nm ∈ nM = Mn, which means
that nm = m′n for some m′ ∈M . In particular nm ∈ X.

Now let’s prove that X is a subgroup. Say x = mn ∈ X, with m ∈ M and n ∈ N .
Then x−1 = n−1m−1 and n−1 ∈ N , m−1 ∈ M , so by the lemma n−1m−1 ∈ X. So X is
closed under inverses.

Finally let’s check X is closed under multiplication. Say x = m1n1 ∈ X and y = m2n2 ∈
X. Then xy = m1n1m2n2. Applying the lemma to n1m2 we deduce that n1m2 = m3n3

for some m3 ∈ M and n3 ∈ N . Hence xy = m1m3n3n2 = (m1m3)(n3n2) ∈ X and we are
home. Well done to any student who got that out.


