

## M2PM2 Algebra II, Problem Sheet 9

**1.** For each of the following matrices  $A$ , find an invertible matrix  $P$  over  $\mathbb{C}$  such that  $P^{-1}AP$  is upper triangular:

$$A = \begin{pmatrix} 4 & 1 \\ -1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{pmatrix}$$

**2.** Let  $A$  be an  $n \times n$  matrix, and suppose that the only eigenvalue of  $A$  in  $\mathbb{C}$  is 0. Prove that  $A^n = 0$ .

**3.** Let  $a_0, a_1, \dots, a_{n-1} \in \mathbb{R}$ , and let  $A$  be the  $n \times n$  matrix

$$A = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & 0 & \cdots & 0 & -a_2 \\ & & & \ddots & & \\ 0 & 0 & 0 & \cdots & 1 & -a_{n-1} \end{pmatrix}$$

Prove that the characteristic polynomial of  $A$  is  $x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ .  
(Hint: Try induction.)

**4.** In this question you can use Q3 and Cayley–Hamilton.

- (a) Find a  $3 \times 3$  matrix which has characteristic polynomial  $x^3 - 7x^2 + 2x - 3$ .
- (b) Find a  $3 \times 3$  matrix  $A$  such that  $A^3 - 2A^2 = I$ .
- (c) Find an invertible  $4 \times 4$  matrix  $B$  such that  $B^{-1} = B^3 + I$ .
- (d) Find a real  $4 \times 4$  matrix  $C$  such that  $C^2 + C + I = 0$ .
- (e) For each  $n \geq 2$  find an  $n \times n$  matrix  $D$  with real coefficients such that  $D^n = I$  but  $D \neq I$ .

**5.** Let  $A$  be an arbitrary  $n \times n$  matrix. An *invariant* of  $A$  is something that doesn't change when you replace  $A$  by a similar matrix – for example the characteristic polynomial, or the trace of  $A$ . Which of the following quantities are invariants of  $A$ ? Give brief justifications for your answers.

- (i)  $\text{rank}(A^3 - I)$
- (ii)  $\text{trace}(A + A^5)$
- (iii)  $c_1(A)$ , the sum of the entries in the first column of  $A$
- (iv)  $\text{rank}(A - A^T)$
- (v)  $\text{trace}(2A - A^T)$ .

**6.** Suppose that  $\lambda$  is an eigenvalue of a block-diagonal matrix  $A = A_1 \oplus \cdots \oplus A_k$ . Prove that the geometric multiplicity of  $\lambda$  for  $A$  is equal to the sum of its geometric multiplicities for each  $A_i$ . (In other words prove that  $\dim E_\lambda(A) = \sum_1^k \dim E_\lambda(A_i)$ , where  $E_\lambda(A)$  and  $E_\lambda(A_i)$  are the  $\lambda$ -eigenspaces of  $A$  and  $A_i$ .)

**7.** (i) Write down all the possible Jordan Canonical Forms having characteristic polynomial  $x(x+1+i)^2(x-3)^3$ .

(ii) Calculate the number of non-similar Jordan Canonical Forms having characteristic polynomial  $x^3(x - 1)^6$ .

8. Find the JCFs of the following matrices:

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 1 \\ 2 & -1 & 1 \\ -1 & 0 & 3 \end{pmatrix},$$

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 2 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & 1 & 0 & 1 \\ 0 & 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & i & 2 \\ 0 & 0 & 0 & 0 & 0 & i \end{pmatrix}$$

9. Let  $J_n(\lambda)$  be a Jordan block. Prove that the matrix  $J = J_n(\lambda) - \lambda I$  is similar to its transpose. (Hint (if needed): Consider the linear transformation  $T : \mathbb{C}^n \rightarrow \mathbb{C}^n$  defined by  $T(v) = Jv$ , and try to find bases  $E, F$  such that  $[T]_E = J$ ,  $[T]_F = J^T$ .)

Deduce that  $J_n(\lambda)$  is similar to its transpose.

10. Using Q9 and the JCF theorem, prove that every square matrix over  $\mathbb{C}$  is similar to its transpose.

11. If  $A$  is an  $n \times n$  matrix, a square root of  $A$  is defined to be an  $n \times n$  matrix  $B$  such that  $B^2 = A$ .

(i) Give an example of a matrix that has no square root.

(ii) Using the JCF theorem, or otherwise, prove that every invertible matrix  $A$  over  $\mathbb{C}$  has a square root.

12.<sup>‡</sup> Say  $U, V, W, X, Y$  and  $Z$  are vector spaces and we have the following linear maps between them:

$$\begin{array}{ccccc} U & \xrightarrow{\alpha_1} & V & \xrightarrow{\beta_1} & W \\ \downarrow \gamma & & \downarrow \delta & & \downarrow \epsilon \\ X & \xrightarrow{\alpha_2} & Y & \xrightarrow{\beta_2} & Z \end{array}$$

Suppose that:

- $\alpha_i$  is injective and  $\beta_i$  is surjective ( $1 \leq i \leq 2$ )
- the image of  $\alpha_i$  equals the kernel of  $\beta_i$  ( $1 \leq i \leq 2$ )
- $\delta \circ \alpha_1 = \alpha_2 \circ \gamma$  and  $\epsilon \circ \beta_1 = \beta_2 \circ \delta$  (we say “both squares commute”).

Prove the following:

- (i) If  $\gamma$  and  $\epsilon$  are injective, then so is  $\delta$ .
- (ii) If  $\gamma$  and  $\epsilon$  are surjective, then so is  $\delta$ .
- (iii) If  $\delta$  is an isomorphism, then  $\gamma$  is injective,  $\epsilon$  is surjective, and furthermore  $\epsilon$  is injective iff  $\gamma$  is surjective!