M2PM2 Algebra II Problem Sheet 7

Matrices take up a lot of room on the page, so this example sheet takes up two sides.

1. Calculate the determinants of the following matrices.

a)
$$\begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
 b)
$$\begin{pmatrix} -2 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 \\ -3 & 1 & 7 & 0 & 0 \\ 4 & 0 & 2 & -1 & 0 \\ 5 & 6 & 7 & 5 & 3 \end{pmatrix}$$

c)
$$\begin{pmatrix} m & 0 & 0 & a & b \\ n & 0 & e & d & c \\ p & 0 & 0 & 0 & k \\ r & \ell & f & g & j \\ h & 0 & 0 & 0 & t \end{pmatrix}$$
 d)
$$\begin{pmatrix} 1 & 2 & -2 & 3 & 5 \\ -4 & 2 & 4 & 2 & 1 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 1 & 9 \end{pmatrix}$$

2. For a real number α define

$$A(\alpha) = \begin{pmatrix} 1 & \alpha & 0 & -1 \\ 1 & 1 & 0 & -1 \\ 2 & \alpha & 1 & -1 \\ -1 & \alpha & 1 & 1 \end{pmatrix}$$

- (a) Find the determinant of $A(\alpha)$.
- (b) Find a value α_0 of α such that the system $A(\alpha_0)x = 0$ has a nonzero solution for $x \in \mathbb{R}^4$.
- (c) Prove that when $\alpha < \alpha_0$, there is no real 4×4 matrix B such that $B^2 = A(\alpha)$.
- **3.** Let A_n be the $n \times n$ matrix

$$\begin{pmatrix} 2 & -1 & 0 & 0 & \dots & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & \dots & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & \dots & 0 & 0 & 0 \\ & & & & & \dots & & \\ 0 & 0 & 0 & 0 & \dots & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & \dots & 0 & -1 & 2 \end{pmatrix}$$

- (a) Prove that $|A_n| = n + 1$.
- **4.** Let B_n be the $n \times n$ matrix

$$\begin{pmatrix} 1 & 1 & 1 & \dots & 1 & 1 & 1 \\ -1 & 1 & 1 & \dots & 1 & 1 & 1 \\ 0 & -1 & 1 & \dots & 1 & 1 & 1 \\ & & & \dots & & & \\ 0 & 0 & 0 & \dots & -1 & 1 & 1 \\ 0 & 0 & 0 & \dots & 0 & -1 & 1 \end{pmatrix}$$

Prove that $|B_n| = 2^{n-1}$.

5. Let $A = \begin{pmatrix} B & C \\ \mathbf{0} & D \end{pmatrix}$, where B is $s \times s$, D is $t \times t$, C is $s \times t$, and $\mathbf{0}$ is the $t \times s$ zero matrix. Prove that $\det(A) = \det(B) \det(D)$.

[more on next page]

- **6.** Let's finish the proof that $|AB| = |A| \cdot |B|$. Let A, B be $n \times n$ matrices.
- (a) Prove that if |A| = 0 then |AB| = 0.
- (b) Prove that if |B| = 0 then |AB| = 0.

Note: you may NOT assume the result |AB| = |A| |B| from lectures, because this question is part of the proof of that result! But you may assume the result in lectures that says a matrix is invertible iff it has nonzero determinant.

- 7. Let's also prove the following result about elementary matrices, which I used a couple of times. With notation for elementary matrices as in lectures:
 - (a) Prove $|A_i(r)| = r$, $|B_{ij}| = -1$ and $|C_{ij}(r)| = 1$.
 - (b) Prove $A_i(r)^{-1} = A_i(r^{-1})$, $B_{ij}^{-1} = B_{ij}$ and $C_{ij}(r)^{-1} = C_{ij}(-r)$.
- **8.** Express $\begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 3 \\ 3 & 8 & 7 \end{pmatrix}$ as a product of elementary matrices.
- **9.** For $n \times n$ matrices A, B, write $A \sim B$ to mean that B can be obtained from A by a sequence of elementary row operations.

Prove that $A \sim B$ if and only if $B = E_1 \dots E_k A$, where each E_i is an elementary matrix. Deduce that the relation \sim is an equivalence relation.

10. ‡ Say A and B are $n \times n$ matrices with real entries, and $A^2 + B^2 = AB$. If AB - BA is invertible, prove that n is a multiple of 3.