M2PM2 Algebra II, Problem Sheet 5

1. Which of the following functions ϕ are group homomorphisms? For those which are group homomorphisms, find Im ϕ and Ker ϕ .

```
\begin{split} \phi: C_{12} &\to C_{12} \text{ defined by } \phi(x) = x^3 \ \forall x \in C_{12} \\ \phi: S_4 &\to S_4 \text{ defined by } \phi(x) = x^3 \ \forall x \in S_4 \\ \phi: (\mathbb{Z},+) &\to (\mathbb{Z}_n,+) \text{ defined by } \phi(x) = [x]_n \ \forall x \in \mathbb{Z} \\ \phi: (\mathbb{R}_{>0},\times) &\to (\mathbb{R}_{>0},\times) \text{ defined by } \phi(x) = \sqrt{x} \ \forall x \in \mathbb{R}_{>0} \\ \phi: (\mathbb{Z}_6,+) &\to (\mathbb{Z}_7,+) \text{ defined by } \phi([x]_6) = [x]_7 \ \forall [x]_6 \in \mathbb{Z}_6 \\ \phi: (\mathbb{Z}_6,+) &\to (\mathbb{Z}_7^*,\times) \text{ defined by } \phi([x]_6) = [2^x]_7 \ \forall [x]_6 \in \mathbb{Z}_6 \end{split}
```

Recall the notation: $[x]_n$ stands for the residue class of x modulo n, and $\mathbb{R}_{>0}$ stands for the set of positive real numbers.

- **2.** Let G be a group.
- (a) We say that elements $x, y \in G$ are *conjugate* (or more precisely are *conjugate in G*) if there exists $g \in G$ with $g^{-1}xg = y$. Prove that conjugacy (which means "being conjugate") is an equivalence relation.
- (b) The equivalence classes in (a) are called *conjugacy classes*. Prove that a subgroup H of G is normal iff it is a union of conjugacy classes.
- **3.** (a) Let σ be the 5-cycle (1 2 3 4 5) $\in S_5$. Prove that σ is conjugate to σ^2 in S_5 .
- (b) Now note that $sgn(\sigma) = +1$ so $\sigma \in A_5$. Is σ conjugate to σ^2 in A_5 ? [hint: if $x\sigma x^{-1} = \sigma^2$ then there are only five possibilities for x(1), and x(1) determines x because $x\sigma x^{-1} = \sigma^2$].
- **4.** Let G be a group, and suppose M and N are normal subgroups of G. Show that $M \cap N$ is a normal subgroup of G.
- **5.** Let G be a group, let $g \in G$ be an element of this group, and define a homomorphism $\phi : G \to G$ by $\phi(x) = g^{-1}xg$. Prove that ϕ is an isomorphism. Give an example to show that ϕ may not be the identity map.
- **6.** Let $G = D_{2n} = \{e, \rho, \dots, \rho^{n-1}, \sigma, \rho\sigma, \dots, \rho^{n-1}\sigma\}$, where $n \geq 3$ and ρ, σ satisfy the usual equations $\rho^n = \sigma^2 = e, \sigma\rho = \rho^{-1}\sigma$. It is not hard to prove by induction that $\sigma\rho^k = \rho^{-k}\sigma$ for all integers k (prove it if you're interested).
 - (a) Let r be a fixed integer. Prove that the cyclic subgroup $\langle \rho^r \rangle$ is a normal subgroup of D_{2n} .
 - (b) Let r be a fixed integer. Prove that $\langle \rho^r \sigma \rangle$ is not a normal subgroup of D_{2n} .
- 7. Let p be a prime number greater than 2.
 - (a) Prove that the dihedral group D_{2p} has exactly three different normal subgroups.
- (b) Find all groups H (up to isomorphism) such that there is a surjective homomorphism from D_{2p} onto H.
- **8.** Does there exist a surjective homomorphism
 - (i) from C_{12} onto C_4 ?
 - (ii) from C_{12} onto $C_2 \times C_2$?
 - (iii) from D_8 onto C_4 ?
 - (iv) from D_8 onto $C_2 \times C_2$?

Give reasons for your answers.

- **9.** (a) Show that if G is an abelian group, and N is a subgroup of G, then $N \triangleleft G$ and the factor group G/N is abelian.
- (b) Give an example of a non-abelian group G with a normal subgroup N such that both N and G/N are abelian.
- (c) Give an example of a group G with subgroups M, N such that $N \triangleleft G$ and $M \triangleleft N$, but M is not normal in G.
- 10. Say G and H are finite groups, and there exists a surjective group homomorphism from $G \times G$ to $H \times H$. Must there exist a surjective group homomorphism from G to H?