M2PM2 Algebra II Problem Sheet 3

- 1. Consider the 5-cycle g = (12345) in S_5 .
 - (i) Can g be written as a product of four 2-cycles?
 - (ii) Can g be written as a product of 2015 2-cycles?
 - (iii) Can g be written as a product of two 2-cycles?
- **2.** For each pair of the following four groups, either prove that they are isomorphic or prove that they are not! $C_1 \times C_{24}$, $C_2 \times C_{12}$, $C_3 \times C_8$, $C_4 \times C_6$.

3.

- (a) Find, with proof, an abelian group with at least 100 elements of order 3.
- (b) Find, with proof, a non-abelian group with at least 100 elements of order 3.

4.

- (a) Find the number of elements of order 3 in A_5 .
- (b) Find the number of elements of order 3 in A_6 .
- (c) What is the smallest n for which there is an element of order 8 in A_n ? Justify your answers.
- **5.** (a) Write down two even permutations in S_9 , both of which have order 12 and send $1 \to 6$, $2 \to 3$ and $9 \to 5$.
- (b) Let $I = \{1, 2, ..., 2n\}$ and let $f: I \to I$ be the permutation sending i to 2n + 1 i for all $i \in I$. Find the signature $\operatorname{sgn}(f)$ in terms of n.
- **6.** (a) Let G_1, G_2 be groups. Prove that $G_1 \times G_2 \cong G_2 \times G_1$.
- (b) Let G_1, G_2, H_1, H_2 be groups such that $G_1 \cong H_1$ and $G_2 \cong H_2$. Prove that $G_1 \times G_2 \cong H_1 \times H_2$.
- 7. Up to isomorphism, how many different abelian groups are there
 - (a) of size 30?
 - (b) of size 31?
 - (c) of size 32?

You may assume the Structure Theorem for finite abelian groups.

- **8.** Use direct products (or any other method!) to give examples of groups G with the following properties:
- (i) $|G| = 2^n$ and $x^2 = e$ for all $x \in G$, where n is an arbitrary positive integer.
 - (ii) |G| > 8, G is non-abelian, and $x^4 = e$ for all $x \in G$
- (iii) G is infinite and non-abelian, and G has a subgroup H such that |G:H|=2 and H is abelian (recall |G:H| is the *index* of H in G, i.e. the number of distinct right cosets of H in G).
- **9.**[‡] Let's say a group G is *indecomposable* if |G| > 1 and G is not isomorphic to $H \times K$ for any groups H and K of size greater than 1. Can there be indecomposable abelian groups G_1 , G_2 , G_3 , G_4 and G_5 with $G_1 \times G_2$ isomorphic to $G_3 \times G_4 \times G_5$?