M2PM2 Algebra II Problem Sheet 2

Questions marked with [‡] are challenge problems. They are probably harder than most exam questions and can be safely ignored unless you're looking for a challenge. No answers will be supplied for the [‡] questions.

- **1.** Prove that if $f: G \to H$ is an isomorphism, and f(g) = h then $f(g^n) = h^n$ for all $n \ge 1$.
- **2.** Prove the axioms for an equivalence relation hold for isomorphism of groups, i.e. prove that $G \cong G$, that $G \cong H$ implies $H \cong G$ etc etc).
- **3.** Say G, H are groups and $\phi: G \to H$ is an isomorphism.
 - (a) Prove that $\phi(g^{-1}) = \phi(g)^{-1}$ for all $g \in G$.
 - (b) Prove that if g has infinite order then so does $\phi(g)$.
- **4.** Which pairs among the following groups are isomorphic?

```
(\mathbb{Q}, +)

(\mathbb{Z}, +)

(\mathbb{Q}^*, \times)

(\mathbb{Q}_{>0}, \times) (the positive rationals under mult.)

the subgroup \langle \pi \rangle of (\mathbb{R}^*, \times)

the group (\mathbb{Q} - \{-1\}, *), where a * b = ab + a + b \ \forall a, b \in \mathbb{Q} - \{-1\}
```

- **5.** (a) Prove that no two of the groups S_5 , C_{120} and D_{120} are isomorphic to each other.
 - (b) Prove that S_3 is isomorphic to D_6 .
- (c) Prove that $(\mathbb{R}, +)$ is isomorphic to $(\mathbb{R}_{>0}, \times)$, where $\mathbb{R}_{>0}$ is the set of positive real numbers. Is $(\mathbb{Q}, +)$ isomorphic to $(\mathbb{Q}_{>0}, \times)$?
 - (d) Prove that D_8 has two subgroups of size 4 which are not isomorphic to each other.
- **6.** Let G be a group with the property that $x^2 = e$ for all $x \in G$.
 - (a) Prove that G must be abelian.
 - (b) Prove that if G is finite then either $|G| \leq 2$, or |G| is divisible by 4.
- **7.** Let n be a positive integer.
 - (a) Prove that there are infinitely many groups of size n.
 - (b) Prove that, up to isomorphism, there are only finitely many groups of size n.
- **8.** (a) Find the signatures of the following permutations g and h in S_9 :

$$g = (1\ 2\ 7\ 8)(3\ 9)(4\ 5\ 6), \quad h = (1\ 3)(8\ 9)(2\ 4\ 8\ 9\ 5).$$

- (b) List the cycle-shapes of elements of the alternating group A_7 .
- (c) Calculate the number of elements of order 2 in A_7 .
- **9.** Let $g \in S_n$. Show that if g has odd order, then g must be an even permutation.
- $10.^{\ddagger}$ Prove that "the converse of Proposition 2.1 is false". More precisely, can you find two finite groups G and H which are not isomorphic, but which have the same size, are both non-abelian (or both abelian), and have the same number of elements of order k for all k. Hint: this is probably too hard to do by hand. A good way to do this would be to use a computer algebra package such as GAP, which has a database of groups of order at most 2000, and then write a little computer program to go through the list until you find an example! That was how I did this question, at least...