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BSc and MSci MOCK EXAMINATIONS (MATHEMATICS)

January 2015

This paper is also taken for the relevant examination for the Associateship of the Royal College of

Science.

M2PM2

Algebra II Solutions

Date: Xday, xth January 2015 Time: 10 am – 12 noon

Credit will be given for all questions attempted but extra credit will be given for complete or nearly

complete answers.

This exam contains TWO questions and each question contains TWO parts. You must answer

ONE of the two parts for each question.

Calculators may not be used.

This exam is a mock, keep in mind that the correct format in official examinations will be FOUR

questions of which all FOUR will need to be answered.
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Part A – Group Theory

1. (a) A homomorphism φ from a group G to a group H is a map φ : G → H that additionally

satisfies

∀g, h ∈ G, φ(gh) = φ(g)φ(h).

The kernel of φ is the subset of all elements of G that are sent to the identity in H by φ.

[2 marks]

(b) First, show that the kernel is a subgroup:

– Identity: if h = φ(eG) then h2 = φ(eG)
2 = φ(e2G) = h so (multiplying by h−1)

h = eH .

– Closure: for elements g1, g2 ∈ ker(φ), φ(g1g2) = φ(g1)φ(g2) = eHeH = eH . Hence

g1g2 ∈ ker(φ).

– Inverse: for an element g ∈ ker(φ), eH = φ(eG) = φ(gg−1) = φ(g)φ(g−1) =

φ(g−1). Hence g−1 ∈ ker(φ).

Now prove that kernel is normal: we need to check that for x ∈ g ker(φ)g−1, φ(x) = eH .

For some n ∈ ker(φ), x = gng−1, hence:

φ(x) = φ(gng−1) = φ(g)φ(n)φ(g−1) = φ(g)eHφ(g
−1) = φ(gg−1) = eH .

Hence x ∈ ker(φ).[4 marks]

(c) For (a, b) and (c, d) ∈ R∗ × R∗:

φ((a, b)(c, d)) = φ((ac, bd)) =
ac

bd
=

a

b

c

d
= φ(a, b)φ(c, d).

Hence φ is a homomorphism. [2 marks]

(d) The kernel:

ker(φ) = {(a, b) ∈ R∗ × R∗ | a/b = 1}.
Hence a general element of ker(φ) is of the form (a, a) for a ∈ R∗. Now the map

ker(φ) → R∗ sending (a, a) to a is clearly a bijection, and it’s also easily checked to be

a homomorphism, so it’s an isomorphism. [3 marks]



(e) By the first isomorphism theorem

R∗ × R∗

ker(φ)
∼= Im(φ).

The image of φ is R∗ (consider φ(a, 1) for a ∈ R∗) hence we are done. [4 marks]

(f) Example, the normal subgroup corresponding to the kernel of ξ where

ξ(a, b) = a

will do, again by the first isomorphism theorem. Explicitly,

ker(ξ) = {(1, b)∀b ∈ R∗}.

Any other example is fine provided justification is given. [5 marks]



2. (a) An abelian group G is a group where all elements commute with each other, i.e.,

∀g1, g2 ∈ G, g1g2 = g2g1.

Now, list all abelian groups of size 4036 = 1009× 22: by the structure theorem and the

fact that Ca × Cb
∼= Cab if a, b are coprime we see that the only groups are

– C4036
∼= C1009 × C4

– C2018 × C2
∼= C1009 × C2 × C2

These two groups are not isomorphic to each other, as one contains an element of order

4036 and the other does not (any element of C2018 × C2 has order dividing 2018) [3

marks]

(b) These groups are isomorphic. Indeed, if ρ ∈ D2018 is an order 1009 rotation, then the

element r := (ρ,−1) of D2018 ×C2 has order equal to the LCM of 1009 and 2, which is

2018, and the element s := (σ, 1) has order 2; furthermore s−1rs = (σ−1ρσ,−1) = r−1,

so r and s satisfy the right relation for a dihedral group, and hence the product group is

indeed dihedral of order 4036. [5 marks]

(c) – Identity (1): �e�
– Reflections (2018): �ρiσ� for i ∈ {1, 2, . . . , 2018}
– Rotations (3): �ρ�, �ρ2� and �ρ1009�

(the last part is because the only subgroups of Cn, a cyclic group of order n, are Cd for

d dividing n). For a total of 2022. [4 marks]

(d) First, G is a subgroup, so the number of elements in G divides the number of elements in

D4036. That is: |G| ∈ {1, 2, 4, 1009, 2018, 4036}. Also, |G| ≥ 3 because it contains

2 reflections and the identity, and is divisible by two because it contains a subgroup of

size two (spanned by either reflection). This leaves |G| = 4 or 2018 or 4036.

Assume, without loss of generality, that the two distinct reflections are σ and ρiσ with

i ∈ 1, 2, . . . , 2017. Then, by closure, ρiσσ = ρi ∈ G. By previous question, ρi generates

a cyclic subgroup of �ρ� which must be isomorphic to either C2, C1009 or C2018. We

can’t have �ρi� ∼= C2 because this would imply that G contained the rotation of order 2,

which is not allowed. So |�ρi�| ≥ 1009 and in particular |G| ≥ 1009. Therefore, |G| =
2018 or 4036. If |G| = 4036, then G = D4036 which contains a rotation of order 2 and

is not possible, hence |G| = 2018. [8 marks]



Part B – Vector Spaces

3. (a) The characteristic polynomial of T is defined to be det(xI − T ).

We say v ∈ V is an eigenvector if v �= 0 and Tv = λv for some λ ∈ R; then λ is the

eigenvalue of v. [3 marks]

(b) Standard methods, take T of each of the basis vectors: T (1) = 1; T (x) = 2 − x;

T (x2) = x2 − 1 and T (x3) = 1− 9x+ 6x2 − x3. Hence:

[T ]B =




1 2 −1 1

0 −1 0 −9

0 0 1 6

0 0 0 −1


 .

The eigenvalues for this matrix are 1 and −1 each with an algebraic multiplicity of 2.

It remains to determine whether each eigenvalue has a geometric multiplicity of 1 or

2. Using standard methods, each eigenvalue only has a single eigenvector up to scaling

(e.g. count ranks of T ± I, or solve the equations explicitly), and hence has geometric

multiplicity 1. The corresponding Jordan canonical form is thus:




1 1 0 0

0 1 0 0

0 0 −1 1

0 0 0 −1


 .

[9 marks]

(c) Let X = [S]B, so that:

X =




1 0 0 0

1 1 0 0

0 1 −1 0

0 0 0 −1


 .

This matrix also has 2 eigenvalues each with algebraic multiplicities of 2. However the

geometric multiplicity of −1 for S equals the rank of X + I which is 2 (consider column

ranks for this to be obvious). Hence there cannot be a basis C such that [S]C = [T ]B,

because if there were then [S]B and [T ]B would be similar (use a change of basis matrix)

and thus the geometric multiplicities of −1 would be the same, which they are not. [8

marks]



4. (a) Say λ ∈ k (the ground field) and a ∈ Z≥1. Define the a × a matrix Ja(λ) to be the

a× a matrix

Jn(λ) =




λ 1 0 0 · · · 0

0 λ 1 0 · · · 0

· · ·
0 0 0 0 · · · 1

0 0 0 0 · · · λ




.

Define the block direct sum of matrices A and B to be the matrix�
A 0

0 B

�

with the zeros denoting large rectangles full of zeros. Iterate this construction to get the

block diagonal sum of finitely many matrices. [3 marks]

(b) Let A be a general 2× 2 matrix

A =

�
a b

c d

�

where here a+d = t. Then its characteristic polynomial is given by (standard methods):

det(xI − A) = (x− a)(x− d)− bc

= x2 − (a+ d)x+ ad− bc

= x2 − tx+ det(A).

[3 marks]

(c) Answer is 21. Deal with each part separately, the x5 implies 5 eigenvalues equal to zero.

The block sizes can be split into a variety of ways adding up to five (out of laziness I will

write Jn for Jn(0)): J5, J4 ⊕ J1, J3 ⊕ J2, J3 ⊕ J1 ⊕ J1, J2 ⊕ J2 ⊕ J1, J2 ⊕ J1 ⊕ J1 ⊕ J1
or J1 ⊕ J1 ⊕ J1 ⊕ J1 ⊕ J1, so 7 possibilities. For (x− 2)3, there is: J3(2), J2(2)⊕ J1(2)

or J1(2)⊕ J1(2)⊕ J1(2), so 3 possibilities. The total possible Jordan canonical forms is

simply the product of the two. [6 marks]

(d) WLOG A is in Jordan Canonical Form (similar matrices have the same rank), so it’s some

Jb(0)’s plus some Jc(2)’s. WLOG all the 0 blocks are before all the 2 blocks. Write

A = B ⊕C with B the block sum of the blocks with eigenvalue zero and C the sum of

the blocks with eigenvalue 2; then B is 5× 5 and C is 3× 3.

Ranks of block direct sums add in the obvious way, and the rank of Ja(λ) − µ.I is

always a if λ �= µ because this matrix is invertible (its determinant is non-zero). So the

rank of Jb(2) is always b, and so rank of C is 3 and hence C contributes a total of 3 to

the rank of A (and A2, A3). This means that the rank of B is 3 and the rank of B2 is 1.

Now B is a 5×5 matrix (the algebraic multiplicity of zero) and its rank is 3 = 5−2 so it

must be composed of two Jordan blocks by a result in lectures. It can’t be J4(0)⊕J1(0)

because the square of this has rank 2, so it must be J3(0)⊕ J2(0) (up to reordering).

Similarly the rank of C − 2I must be 6− 5 = 1 = 3− 2 so again there are two blocks,

so C = J1(2)⊕ J2(2) (up to reordering).

The final matrix is then: J3(0)⊕ J2(0)⊕ J2(2)⊕ J1(2). [8 marks]

M2PM2 Algebra II Solutions (2015) Page 6 of 4


