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M3P11 Galois Theory, Solutions to problem Sheet 6
1.

(i) a > 1 so a has a prime divisor p; now use Eisenstein. Or use uniqueness of factorization to
prove

√
a 6∈ Q.

Next, if
√
b ∈ Q(

√
a) then write

√
b = x+ y

√
a; square, and use the fact that

√
a is irrational

to deduce that 2xy = 0. Hence either y = 0 (contradiction, as
√
b 6∈ Q) or x = 0 (contradiction,

as we can write ab = cd2 with c squarefree, and a 6= b so c 6= 1, and again
√
c 6∈ Q).

(ii) F = Q(
√
a,
√
b) and the preceding part, plus the tower law, shows that [F : Q] = 4. Now

F is a splitting field in characteristic zero, so it’s finite, normal and separable, so Galois. By the
fundamental theorem, Gal(F/Q) must be a finite group of order 4, so it’s either C4 or C2 × C2.
There are lots of ways of seeing that it is actually C2 × C2. Here are two that spring to mind:
firstly, C4 only has one subgroup of order 2, whereas F has at least two subfields of degree 2 over Q,
namely Q(

√
a) and Q(

√
b), so by the correspondence in the fundamental theorem, C4 is ruled out.

And another way – if we set K = Q(
√
a) then F/K is Galois and [F : K] = 2, so Gal(F/K) is

cyclic of order 2 by the fundamental theorem, and the Galois group permutes the roots of x2 − b.
We deduce that there must be an element of Gal(F/K), and thus a field automorphism ga of F ,
that sends +

√
b to −

√
b and fixes

√
a (as it fixes K). Similarly there’s an automorphism gb of F

that sends +
√
a to −

√
a and fixes

√
b. This gives us two elements of order 2 in Gal(F/Q), which

must then be C2×C2. Of course their product, gagb, sends
√
a to −

√
a and

√
b to −

√
b, so it fixes√

ab and is the third non-trivial element of Gal(F/Q).
The subgroups of C2×C2 are: the subgroup of order 1 (corresponding to F ), the group itself, of

order 4 (corresponding to Q) (both of these because the Galois correspondence is order-reversing,
so i.e. sends the biggest things to the smallest things and vice-versa), and then there are three
subgroups of order 2, corresponding to Q(

√
a), Q(

√
b) and Q(

√
ab). One way to see this for sure

is, for example, that ga fixes
√
a, so the subfield corresponding to 〈ga〉 definitely contains

√
a,

but has degree 2 over Q by the tower law and so must be Q(
√
a). Arguing like this will show

everything rigorously.
Finally, all of the subfields are normal over Q, because all subgroups of Gal(F/Q) are normal

(as it’s abelian).
(iii) Every element of Gal(F/Q) sends

√
a +
√
b to something else! (for example ga sends it

to
√
a −
√
b). So the subgroup of Gal(F/Q) corresponding to Q(

√
a +
√
b) must be the identity,

which corresponds to F , and so F = Q(
√
a+
√
b).

(iv) If
√
r ∈ Q(

√
p,
√
q) then Q(

√
r) must be one of the quadratic subfields of Q(

√
p,
√
q), and

hence it must be either Q(
√
p), Q(

√
q) or Q(

√
pq) by part (ii). But by part (i)

√
r is not in any of

these fields! Done.
(v) [F : Q(

√
p,
√
q)] must be 2 (as it isn’t 1) and now use the tower law. The Galois group –

we know firstly that any element of the Galois group will be determined by what it does to
√
p,√

q and
√
r, and of course

√
n must be sent to ±

√
n for any n ∈ Q, so there are at most eight

possibilities for Gal(F/Q), corresponding to the 8 = 23 choices we have for the signs. However we
know the size of Gal(F/Q) is eight, so all eight possibilities must occur and the group must be
C2 × C2 × C2.

Let me stress here, for want of a better place, that you cannot just say “clearly
√
p,
√
q and√

r are “independent” so we can move them around as we please” – one really has to come up
with some sort of an argument to prove that there really is a field automorphism of F sending,
for example,

√
p to −√p, √q to +

√
q and

√
r to −

√
r. You can build it explicitly from explicit

elements you can write down in the Galois group using degree 4 subfields, or you can get it via the
counting argument I just explained, but you can’t just say “it’s obvious” because Galois theory
is offering you precisely the framework to make the arguments rigorous and I don’t think it is
obvious without this framework.

(vi) Meh. Think of the Galois group as a 3-dimensional vector space over the field with two
elements. There are seven 1-dimensional subspaces (each cyclic of order 2 and generated by the
seven non-trivial elements), and there are also seven 2-dimensional subspaces, by arguing for
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example on the dual vector space – or by arguing that any subgroup of order 4 of C2 × C2 × C2

is the kernel of a group homomorphism to C2 and such a homomorphism is determined by where
the three generators go; there are eight choices, one of which gives the trivial homomorphism and
the other seven of which give order 4 subgroups.

Hence other than F and Q there are 14 fields; seven have degree 2 and seven have degree 4. The
degree 2 ones are Q(

√
paqbrc) as a, b, c each run through 0 and 1, but not all zero. The degree 4

ones are Q(
√
paqbrc,

√
pdqerf ) as (a, b, c), (d, e, f) run through bases of the seven 2-dimensional

subspaces of the Galois group considered as a vector space of dimension 3 over the field with 2
elements.

(vi) We know all seven non-trivial elements of the Galois group, and none of them fix
√
p +√

q+
√
r (because if you think of it as a real number, they all send it to something strictly smaller),

so the subgroup corresponding to Q(
√
p+
√
q +
√
r) is trivial and we’re home.

(vii) Induction and the argument in (v) gives the degree; considering possibilities of signs gives
that the Galois group is what you think it is, acting how you think it acts, and the last part again
follows by observing that Q(

√
p1 +

√
p2 + · · ·+√pn) corresponding to the trivial subgroup.

2. (i) This is just the same as x3 − 2. If the roots are α, β, γ then the Galois group permutes
them, it has order 3 so it must be S3, the subgroups of order 2 generated by the transpositions fix
Q(α), Q(β) and Q(γ) of degree 6/2 = 3, and the subgroup A3 of order 3 corresponds to a normal
extension of degree 5/3 = 2 which must be Q(ω) with 1 6= ω and ω3 = 1. the normal ones are F ,
Q and Q(ω).

(ii) Let the roots of x4−11 be α (positive and real), and iα, −α, −iα. Now x4−11 is irreducible
by Eienstein and Q(α) is contained within the reals so it has degree 4 over Q and i 6∈ Q(α). Hence
Q(α, i) must have degree 8 over Q by the tower law, and is clearly a splitting field for x4−11. The
Galois group is then a subgroup of S4 (permutations of the roots) of order 8 and as it happens
there is only one of these up to isomorphism, by Sylow’s theorems for example, if you know Sylow’s
theorems, so if you’re happy with this group theory then the Galois group must be D8 because
D8 is a subgroup of S4 of order 8. If you’re not happy to use Sylow’s theorems then you’ll have
to do it by hand. Again we’re lucky in that Q(α, i) is degree 8 over Q so the Galois group has
order 8, but there are only four possibilities for where an automorphism can send α (the four roots
of its min poly) and there are only two possibilies for i (namely ±i) so each must occur. Note
that this argument wouldn’t have worked if we had used the alternative presentation Q(α, β) of
the splitting field; there would have been four possibilities for β and we would have had to think
more.

Having established that α maps to something in {α, iα,−α,−iα} and i maps to ±i we need to
figure out what this group of order 8 actually is. If i 7→ i and if α 7→ inα then idα 7→ in+dα and we
see that if we regard the four roots of x4−11 as the corners of a square then this map corresponds
to rotating the square. Similarly fixing α and sending i to −i corresponds to reflecting the square
along the long diagonal from +α to −α. So now we see that we have two elements which generate
the dihedral group D8 (a rotation and a reflection) and so this must be the full Galois group.

3.

Q ⊆ Q
(

81/5
)

⊆ Q
(

81/5,
√

81/5 + 6
)

⊆ Q
(

81/5,
√

81/5 + 6, 51/3
)

⊆ Q
(

81/5,
√

81/5 + 6, 51/3,
11

√
51/3 +

√
81/5 + 6

)
⊆ Q

(
81/5,

√
81/5 + 6, 51/3,

11

√
51/3 +

√
81/5 + 6, 91/7

)

4. Q7 of the previous sheet showed Gal(F/Q) was cyclic of order p − 1, which is even, so there
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is a unique subgroup of order (p − 1)/2 (the squares, if you’re thinking about things number-
theoretically) corresponding to a unique quadratic subextension in F .

If p = 3 then F = Q((−1 +
√
−3)/2) = Q(

√
−3) so n = −3.

If p = 5 then F = Q(ζ5) with ζ5 = e2πi/5. Now F contains ζ5 + ζ−1
5 = 2 cos(72o) and there are

various cute ways of showing that this is (
√

5−1)/2 (drawing some cunning lines in a pentagon, or
observing that cos(5θ) is a polynomial in cos(θ) and then setting θ = 72o, or several other tricks).
Anyway, we deduce

√
5 ∈ F and n = 5.

In general the quadratic subfield is Q(
√
p) if p = 4n + 1 and Q(

√
−p) if p = 4n − 1; this is a

little tricky to prove without any help, although you’ll find some slick proofs in books; Legendre
symbols (qudaratic residues etc) can help here.

5. I don’t know how to prove this directly. A proof using separable degrees goes like this: α
separable over E implies [F : E]s = [F : E] by 6.4, and hence F/E is separable by 6.6.

6.
(i) If L = E(α1, . . . , αn) then for E ⊆ K ⊆ F we have that K contains L iff K contains all the

αi. So if E ⊆ K ⊆ F then E contains N iff E contains M and the αi iff E contains M and L;
hence N is the smallest subfield of F containing M and L.

(ii) If L is the splitting field of p(x) ∈ E[x] and M is the splitting field of q(x) ∈ E[x] (these
polynomials exist by normality) then I claim N is the splitting field of p(x)q(x); indeed if the αi
are the roots of p and βj are the roots of q then by the first part N is the field generated by the
αi and the βj . Now N is finite and normal; moreover each of the αi and the βj are separable over
E (as each is contained in either L or M) and hence each time we adjoin one we get a separable
extension; finally a separable extension of a separable extension is separable (by comparing degrees
and separable degrees).

(iii) If g ∈ Gal(N/E) then g(L) = L by 6.7 and hence the restriction of g to L is in Gal(L/E).
Similar for M/E. So we get a map Gal(N/E)→ Gal(L/E)×Gal(M/E). This is easily checked to
be a group homomorphism. It’s injective because anything in the kernel fixes L and M pointwise,
so fixes LM pointwise; but LM = N .

It’s not always surjective though – for example if L = M then it hardly ever is. More generally
if L ∩M 6= E then there will be problems. However if L ∩M = E then my guess is that the
map is a bijection; however it’s nearly midnight and so I think I’ll leave this as an exercise for the
interested reader!
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