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M3P11 Galois Theory, Solutions to Problem Sheet 5

L (z—a)" =3, (Ha" "z so D((z—a)") =3, (7)ia"""z"~1; now (7)i = (?:11)71 and the result
follows easily.

2. We need to check that K is algebraically closed (which is given) and that it’s algebraic over E,
which is true because algebraic over algebraic is algebraic.

3. By 6.7, we only need to check [K : E]=[K : E],. But [K : E]=[K : F|[F : E] = [K : F)5[F :
E)s = [K : E], (by the tower law, 6.7 and 6.6 respectively) so we’re home.

4.

(i) k(s,t) is a field; the addition of two ratios-of-polynomials can be done by putting them
over a common denominator (e.g. the product) and multiplication is even easier. All the axioms
of a ring follow (by clearing denominators) from the fact that they are true for the two-variable
polynomial ring k[s, t], and it’s clear that anything non-zero has an inverse — the inverse of f/g is

g/ f

Any subfield of k(s,t) containing k, s and ¢ must contain any polynomial f(s,t) € k[s,];
because it’s a field it also contains 1/g(s,t) if g # 0, and so must be k(s, t).

(ii) Set K = E(s) = k(s,t?). Then F = K(t) and I claim [F : K] = [K : E] = p, which suffices
(by the tower law). We have [F' : K] = [K(t) : K] which will be the degree of the minimum
polynomial of ¢ over K. I claim that this min poly is 2P — t?; indeed clearly ¢ is a root of this, and
over F this poly factors as (z — )P, so any monic irreducible factor of it over K must be (x — t)*
for some 4; but this polynomial has constant term #* which is not in K unless i = 0 or i = p; hence
aP — 1P is irreducible over K. Similarly 2 — sP is irreducible over E and [K : E] = p.

(iii) If A = f(s,t)/g(s,t) € F then \? = f(sP,t7)/g(sP,tP) € E. In particular the degree of the
min poly of A over E must be at most p, so [E(\) : E] < p < p? and hence E(\) # F.

(iv) Say Ey = E5. Then s + §t € E., and hence E, is a field containing k, s + vt and s + dt;
if v # ¢ then looking at linear combinations we see that E, contains s and t too, so E, = F.
However this is impossible as [F : E] = p? from (ii) and [E, : E] < p from (iii). So if § # v then
Es # E, and we're done.

5. The polynomial 22 — e must be irreducible over E, as if it factored the factors would be linear
and of the form z — d with d?> = e; however no such A exists in E, by assumption. Let’s adjoin
one root of this polynomial to E and get E(y/e) = E[z]/(z? — €). This bigger field now contains
one and hence both roots of 22 — e, so it’s the splitting field F of E, hence [F : E] = 2 (the degree
of 22 — e). In particular F/FE is finite. It’s a splitting field, so it’s normal. The map 7 : F — F
sending a + by/e to a — by/e is easily checked to be a field isomorphism, so [F : E]; > 2 = [F : F]
and hence F/E is separable. Hence the extension is Galois; thus the Galois group must have size 2,
and we can see two elements, namely the identity and 7, and Gal(F/E) = {1, 7} is isomorphic to
the cyclic group of order 2.

6. Let’s start by adjoining one root of z* — p, say, a, the positive real 4th root of p. We get a
field K = Q(«). By Eisenstein, 2* — p is irreducible over Q, so [K : Q] = 4. Is K a splitting field
though? No, because it’s a subfield of the reals, and 2* — p has some non-real roots (namely +ic).
However K does contain two roots of 2* —p, namely +a, so 2* —p must factor as (z+a)(z—a)q(z),
with ¢(x) € Klx] of degree 2 and irreducible (as no roots in K). If 8 = i« is a root of ¢(x) and
F = K(B) then [F : K] =2 so [F : Q] = 8 by the tower law. We can alternatively write F' = K (%)
as B =ia, so F = Q(i, ).

F is a splitting field over @ so it’s finite and Galois (separability isn’t an issue as we’re in
characteristic 0). So we know Gal(F/Q) has size 8. We also know that if 7 : F — F is an
isomorphism then 7(«) had better be a 4th root of 7(p) = p, so it’s £« or Liq; there are at most 4
choices for 7(a). Similarly 7(i) = £i so there are at most 2 choices for 7(). This gives at most 8
choices for 7; however we know that Gal(F/Q) has size 8, so all eight choices must work. It is not
hard now to convince yourself that Gal(F/Q) is isomorphic to Dg (think of a square with corners
labelled a, i, —ar, —ic).

7. Weknow 2? —1 = (z — 1)1 +z+ 2+ -+ 2P, and f(z) :=1+x+22+ - +2PLis
irreducible over Q (by the trick just after Eisenstein in lectures). Hence if ¢ = ¢*™/P then f(z)



must be the min poly of (. Note that the roots of p(x) are just the roots of P — 1 other than
x =1, so they're ¢/ for 1 < j < p— 1. Moreover if F = Q(¢) then [F : Q] = deg(f) =p — 1, and
K contains ¢7 for all j, so P — 1 splits completely in K. Hence K is the splitting field of z? — 1
and it has degree p — 1.

Now F/Q is finite, normal and separable, so it’s Galois, so by 6.3 we know Gal(F/Q) will have
size p — 1. If 7 € Gal(F/Q) then, because F' = Q(¢), 7 is determined by 7({), which is a root
of 7(f) = f, so is ¢’ for some 1 < j < p — 1. It’s not immediately clear that, given j, some
field automorphism 7 of F sending ¢ to ¢7 will exist — but it has to exist because we know there
are p — 1 field automorphisms by 6.3. So the elements of the Galois group can be called 7; for
1 < j < p-—1. The remaining question is what this group is. We can figure out the group law
thus: 7; o 7; — where does this send ¢? Well 7;(¢) = ¢/, and 7;(¢) = ¢* so 7:(¢7) = (¥ as 1 is a
field homomorphism. Note finally that (¥ only depends on ij mod p, as (P = 1. So if we identify
Gal(F/Q) with {1,2,...,p — 1} then the group law is just “multiplication mod p” , and we see
Gal(F/Q) = (Z/pZ)*



