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follows easily.

2. We need to check that K is algebraically closed (which is given) and that it’s algebraic over E,
which is true because algebraic over algebraic is algebraic.

3. By 6.7, we only need to check [K : E] = [K : E]s. But [K : E] = [K : F ][F : E] = [K : F ]s[F :
E]s = [K : E]s (by the tower law, 6.7 and 6.6 respectively) so we’re home.

4.

(i) k(s, t) is a field; the addition of two ratios-of-polynomials can be done by putting them
over a common denominator (e.g. the product) and multiplication is even easier. All the axioms
of a ring follow (by clearing denominators) from the fact that they are true for the two-variable
polynomial ring k[s, t], and it’s clear that anything non-zero has an inverse – the inverse of f/g is
g/f .

Any subfield of k(s, t) containing k, s and t must contain any polynomial f(s, t) ∈ k[s, t];
because it’s a field it also contains 1/g(s, t) if g 6= 0, and so must be k(s, t).

(ii) Set K = E(s) = k(s, tp). Then F = K(t) and I claim [F : K] = [K : E] = p, which suffices
(by the tower law). We have [F : K] = [K(t) : K] which will be the degree of the minimum
polynomial of t over K. I claim that this min poly is xp− tp; indeed clearly t is a root of this, and
over F this poly factors as (x− t)p, so any monic irreducible factor of it over K must be (x− t)i
for some i; but this polynomial has constant term ti which is not in K unless i = 0 or i = p; hence
xp − tp is irreducible over K. Similarly xp − sp is irreducible over E and [K : E] = p.

(iii) If λ = f(s, t)/g(s, t) ∈ F then λp = f(sp, tp)/g(sp, tp) ∈ E. In particular the degree of the
min poly of λ over E must be at most p, so [E(λ) : E] ≤ p < p2 and hence E(λ) 6= F .

(iv) Say Eγ = Eδ. Then s+ δt ∈ Eγ , and hence Eγ is a field containing k, s+ γt and s+ δt;
if γ 6= δ then looking at linear combinations we see that Eγ contains s and t too, so Eγ = F .
However this is impossible as [F : E] = p2 from (ii) and [Eγ : E] ≤ p from (iii). So if δ 6= γ then
Eδ 6= Eγ and we’re done.

5. The polynomial x2 − e must be irreducible over E, as if it factored the factors would be linear
and of the form x − d with d2 = e; however no such λ exists in E, by assumption. Let’s adjoin
one root of this polynomial to E and get E(

√
e) = E[x]/(x2 − e). This bigger field now contains

one and hence both roots of x2− e, so it’s the splitting field F of E, hence [F : E] = 2 (the degree
of x2 − e). In particular F/E is finite. It’s a splitting field, so it’s normal. The map τ : F → F
sending a+ b

√
e to a− b

√
e is easily checked to be a field isomorphism, so [F : E]s ≥ 2 = [F : E]

and hence F/E is separable. Hence the extension is Galois; thus the Galois group must have size 2,
and we can see two elements, namely the identity and τ , and Gal(F/E) = {1, τ} is isomorphic to
the cyclic group of order 2.

6. Let’s start by adjoining one root of x4 − p, say, α, the positive real 4th root of p. We get a
field K = Q(α). By Eisenstein, x4 − p is irreducible over Q, so [K : Q] = 4. Is K a splitting field
though? No, because it’s a subfield of the reals, and x4−p has some non-real roots (namely ±iα).
However K does contain two roots of x4−p, namely ±α, so x4−p must factor as (x+α)(x−α)q(x),
with q(x) ∈ K[x] of degree 2 and irreducible (as no roots in K). If β = iα is a root of q(x) and
F = K(β) then [F : K] = 2 so [F : Q] = 8 by the tower law. We can alternatively write F = K(i)
as β = iα, so F = Q(i, α).

F is a splitting field over Q so it’s finite and Galois (separability isn’t an issue as we’re in
characteristic 0). So we know Gal(F/Q) has size 8. We also know that if τ : F → F is an
isomorphism then τ(α) had better be a 4th root of τ(p) = p, so it’s ±α or ±iα; there are at most 4
choices for τ(α). Similarly τ(i) = ±i so there are at most 2 choices for τ(i). This gives at most 8
choices for τ ; however we know that Gal(F/Q) has size 8, so all eight choices must work. It is not
hard now to convince yourself that Gal(F/Q) is isomorphic to D8 (think of a square with corners
labelled α, iα,−α,−iα).

7. We know xp − 1 = (x − 1)(1 + x + x2 + · · · + xp−1), and f(x) := 1 + x + x2 + · · · + xp−1 is
irreducible over Q (by the trick just after Eisenstein in lectures). Hence if ζ = e2πi/p then f(x)



must be the min poly of ζ. Note that the roots of p(x) are just the roots of xp − 1 other than
x = 1, so they’re ζj for 1 ≤ j ≤ p− 1. Moreover if F = Q(ζ) then [F : Q] = deg(f) = p− 1, and
K contains ζj for all j, so xp − 1 splits completely in K. Hence K is the splitting field of xp − 1
and it has degree p− 1.

Now F/Q is finite, normal and separable, so it’s Galois, so by 6.3 we know Gal(F/Q) will have
size p − 1. If τ ∈ Gal(F/Q) then, because F = Q(ζ), τ is determined by τ(ζ), which is a root
of τ(f) = f , so is ζj for some 1 ≤ j ≤ p − 1. It’s not immediately clear that, given j, some
field automorphism τ of F sending ζ to ζj will exist – but it has to exist because we know there
are p − 1 field automorphisms by 6.3. So the elements of the Galois group can be called τj for
1 ≤ j ≤ p − 1. The remaining question is what this group is. We can figure out the group law
thus: τi ◦ τj – where does this send ζ? Well τj(ζ) = ζj , and τi(ζ) = ζi so τi(ζ

j) = ζij as τi is a
field homomorphism. Note finally that ζij only depends on ij mod p, as ζp = 1. So if we identify
Gal(F/Q) with {1, 2, . . . , p − 1} then the group law is just “multiplication mod p” , and we see
Gal(F/Q) ∼= (Z/pZ)×.


