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1. (a) SetK = E(z1, z2, . . . , zm). Our task is to prove thatK(zm+1, . . . , zn) = E(z1, . . . , zm).
NowK(zm+1, . . . , zn) is the intersection of all subfields of F containingK and zm+1, . . . , zn,
and E(z1, . . . , zm) is the intersection of all subfields of F containing E and z1, . . . , zm. So
it will suffice to prove that if L is an arbitrary subfield of F , then L contains K and
zm+1, . . . , zn iff L contains E and z1, . . . zn. Because K contains E and z1, . . . , zm, one
implication is clear. For the other, all we have to do is to show that if L contains E and
z1, . . . , zn then L contains K; but this is clear from the definition of K as the intersection
of all the subfields of F containing E and z1, . . . , zm.

(b) We from Proposition 2.4 that if z is algebraic over E then [E(z) : E] is finite.
The general result follows by induction on n, part (a), and the (obvious) fact that if z is
algebraic over E then it’s algebraic over K for any field K containing E.

2. This is slightly tricky I guess. Say m ∈ M . We need to prove that m is a root of
a polynomial with coefficients in K. We know M/L is algebraic, so m is the root of a
polynomial p(x) with coefficients in L. Write p(x) = λ0 +λ1x+ . . .+λdx

d. The λi are all
in L, so they’re all algebraic over K. Clearly m is algebraic over N := K(λ0, λ1, . . . , λd).
By Q1(b) we know [N : K] is finite. By Proposition 2.4 we know [N(m) : K] is finite. By
Proposition 2.6 m is algebraic over K, and we’re home.

3. Say r ∈ R is constructible if we can construct the point (r, 0) with straightedge and
compasses only. If we can construct (x, 0) and (y, 0) then we can easily construct (0, y)
and then (x, y). So we just need to check that x and y are constructible. Firstly I claim
that every rational is constructible. For clearly every integer is constructible (draw a long
straight line through (0, 0) and (1, 0) and then use your compasses to mark off the integer
points), and then by a trick with triangles every rational is constructible (to divide a given
line into d equal pieces, make a triangle with one side equal to that line and another side
of length d, and then slice the triangle up with parallel lines).

So it suffices to check that if E ⊆ F ⊆ R are fields, every element of E is constructible,
and [F : E] = 2, then every element of F is constructible. Because [F : E] 6= 1 we
have E 6= F so we can choose f ∈ F such that f 6∈ E. Note that {1, f} are E-linearly
independent. However {1, f, f2} is a sequence of three elements in a 2-dimensional space
so these elements must be E-linearly dependent; we deduce that f2 + af + b = 0 for some
a, b ∈ E. Completing the square and replacing f by f + a/2 we can reduce to the case
f2 ∈ E. Hence f is constructible (because f2 is and you can take square roots using
compasses). Now it is easy to check that if λ, µ ∈ E then λf + µ is constructible; but the
general element of F is of this form, so every element of F is constructible and we’re done.

4. (a) If we can construct a regular n-gon somewhere in the plane then (bisect the
interior angles) we can construct its centre, and hence an isosceles triangle with side
length 1, two equal angles A and B, and the third angle C equal to 2π/n. Setting the
compasses to be the distance AB we can then use this to go around the unit circle centre
the origin and construct our n-gon.

(b) (cos(2π/n), sin(2π/n) is the coordinate of another point of this n-gon.

(c) i has degree 2 over Q(cos(2π/n), sin(2π/n)) (as it is not real), so Q(cos(2π/n), sin(2π/n), i)
has degree a power of 2 over Q by the tower law. It also contains ζn = cos(2π/n) +
i sin(2π/n) and the result follows again by the tower law.

(d) What is the min poly of ζp, for p prime? Well certainly ζp 6= 1 but (ζp)p = 1, so ζp is
a zero of the function (xp−1)/(x−1) which is actually the polynomial 1+x+· · ·+xp−1. We
showed in lectures (as an application of Eisenstein) that this polynomial was irreducible!
Hence [Q(ζp) : Q] = p − 1 and in particular if p − 1 isn’t a power of 2 then we cannot
construct a regular p-gon. In particular, although we might be able to (and can) construct
a regular pentagon, we can’t construct a regular heptagon.

5.



(a) If we regard Cn as the set {0, 1, 2, . . . , n− 1} under addition, then the reason any
subgroup is cyclic is that it is generated by the smallest non-zero element in the subgroup,
and the reason that there’s only one cyclic subgroup of order d in Cn if d | n is that there
are only d elements of order dividing d in Cn (namely the multiples of n/d).

The reason
∑

d|n φ(d) = n is that every element of Cn generates a cyclic subgroup of

some order d | n so is counted once (when computing φ(d) ).

(b) If p has no roots then done; if p has a root a then p(x) = (x − a)q(x) + r(x) by
Euclid, and r is a constant polynomial. Evaluating at x = a gives r = 0. Comparing
degree gives that the degree of q(x) is one less than the degree of p(x). Finally if b 6= a is
a root of p(x) then (b− a)q(b) = 0 and hence q(b) = 0, so now we’re done by induction.

(c) If Gd is non-empty then choose a ∈ Gd. Then {1, a, a2, . . . , ad−1} is a subset of G
of size d, and all of these elements are dth roots of 1, so by (a) we must have that there
are precisely d roots of xd − 1 = 0 in K, and that these are precisely {1, a, a2, . . . , ad−1}.
In particular we must have Gd ⊆ {1, a, a2, . . . , ad−1} and now Gd is the elements of order
precisely d in this group, and there are by definition φ(d) of these.

(d) The Gd partition G, so we have n =
∑

d|n |Gd| ≤
∑

d|n φ(d) = n. So equality must

hold in that middle ≤, so |Gd| = φ(d) > 0 for all d and in particular Gn is non-empty.
But if a ∈ Gn has order exactly n, then 〈a〉 is a subgroup of G of size n and hence must
equal G.


