KMB, 21/10/13

M3P11 Galois Theory, Solutions to problem Sheet 1

1. K]Jx] is easily checked to be an abelian group under + (the group laws are all easy
consequences of the fact that (K,+) is an abelian f x 1 = 1 x f = f. The reason
(fg)h = f(gh) is that if f = 3, a;z’ and g = 3" bja? and h = 3, cpa® then the
coefficient of z* in both (fg)h and f(gh) is > it j+k—e @ibjck. Finally distributivity follows
because >,y ai(bj +¢j) = >, iy (aibj + a;cj). Note that we never used inverses so
in fact we’ve proved that if R is a commutative ring with a 1 then so is R[z].

2.

(a) We know 0 is the additive identity in R so 040 = 0. Hence 0z = (040)z = 0z +0x
and cancelling 0z we deduce 0 = Oz.

(b) If @ # 0 and b # 0 then there exist multiplicative inverses a=! and =1, and now
abb~ta=! = 1x1 = 1. However if ab = 0 then we deduce 0(b='a~!) = 1 which contradicts
part (a) (as 0 # 1 in a field).

(c) Look at top degree terms.
(d) fh = gh implies (f — g)h =0, and if h # 0 we must have f — g = 0 by (¢).

(a) Doing long division like in lectures we see 2° +x + 1 = (2® — 2)(2® + 1) + 22 + 1
so the quotient is 23 — 2 and the remainder is 2z + 1.

(b) If 219904+ 32253 +8 = q(x)(z—1)+7r(z) then either r(z) = 0 or deg(r) < deg(z—1) =
1 so in either case r is a constant. Evaluating the equation at x = 1 shows us that
r(x) =14+32+8=41.

(¢) I didn’t do an example of this in lectures so I'll do it here.

203 + 22 +3x +2= (22 +2)(2* +1) + =
2?2 +1=(2)(z)+1
r=x1+0

so the last non-zero remainder is 1. Now working backwards,

1= (2 4+1) = (2).(z)
=(2?+1) —2.(20% + 222 + 32+ 2 — (22 +2)(2* + 1))
= (222 + 22+ 1) (2 + 1) — 2.(22% + 222 + 32+ 2)

so, if T got it right, one possibility is s(z) = —x and t(x) = 222 +2x+ 1. If you got another
solution it doesn’t mean you are wrong, because there is more than one answer to this
sort of question just as in the case of usual integers — for example, you can add z% + 1 to
s and subtract 223 + 222 + 3z + 2 from ¢ and get a new solution that still works (another
bonus question: what’s the most general solution? Can you prove it?).

Bonus part: I knew they were coprime in Q[z] because they’re coprime in the bigger
ring C[z] — it’s easy to check this because the roots of 22 4 1 are +i and neither of these
is a root of 223 + 222 + 3z + 2, as you can see by substituting in.

(d) Euclid again:
et 4= -2204+4)+22% 42+ 4
23— 20 +4=(x/2+1)(22% —4x+4)+0

and after that mercifully short procedure we see that the last non-zero remainder is 222 —
4z + 4. Now hef’s don’t really care about constants (see Q4), so x? — 2z + 2 is another hef
which is kind of nicer (in my opinion), but let’s work with what we have and go backwards:

20? —4r +4 = (2 +4) — x(2® — 22+ 4)



oh and that’s it isn’t it — there are serious advantages to Euclid only taking 2 steps!
So a(r) = 1 and b(z) = —z. Actually I see now that the “nicer” hcf wasn’t perhaps so
nice because then we would have had fractions in a and b.

4. By definition s | t and t | s, so using Q2(c) we deduce that the degrees of s and t must
be equal, and s = tr for a polynomial r of degree 0, that is, a non-zero constant. Done!

5. You do these questions by imagining that you're doing long division and seeing what
happens. Formal proofs would involve setting up a whole bunch of variable names and
would be tedious to write down in full.

(a) Argue like this: f | g in L[z] so now use long division to figure out g(x) such that
g(z) = f(z)q(x) and now prove by induction on the coefficients of ¢ that all of them are in
K (because they are messy combinations of the coefficients of f and g, which are in K).

(b) First part no, e.g. 2z +2 | x4+ 1 in Q[z]. Second part yes, and again prove it by
figuring out ¢(x) such that g(z) = f(x)q(x) by long division and noting that you only ever
have to divide by 1 when figuring out the coefficients of g.

6.

(i) Spot root * = 2; so 2® — 8 = (x — 2)(2% + 2z + 4) and roots of the quadratic
are non-real and hence non-rational, so the quadratic must be irreducible (as any factors
would be linear).

(ii) Irreducible by Eisenstein (p = 2 or p = 3).

1) In we spotted the factor x* — 2z + 2, and dividing out we see z° + 4 =

i) Tn Q3(d d the f 2 95+ 92, and dividi 44y
(22 — 22 +2)(2? + 22 + 2). Easy check now that both quadratics have non-real and hence
non-rational roots, so must be irreducible.

(iv) Eew. Either this is irreducible over Q, or there is a root in Q (because any
factorization must involve a linear term). So let’s substitute in © = p/q in lowest terms
(i.e. ged(p, q) = 1) and see what happens. Clearing denominators we get

2p3 + 5p2q + 5pq2 + 3q3 =0.

Now p divides the first three terms of the left hand side, so must divide the fourth which
is 3¢3. But p and ¢ are coprime! So p must divide 3. A similar argument shows that
q must divide 2. So p = £1 or 43 and ¢ = +1 or +2. Clearly no positive rational
is a root (as all the coefficients are positive) so we are left with the possibilities x =
—1,-1/2,-3,—-3/2 and we just try all of them. Miraculously x = —3/2 does work!
Pulling off the corresponding linear factor gives

22% 4522 +5r +3=2r +3)(z* +x + 1)

and the quadratic term has no real roots and hence no rational ones, so this is the factor-
ization into irreducibles.

(v) This one is irreducible by Eisenstein with p = 3.
(vi) There’s an obvious factor of 2 — 1 and the other factor ™ + 2™ + .- + 2 + 1 is
irreducible by the trick in lectures after Eisenstein (substitute y = z — 1), as 73 is prime.

(vii) This polynomial is obtainable from the polynomial in part (vi): start with the
part (vi) polynomial, change x to —z and then change the sign of the polynomial. These
sorts of things do not affect things like irreducibility and factorization, so the factorization
will be (z +1)(2™ — 2™ + ... — 2+ 1) and the degree 72 polynomial will be irreducible.
Alternatively just find a variant of the trick in lectures (x =y — 1 and use Eisenstein).

(viii) Spot roots x = 1 and x = —1. Over the complexes we have more roots too, like
+4 and so on — how do these control factorization over the rationals? Well (x — i) and
(x+1) are factors over the complexes, so their product #2+1 is a factor over the complexes
and hence also over the rationals (by Q5(a) if you like). Similarly the two complex cube
roots of 1 are complex conjugates and are the two roots of £2 4+ = 4+ 1, and the two 6th
roots of 1 that we haven’t mentioned yet (e27*/¢ and its complex conjugate) are roots of

22 —x + 1. So we've just spotted factors whose degrees add up to 8. Let’s see what we



have so far then: the factors we have spotted are

(z+ Dz —-1)*+ 1)@ +z+1)(2* -z +1)
=@ -1+ 1)@+ + 1)@ -z +1)
= (z* = 1) (z* + 2%+ 1)

and so what is left is

(2 —1)/(a* = 1) (2* + 22 + 1)
= (2% + 2" + 1)/(304 +2241)

=zt —2?+1

The hardest part of this question is figuring out whether that last polynomial factors. If
¢ = e*™/12 ig 3 12th root of unity then the four roots of z* — 22 + 1 must be ¢, ¢5, (7,
¢, because these are the only four roots which we haven’t factored out yet in the above
process. None of these roots are rational (because none are real) so 2* — 22 + 1 has no
linear factors over Q. So either x* — 22 + 1 is irreducible, or factors into two irreducible
quadratic polynomials over Q. These quadratic polynomials will have to have complex
conjugate roots, so we are left with the problem of deciding whether (z — ¢)(z — ¢!!) has
rational coefficients or not. But, using ¢ = cos(27/12) +isin(27/12) we see that the linear
term in this quadratic polynomial is 2cos(27/12) and we all remember from school that
cos(30°) = v/3/2 (draw an equilateral triangle; drop a perpendicular; use Pythagoras’
theorem!) Hence the quartic really must be irreducible.

An alternative argument for z* — 22 + 1: if it were reducible over Q then it would have
to factor into two quadratic polynomials, as before, and by the argument in Gauss’ lemma
it would have to factor into two quadratic polynomials over Z too. Looking at top degree
and bottom degree terms, this factorization must either be of the form

ot —2? + 1= (2 +ax +1)(2® + bz + 1)

or
ot — 2?4+ 1= (2 +ax — 1)(2® + bz — 1)

with a and b integers. Comparing linear terms we get a +b = 0 so b = —a; now comparing

degree 2 terms we get a® = 3 in the first case and a? = —1 in the second case, and neither

of these have integer solutions, so again we’re home.
That one was tougher than I meant it to be — apologies. Still, it’s all good for the soul.



