
KMB, 21/10/13

M3P11 Galois Theory, Solutions to problem Sheet 1

1. K[x] is easily checked to be an abelian group under + (the group laws are all easy
consequences of the fact that (K,+) is an abelian f × 1 = 1 × f = f . The reason
(fg)h = f(gh) is that if f =

∑
i aix

i and g =
∑
j bjx

j and h =
∑
k ckx

k then the

coefficient of x` in both (fg)h and f(gh) is
∑
i+j+k=` aibjck. Finally distributivity follows

because
∑
i+j=k ai(bj + cj) =

∑
i+j=k(aibj + aicj). Note that we never used inverses so

in fact we’ve proved that if R is a commutative ring with a 1 then so is R[x].

2.

(a) We know 0 is the additive identity in R so 0+0 = 0. Hence 0x = (0+0)x = 0x+0x
and cancelling 0x we deduce 0 = 0x.

(b) If a 6= 0 and b 6= 0 then there exist multiplicative inverses a−1 and b−1, and now
abb−1a−1 = 1×1 = 1. However if ab = 0 then we deduce 0(b−1a−1) = 1 which contradicts
part (a) (as 0 6= 1 in a field).

(c) Look at top degree terms.

(d) fh = gh implies (f − g)h = 0, and if h 6= 0 we must have f − g = 0 by (c).

3.

(a) Doing long division like in lectures we see x5 + x + 1 = (x3 − x)(x2 + 1) + 2x + 1
so the quotient is x3 − x and the remainder is 2x+ 1.

(b) If x1000+32x53+8 = q(x)(x−1)+r(x) then either r(x) = 0 or deg(r) < deg(x−1) =
1 so in either case r is a constant. Evaluating the equation at x = 1 shows us that
r(x) = 1 + 32 + 8 = 41.

(c) I didn’t do an example of this in lectures so I’ll do it here.

2x3 + 2x2 + 3x+ 2 = (2x+ 2)(x2 + 1) + x

x2 + 1 = (x)(x) + 1

x = x.1 + 0

so the last non-zero remainder is 1. Now working backwards,

1 = (x2 + 1)− (x).(x)

= (x2 + 1)− x.(2x3 + 2x2 + 3x+ 2− (2x+ 2)(x2 + 1))

= (2x2 + 2x+ 1)(x2 + 1)− x.(2x3 + 2x2 + 3x+ 2)

so, if I got it right, one possibility is s(x) = −x and t(x) = 2x2 +2x+1. If you got another
solution it doesn’t mean you are wrong, because there is more than one answer to this
sort of question just as in the case of usual integers – for example, you can add x2 + 1 to
s and subtract 2x3 + 2x2 + 3x+ 2 from t and get a new solution that still works (another
bonus question: what’s the most general solution? Can you prove it?).

Bonus part: I knew they were coprime in Q[x] because they’re coprime in the bigger
ring C[x] – it’s easy to check this because the roots of x2 + 1 are ±i and neither of these
is a root of 2x3 + 2x2 + 3x+ 2, as you can see by substituting in.

(d) Euclid again:

x4 + 4 = x(x3 − 2x+ 4) + 2x2 − 4x+ 4

x3 − 2x+ 4 = (x/2 + 1)(2x2 − 4x+ 4) + 0

and after that mercifully short procedure we see that the last non-zero remainder is 2x2−
4x+ 4. Now hcf’s don’t really care about constants (see Q4), so x2− 2x+ 2 is another hcf
which is kind of nicer (in my opinion), but let’s work with what we have and go backwards:

2x2 − 4x+ 4 = (x4 + 4)− x(x3 − 2x+ 4)



oh and that’s it isn’t it – there are serious advantages to Euclid only taking 2 steps!
So a(x) = 1 and b(x) = −x. Actually I see now that the “nicer” hcf wasn’t perhaps so
nice because then we would have had fractions in a and b.

4. By definition s | t and t | s, so using Q2(c) we deduce that the degrees of s and t must
be equal, and s = tr for a polynomial r of degree 0, that is, a non-zero constant. Done!

5. You do these questions by imagining that you’re doing long division and seeing what
happens. Formal proofs would involve setting up a whole bunch of variable names and
would be tedious to write down in full.

(a) Argue like this: f | g in L[x] so now use long division to figure out q(x) such that
g(x) = f(x)q(x) and now prove by induction on the coefficients of q that all of them are in
K (because they are messy combinations of the coefficients of f and g, which are in K).

(b) First part no, e.g. 2x + 2 | x + 1 in Q[x]. Second part yes, and again prove it by
figuring out q(x) such that g(x) = f(x)q(x) by long division and noting that you only ever
have to divide by 1 when figuring out the coefficients of g.

6.

(i) Spot root x = 2; so x3 − 8 = (x − 2)(x2 + 2x + 4) and roots of the quadratic
are non-real and hence non-rational, so the quadratic must be irreducible (as any factors
would be linear).

(ii) Irreducible by Eisenstein (p = 2 or p = 3).

(iii) In Q3(d) we spotted the factor x2 − 2x + 2, and dividing out we see x4 + 4 =
(x2− 2x+ 2)(x2 + 2x+ 2). Easy check now that both quadratics have non-real and hence
non-rational roots, so must be irreducible.

(iv) Eew. Either this is irreducible over Q, or there is a root in Q (because any
factorization must involve a linear term). So let’s substitute in x = p/q in lowest terms
(i.e. gcd(p, q) = 1) and see what happens. Clearing denominators we get

2p3 + 5p2q + 5pq2 + 3q3 = 0.

Now p divides the first three terms of the left hand side, so must divide the fourth which
is 3q3. But p and q are coprime! So p must divide 3. A similar argument shows that
q must divide 2. So p = ±1 or ±3 and q = ±1 or ±2. Clearly no positive rational
is a root (as all the coefficients are positive) so we are left with the possibilities x =
−1,−1/2,−3,−3/2 and we just try all of them. Miraculously x = −3/2 does work!
Pulling off the corresponding linear factor gives

2x3 + 5x2 + 5x+ 3 = (2x+ 3)(x2 + x+ 1)

and the quadratic term has no real roots and hence no rational ones, so this is the factor-
ization into irreducibles.

(v) This one is irreducible by Eisenstein with p = 3.

(vi) There’s an obvious factor of x− 1 and the other factor x72 + x71 + · · ·+ x+ 1 is
irreducible by the trick in lectures after Eisenstein (substitute y = x− 1), as 73 is prime.

(vii) This polynomial is obtainable from the polynomial in part (vi): start with the
part (vi) polynomial, change x to −x and then change the sign of the polynomial. These
sorts of things do not affect things like irreducibility and factorization, so the factorization
will be (x+ 1)(x72 − x71 + . . .− x+ 1) and the degree 72 polynomial will be irreducible.
Alternatively just find a variant of the trick in lectures (x = y − 1 and use Eisenstein).

(viii) Spot roots x = 1 and x = −1. Over the complexes we have more roots too, like
±i and so on – how do these control factorization over the rationals? Well (x − i) and
(x+i) are factors over the complexes, so their product x2+1 is a factor over the complexes
and hence also over the rationals (by Q5(a) if you like). Similarly the two complex cube
roots of 1 are complex conjugates and are the two roots of x2 + x + 1, and the two 6th
roots of 1 that we haven’t mentioned yet (e2πi/6 and its complex conjugate) are roots of
x2 − x + 1. So we’ve just spotted factors whose degrees add up to 8. Let’s see what we



have so far then: the factors we have spotted are

(x+ 1)(x− 1)(x2 + 1)(x2 + x+ 1)(x2 − x+ 1)

= (x2 − 1)(x2 + 1)(x2 + x+ 1)(x2 − x+ 1)

= (x4 − 1)(x4 + x2 + 1)

and so what is left is

(x12 − 1)/(x4 − 1)(x4 + x2 + 1)

= (x8 + x4 + 1)/(x4 + x2 + 1)

= x4 − x2 + 1

The hardest part of this question is figuring out whether that last polynomial factors. If
ζ = e2πi/12 is a 12th root of unity then the four roots of x4 − x2 + 1 must be ζ, ζ5, ζ7,
ζ11, because these are the only four roots which we haven’t factored out yet in the above
process. None of these roots are rational (because none are real) so x4 − x2 + 1 has no
linear factors over Q. So either x4 − x2 + 1 is irreducible, or factors into two irreducible
quadratic polynomials over Q. These quadratic polynomials will have to have complex
conjugate roots, so we are left with the problem of deciding whether (x− ζ)(x− ζ11) has
rational coefficients or not. But, using ζ = cos(2π/12) + isin(2π/12) we see that the linear
term in this quadratic polynomial is 2cos(2π/12) and we all remember from school that
cos(30o) =

√
3/2 (draw an equilateral triangle; drop a perpendicular; use Pythagoras’

theorem!) Hence the quartic really must be irreducible.

An alternative argument for x4−x2 + 1: if it were reducible over Q then it would have
to factor into two quadratic polynomials, as before, and by the argument in Gauss’ lemma
it would have to factor into two quadratic polynomials over Z too. Looking at top degree
and bottom degree terms, this factorization must either be of the form

x4 − x2 + 1 = (x2 + ax+ 1)(x2 + bx+ 1)

or
x4 − x2 + 1 = (x2 + ax− 1)(x2 + bx− 1)

with a and b integers. Comparing linear terms we get a+ b = 0 so b = −a; now comparing
degree 2 terms we get a2 = 3 in the first case and a2 = −1 in the second case, and neither
of these have integer solutions, so again we’re home.

That one was tougher than I meant it to be – apologies. Still, it’s all good for the soul.


