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Q1.
(a) This is standard bookwork. Say f = gh with g, h ∈ Q[x]. Clear denominators and

get Df = g0h0 with g0, h0 ∈ Z[x] and D ∈ Z>0. If we can prove that for any prime p|D
we have that either all the coefficients of g0 are multiples of p, or all the coefficients of h0
are, then we’re home (by induction on D). So say p|D. Reducing modulo p (and putting
a bar on top of things to denote the reduction) we have g0h0 = 0 ∈ (Z/pZ)[x]. Those that
know (Z/pZ)[x] is an integral domain can now just say “. . . and hence g0 = 0 or h0 = 0
and now we’re done”; those of you who know less ring theory can argue more prosaically
(as I did in lectures) thus: if it’s not true that p divides all the coefficients of g0 =

∑
aix

i

then choose i as small as possible such that p - ai. Similarly if p doesn’t divide all the bj in
h0 =

∑
j bjx

j then choose j as small as possible such that p - bj; now an explicit calculation

shows that p doesn’t divide the coefficient of xi+j in g0h0 either – a contradiction. Four
marks for this piece of standard algebra.

(b) Eisenstein’s criterion says that if q is a prime and if p(x) =
∑n

i=0 aix
i ∈ Z[x] is a

polynomial, such that q - an, q|ai for i < n and q2 - a0, then p(x) is irreducible. One mark.
(c) One mark each.

(i) Irreducible by Eisenstein (q = 17).
(ii) Reducible: (x− 8

√
17) is a factor.

(iii) Reducible: p(1) = 0 so (x− 1) is a factor of p.
(iv) This is irreducible, because it’s cubic so if it were reducible then one factor will have
to be linear – however neither x = 0 nor x = 1 are roots and those are the only possibilities
in such a small field.
(v) This is reducible and indeed a cube – it’s (x2 + x+ 2)3.

Q2.

(a) The degree [F : E] is the dimension of F considered as a vector space over E. One
mark. The extension C/Q has infinite degree, because if it were finite then C would be
isomorphic to Qn as a vector space and hence countable, which it isn’t. One mark.

(b) If E ⊆ F ⊆ K are fields, then [K : E] = [K : F ][F : E]. I stated and proved this in
lectures only for the case [K : E] finite, and it’s fine if you stick to this case. One mark.

(c) For a to be algebraic over E we need a non-zero polynomial p(x) ∈ E[x] such that
p(a) = 0. But [F : E] = n is finite, so there’s an E-linear relation between the n + 1
numbers 1, a, a2, . . . , an, and this gives the polynomial we seek. One mark.

If the min poly of a over E has degree d, and if L = E(a) ⊆ F , then a result from
lectures says that [L : E] = d, so [F : E] = [F : L][L : E] has degree a multiple of d. One
mark.

(d) Let’s use the tower law. Set F = Q(
√

5,
√

11), setK = Q(
√

5) and set E = Q. Then
[K : E] must be 2, because x2 − 5 is irreducible (as

√
5 6∈ Q). And similarly [F : K] = 2

as F = K(
√

11) and the min poly of
√

11 over K must be x2− 11, as
√

11 6∈ K. So by the
tower law [F : E] = 4. Two marks.



(e) We have [F : E] = 2 and 1 ∈ E ⊆ F ; extend to a basis {1, b} of F as an E-vector
space. Then b2 ∈ F so b2 = λb + µ with λ, µ ∈ E. Completing the square we see that
if a = b − λ/2 then a2 ∈ E, but a 6∈ E as b 6∈ E, so F = E(a) as E(a) is strictly bigger
than E so has E-dimension at least 2, but it is contained in a space of dimension 2 and is
hence equal to it. Two marks.

(f) If F = E(a) then certainly a 6∈ E (as [F : E] = 2 so F is strictly bigger than E). But
if a2 ∈ E then a is either a root of x2 = 0 or x2−1 = 0 and both of these polynomial factor
into linear factors over E, so all their roots are in E, and hence a ∈ E, a contradiction!
One mark.


