

M3P11 Galois Theory, Problem Sheet 5

1. Let E be a field, and let $D : E[x] \rightarrow E[x]$ be as in lectures. If $\alpha \in E$ then prove $D((x - \alpha)^n) = n(x - \alpha)^{n-1}$.
2. Say $E \subseteq F \subseteq K$, with F/E algebraic, and K an algebraic closure of F . Show that K is an algebraic closure of E .
3. Say $E \subseteq F \subseteq K$ are finite extensions. In lectures we showed K/E separable implies K/F and F/E separable. Prove the converse: if K/F and F/E are separable then so is K/E . Hint: don't try to do it directly from the definition (by which I mean that I don't know how to do it directly from the definition).
4. In this (long and skippable) question I will explain how to build a finite extension F/E which is not simple (i.e. not of the form $F = E(\alpha)$) and which has infinitely many intermediate subfields. As we will see/have seen in the course, the moment things are separable this can't happen, so this example must involve infinite fields of characteristic p . Such weird field extensions are really beyond the scope of the course, so if you want to skip this question then feel free.

Let k be a field. Consider the field $k(s, t)$ of “rational functions in s and t ”; an element of $k(s, t)$ is a ratio $f(s, t)/g(s, t)$ of polynomials $f, g \in k[s, t]$ in two variables, with $g(s, t)$ assumed non-zero, and of course we define $f_1/g_1 = f_2/g_2$ iff $f_1g_2 = f_2g_1$. Pedants will want me to say that $k(s, t)$ is equivalence classes of pairs (f, g) with $f, g \in k[s, t]$ and $g \neq 0$, under the equivalence relation $(f_1, g_1) \sim (f_2, g_2)$ iff $f_1g_2 = f_2g_1$. Algebra whizzes will realise that $k(s, t)$ is just the field of fractions of $k[s, t]$.

(i) Convince yourself that $k(s, t)$ is a field. Convince yourself that the notation is sensible too – any subfield of $k(s, t)$ containing k , s and t must be all of $k(s, t)$.

(ii) Now let k be an infinite field of characteristic p (for example $k = (\mathbb{Z}/p\mathbb{Z})(r)$ with r an abstract variable), and set $F = k(s, t)$ and let E be the subfield $k(s^p, t^p)$ of ratios of polynomials in s^p and t^p . Show that $[F : E] = p^2$ (and in particular the extension is finite).

(iii) If $\lambda \in F$ then show that $\lambda^p \in E$. Deduce that $F \neq E(\lambda)$ for any $\lambda \in F$.

(iv) If $\gamma \in k$ then let E_γ be the field $E(s + \gamma t)$. Prove that for $\gamma, \delta \in k$ we have $E_\gamma = E_\delta$ iff $\gamma = \delta$. Deduce that F/E has infinitely many subfields.

5. Let E be any field of characteristic not equal to 2, say $e \in E$ is an element and that there is no $d \in E$ with $d^2 = e$. Let F be the splitting field of $x^2 - e$ over E . What is $[F : E]$? Prove F/E is finite and Galois. What is $\text{Gal}(F/E)$?

6. Say $E = \mathbb{Q}$, and let F be the splitting field of $x^4 - p$ where p is a prime number. What is $[F : E]$? What is $\text{Gal}(F/E)$?

7. Say $E = \mathbb{Q}$ and let F be the splitting field of $x^p - 1$, where p is a prime number. What is $[F : E]$? What is $\text{Gal}(F/E)$?