

M3P11 Galois Theory, Problem Sheet 2

1. (a) Prove that if $n \in \mathbb{Z}$ and $\sqrt{n} \notin \mathbb{Z}$ then $\sqrt{n} \notin \mathbb{Q}$.
 (b) Prove that $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$. What is the minimum polynomial of $\sqrt{3}$ over $\mathbb{Q}(\sqrt{2})$?
 (c) Use the Tower Law to prove that $[\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}] = 4$.
2. (a) Prove that $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$. Hint: the smallest subfield of the complex numbers containing \mathbb{Q} and $\sqrt{2} + \sqrt{3}$ must contain loads of other things too: write some of them down.
 (b) Deduce that $x^4 - 10x^2 + 1$ is irreducible over \mathbb{Q} .
3. Is $\sqrt{10} \in \mathbb{Q}(\sqrt{6}, \sqrt{15})$?
4. In this question, if $\alpha \in \mathbb{R}_{>0}$ and $n \in \mathbb{Z}_{\geq 1}$ then by $\alpha^{1/n}$ or $\sqrt[n]{\alpha}$ I mean the unique positive real number β with $\beta^n = \alpha$. (This removes ambiguities about a general complex number having n complex roots in this question).
 - (i) Set $\gamma = (1 + \sqrt{3})^{1/3}$. Prove that γ is algebraic. What is its degree over \mathbb{Q} ? What is its degree over $\mathbb{Q}(\sqrt{3})$?
 - (ii) Set $\delta = (10 + 6\sqrt{3})^{1/3}$. Prove that δ is algebraic. What is its degree over \mathbb{Q} ? What is its degree over $\mathbb{Q}(\sqrt{2})$?
5. Prove that any subfield of \mathbb{C} must contain \mathbb{Q} .
6. Prove the part of the tower law that I didn't check: if $E \subseteq K \subseteq F$ are fields, and one of $[K : E]$ or $[F : K]$ is infinite, then $[F : E]$ is infinite.
 Remark: for those unfamiliar with infinite-dimensional vector spaces, a vector space V over a field is infinite-dimensional iff it has no finite spanning set, iff for every $n \geq 1$ there exist n elements v_1, v_2, \dots, v_n which are linearly independent.
7. Let A denote the set of complex numbers which are algebraic (over \mathbb{Q}).
 - (i) Prove that A is a field.
 - (ii) Prove that $[A : \mathbb{Q}] = \infty$. Hint: you can use Eisenstein to construct irreducible polynomials of large degree...
 - (iii) Prove that A is a countable set.
 - (iv) Prove that $[\mathbb{C} : A] = \infty$.