M2PM2 Algebra II, Progress test 1, 15/10/2013, solutions.
Q1.

i. This is false — a counterexample is the dihedral group Dis, the symmetries of a regular
hexagon. If it were cyclic then it would have to have an element of order 12. But what could
this element be? The subgroup of rotations has order 6, so by Lagrange every rotation
has order dividing 6 and hence not equal to 12; the other six elements are reflections, but
all of these have order 2. So there are no elements of order 12. Two marks (and perhaps
lose one mark for just saying “D;, is obviously not cyclic” because we deserve a little more
than that surely).

ii. This is not true: the cyclic group C7 has order 7, but it has no subgroup of order 6
by Lagrange. Two marks (but I think that just saying “false by Lagrange” is not quite
enough because you have to rule out the possibility that there are no groups of order 7 at
all!)

iii. This is true: just let G be, say, the cyclic group Ciooo and let g be a generator; then
g # e (e the identity) (because g is a generator), and ¢'%% = ¢ but ¢! = g # e. Two
easy marks.

iv. This is not true and I asked this question on the first example sheet, so those who
prepared properly should have seen this one coming. A counterexample would be G = S5,
the symmetric group. Apart from the identity, all the elements are 2-cycles (of order 2)
and 3-cycles (of order 3). There are lots of dihedral counterexamples too, although these
are slightly trickier to spot. Two marks for this.

v. This isn’t true at all (anyone who thinks it is should think harder about how cyclic
groups work, e.g. rotate a beer-mat a few times). If G is the cyclic group of order 3 (or
indeed any odd prime) and a # b are non-identity elements of G, then (a) and (b) can’t
be {e} so must be G by Lagrange’s theorem. Alternatively you can just give a direct
calculation rather than Lagrange. Two marks.

Q2.

i. Six rotations and six reflections. One mark for this.

ii. Any subgroup of order 2 must contain the identity plus an element which must have
order 2 (by Lagrange, if you like). So we just need to count the number of elements of
order 2. Every reflection has order 2, so that’s six, and if p is the rotation by 27 /6 then the
rotations are {e, p, p?, p3, p*, p°}. Squaring these gives e, p?, p*, e, p?, p*, so p® has order 2
and none of the others do. So there are seven subgroups of order 2, corresponding to the
seven elements of order 2. Three marks for this.

iii. It’s a standard fact that op = p~'o, so (multiply both sides by o on the right and
use 0% = ¢e) we have opoc = p~!. So the result is true for n = 1. For general n > 2 we
use induction: if op" o = p'~" then multiplying the left hand side by opo and the right
hand side by p~! (which equals opo) we deduce op" to?po = p~™, and the left hand side
simplifies to op™o, so we're done. Alternatively just note that (opo)” = op™c because
there’s lots of cancellation. Three marks for this.

iv. There is! If we write Dyy = {e,p,...,p°,0,p0,...,p°c} as usual then z = p* works.
For if g is a rotation, then g = p” for some n, and zg = p"*3 = gz. On the other hand, if



g is a reflection, then g = p"c for some n, where o is a fixed reflection, and zg = p"*30,
whereas (using the standard fact that op = p~'0)

gz = plop’
= p"opioo
= p"p 30 by the previous part
= p"730-
= p"3p% because p has order 6

— pn+30_

and hence zg = gz. Three marks for this tricky question.



