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1. (a) The only non-zero term in the sum defining the determinant is the one
mentioning a13a24a32a41a55, which corresponds to the 4-cycle π = (1324), which
has signature −1. Hence the determinant is −1.

More generally, a permutation matrix is a matrix with exactly one “1” in each
row and each column, and all other entries are zero. Each such matrix defines a
permutation, and the determinant of the matrix is the signature of the permu-
tation. For example the elementary matrices Bij correspond to the permutation
(i j) and have determinant −1, the signature of a transposition.

(b) This matrix is lower-triangular, so by a result in lectures the determinant
is just the product of the diagonal entries, which is −42.

(c) Expanding down the second column, the determinant is

`
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m 0 a b
n e d c
p 0 0 k
h 0 0 t
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and expanding the above 4× 4 matrix down the second column gives

`e
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m a b
p 0 k
h 0 t

∣∣∣∣∣∣ .
Now expanding down the second column of the remaining 3× 3 matrix we get

−`ea
∣∣∣∣(p k
h t

)∣∣∣∣
(note the minus sign, that we pick up because we’re going down the second column
rather than the first), and we can do the 2×2 matrix by hand, giving the solution
as `ekha− pate`.

d) This matrix has determinant zero. For if the matrix is (aij) then we see
that aij = 0 if i ∈ {3, 4, 5} and j ∈ {1, 2, 3}. But thinking about the definition of
determinant, if π is in S5 then π(3), π(4) and π(5) are three distinct elements of
{1, 2, 3, 4, 5}, and hence they cannot all be in the set {4, 5}, which only has size 2.
In particular there must be some i ∈ {3, 4, 5} with π(i) ∈ {1, 2, 3}. Hence this
ai π(i) term will be zero, so the term corresponding to π in the sum defining the
determinant must be zero. Hence the determinant is zero! There are also other
ways to see this – for example expanding down rows or columns gives it to you
without too much trouble.

2. (a) |A(α)| = α − 1. The most painless way to see this, I think, is to expand
down the third column, and then note that one of the resulting minors has one
of its columns equal to the negative of another one, and hence has determinant
equal to zero, so this brings us down to a 3 × 3 matrix, which is a reasonable
computation. Note that one nice check to see if you’ve made a slip: if α = 1 then



the first and second rows of the matrix coincide so the determinant should be zero,
and hence |A(α)| has to be a multiple of α− 1.

(b) α0 = 1 (using result from lectures that system Ax = 0 has a nonzero
solution for x iff |A| = 0).

(c) For α < 1, |A(α)| < 0. If B2 = A(α) then by the multiplicativity of det,
|B|2 = |A(α)| < 0, which is impossible if B is real.

3. Expanding down the first column, we get

|An| = 2|An−1|+
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

−1 0 0 0 . . . 0 0 0
−1 2 −1 0 . . . 0 0 0
0 −1 2 −1 . . . 0 0 0

· · ·
0 0 0 0 . . . −1 2 −1
0 0 0 0 . . . 0 −1 2



∣∣∣∣∣∣∣∣∣∣∣∣
and expanding the big matrix above along the first row gives

|An| = 2|An−1| − |An−2|.

Now check by hand that |A1| = 2 and |A2| = 3, and then |An| = n+1 follows via a
very easy (strong) induction, because it’s true for n = 1, 2 and if we believe it for all
numbers less than n then we see |An| = 2(n−1+1)−(n−2+1) = 2n−n+1 = n+1.

4. Expanding down the first column we get |Bn| = |Bn−1|+ |Bn−1|, hence |Bn| =
2|Bn−1|. An easy check gives |B1| = 1 (and |B2| = 2 if you’re paranoid), and now
Bn = 2n−1 follows by an easy induction.

5. Let’s prove this by induction on s. If s = 1 then the result follows by expanding
down the first column. If s > 1 and we know the result for s − 1 then again we
expand down the first column, and deduce

|A| = b11|A11| − b21|A21|+ · · ·+ (−1)s−1bs1|As1|.

Here, of course Aij means the (i, j)th minor of A. The trick is to notice that the
inductive hypothesis applies to all the Ai1, showing that |Ai1| = |Bi1| · |D|, where
Bi1 is the (i, 1)th minor of B. Now reconstructing, we get

|A| = b11|B11||D| − b21|B21||D|+ . . .

and this is just |B|.|D| (as can be seen by expanding |B| down the first column).

There is also a fancier direct proof, which goes something like this: consider
σ ∈ Sn, with n = s + t. If there is some i ≥ s + 1 such that σ(i) ≤ s, then
ai,σ(i) = 0 (as we’ve just landed in the area where all the zeros are). So the only σ
that contribute to the determinant must send {s+ 1, s+ 2, . . . , s+ t} to {s+ 1, s+
2, . . . , s + t} and hence must send {1, 2, . . . , s} to {1, 2, . . . , s}; hence σ = π1π2
with π1 a permutation of {1, 2, . . . , s} and π2 a permutation of {s+ 1, . . . , s+ t};
then the σ term in det(A) corresponds to the product of the π1 term in det(B)
and the π2 term in det(D).

6. (a) Suppose |A| = 0. Then A is not invertible (by lectures). It follows that AB
is also not invertible (if it were, say the inverse was C, we’d have ABC = I, so
BC would be the inverse of A, contradiction). Hence |AB| = 0, again by lectures.



(b) Similar: suppose |B| = 0. Then B is not invertible. It follows that AB is
also not invertible (if it were, say the inverse was C, we’d have CAB = I, so CA
would be the inverse of B, contradiction). Hence |AB| = 0.

7. There are lots of ways of doing these rather elementary calculations.

(a) |Ai(r)| = r because Ai(r) is upper-triangular, and hence by lectures its
determinant is the product of the diagonal entries, which is 1×1×· · ·×1×r×1×· · ·
which is r.

|Bij | = −1 because Bij is obtained from the identity matrix by swapping the
i and jth rows, and switching two rows changes the sign of the determinant by
lectures.

|Cij(r) = 1 because Cij(r) is either upper triangular or lower triangular, so in
either case its determinant is the product of its diagonal entries, all of which are 1.

(b) Easy check: multiplying diagonal matrices is easy: you just multiply the en-
tries pointwise. So Ai(r)Ai(s) = Ai(rs) and in particular Ai(r)Ai(r

−1) = Ai(1) =
I, so Ai(r

−1) must be the inverse of Ai(r).

Next, BijM is just the matrix obtained from M by switching the ith and
jth rows of M , as can easily be seen by writing down the formula for matrix
multiplication. Hence BijBij = I the identity matrix, so Bij = B−1

ij .

Finally, Cij(r)M is the matrix obtained from M by adding r times the jth
column to the ith column. If we do this to Cij(−r) then we get the identity
matrix. Hence Cij(r)Cij(−r) = I.

8.

1 0 0
0 1 0
3 0 1

1 0 0
0 1 0
0 2 1

1 0 0
0 1 3
0 0 1

1 2 0
0 1 0
0 0 1

 is one answer.

9. First bit was done in lectures. To show ∼ an equivalence relation: obviously
A ∼ A; if A ∼ B then B = E1 . . . EkA, hence A = E−1

k . . . E−1
1 B, so B ∼ A

as all E−1
i are elementary; and if A ∼ B and B ∼ C, then B = E1 . . . EkA

and C = F1 . . . FlB with all Ei, Fi elementary, so C = F1 . . . FlE1 . . . EkA, hence
A ∼ C.


