KMB, 5th November 2013

M2PM2 Algebra II, Solutions to Problem Sheet 5.

a) Yes — image Cy, kernel Cs.

b) No (does not satisfy ¢(zy) = ¢(x)d(y) — for example if x = (1 2 3) and
y = (2 3 4), then x and y have order 3 but xy = (2 1)(3 4) has order 2).

c¢) Yes — image Z, (¢ is surjective), kernel (n) = {kn : k € Z}.

d) Yes, image R+, kernel {1} (in fact this ¢ is an isomorphism, with inverse
map z +— 2).

e) No (map not even well-defined! For [0]g = [6]¢ but [0]7 # [6]7.)

f) Yes, image {[1], [2], [4]} and kernel {[0], [3]}, as you can see by simply writing
what ¢ does to each element of Zg.

2.

(a) This is straightforward if you can remember what an equivalence relation
is! To prove & ~ x choose g = e and then note that ¢~ 'zg = x. Next, if z ~ v,
then for some ¢ we have ¢ 'azg = y, so if h = ¢! then h='yh = gyg~! = z, and
so y ~ z. Finally, if g~'2g = y and h~'yh = 2, then (gh)'x(gh) = h~ g lagh =
h~'yh = z and hence ~ is transitive. We're done!

(b) Assume first that H is normal. Say = ~ y and x € H. It suffices to
prove that y € H. By definition of ~, there exists g such that y = g~ 'zg. Hence
y € g~'Hg = H by normality, and we’re done.

Conversely suppose that H is a union of conjugacy classes. We need to check
(using 6.4) that if g € G is arbitrary, then g~'Hg C H. But if y € g~'Hg then
y = g 'ag for some x € H, and y ~ . Now H is a union of conjugacy classes, so
x € H implies y € H, which is what we wanted to show.

3. (a) Note first that if o = (1234 5) then 02 = (1352 4). We want to find some x
such that 2 'ox = 02, and multiplying on the left by z it’s equivalent to solve
ox = xo?. One checks explicitly that if x = (24 5 3) then oz = (25 4 1) = z0?,

so we're done.

(b) Again the question boils down to solving oz = zo?, but this time = € As,
so our solution x = (2 4 5 3) above does not work, as a 4-cycle has signature —1.
Are there any solutions at all? Say x is a solution and x(1) = n. Evaluating
or = xo? at 1, the left hand side is o(n) = n + 1 (with the convention that
541 =1, ie. work mod 5), and the right hand side is z(3). So z(1) = n implies
z(3) = n+ 1. Evaluating at 3 we deduce z(5) = n + 2, and then z(2) = n+ 3 and
x(4) =n+4. Now we know 1 <n <5, and trying all possibilities we deduce that
x=(3245)or(1254)or(1342)or(1435)or (152 3);these are hence the
only solutions to oz = xo? in S5, and none of the solutions are in As, so o and o2
are not conjugate in As.

4. Say g€ Gand x € MNN. Then g~'zg € M (as M <G) and g~ 'zg € N (as
N < @), hence g~'zg € M N N. Thus g~} (M N N)g C M N N. This is true for
all g € G, so Lemma 6.4 implies M N N <« G.



5. It is not hard to check that ¢ is a homomorphism: ¢(zy) = g lzyg and

d(x)o(y) = g 'zgg 'yg = g 'ayg. Furthermore, ¢ is a bijection, because if I
define v : G — G by ¢(y) = gyg~! then it is easily checked that 1 is an inverse
for ¢ (the gs cancel). Hence ¢ is an isomorphism.

To show that ¢ may not be the identity map, we just need to find a group G

and elements  and g such that g~'xg # x, or equivalently (multiply on the left
by g) that gz # xg. But this is easy: for example take G = S3 and x = (1 2) and

g=(13).
6.
(a) Let = = p"* € (p"). Then

plap = pTItTH = g,
(po)ra(plo) = (op™)p"(plo) = op"'o = p"oo = p T = a .

Hence g~ 'zg € (p") for all g € Doy, so (p") < Day,.

(b) p~H(p"o)p = p~'p"p~ o = p"%0 & (p"0) (using n > 3 here), so (p"0) is
not normal in Ds,.

7. (a) Let H be a subgroup of Dy, and assume H # {e} or Dj,. By Lagrange,
H has size 2 or p, so H is cyclic. If |H| = 2 then H is generated by a reflection
o' = plo: as p~lo’p = p'~%0 # e or ¢/, this is not normal in Dyy,. If |[H| = p then
H = (p), which is normal by Q6.

Therefore the normal subgroups of Dy, are {e}, Dy, and (p).

(b) By lectures, the groups H for which there is a homomorphism from Dy,
onto H are the groups Dyy,/N, where N < Dy,. Hence the groups H are Ci, Dy,
and Ch.

8. (i) Yes, for example ¢(z) = 23 (or ¢(z) = 2°).

(ii) No: the image of any homomorphism Ci3 — C2 x Cy must be cyclic (as it
will be generated by the image of a generator of C12), so it can’t be surjective.

(iii) No. For suppose ¢ is a homomorphism from Dg onto Cy. Then ker(¢)
has size 2. Let K = ker(¢). As K < Dg, K is not generated by a reflection (by
Q6¢), hence K = (p?). The First Isomorphism Theorem applied to ¢ implies that
Dg/K = Im ¢ = C4. But it is not hard to check (I may well have done an example
in lectures quotienting out D13 by (p?)) that Dg/{(p?) = Cy x Cy, because each of
the 4 right cosets K, Kp, Ko, Kpo has order 2, and this is a contradiction.

(iv) Yes: let N = (p?) < Dg. As in the previous part, Dg/N = Cy x Cy. Hence
the map x — Nz is a homomorphism from Dg onto Cy x Cs.

9. (a) If N is a subgroup of abelian G and g € G, then for n € N we have
g 'ng=g 'gn=n€ N,so g~ 'Ng C N for all g, and hence N is normal.

For z,y € G, (Nz)(Ny) = Nay = Nyx = (Ny)(Nx). Hence G/N is abelian.

(b) G =53, N = A3. Then N is abelian, as is G/N = Cs.

(c) Let G = Dg, N = {e,p?,0,p’°c} and M = (o). I claim that N < G.
Assuming this, part (a) shows that M < N as N is abelian. But M is not normal
in G.

It remains to convince you that N is a normal subgroup of G. If g € N then
g !Ng=Ng=N,as go!N = N. If however g ¢ N then (because the size of G



is twice that of N) we must have that Ng is the other coset of N in G, that is,
the elements of G that aren’t in N (because distinct cosets are disjoint). Similar
remarks apply for gN, and hence Ng = gN and multiplying by ¢~ we deduce
g 'Ng = N. Hence N is indeed normal in G.



