KMB, 14th November 2013

M2P2 Algebra II, Solutions to Sheet 4.

1. (a) Dgp has an element of order 10, and S5 doesn’t (check cycle types for
example). So S5 has no subgroup isomorphic to Dag.

(b) Let z = (123)(45) and y = (12). Then = has order 6, y has order
2, and check that yr = 2~ 'y. These are the equations which determine the
multiplication table of Dia, so {e,z,22,...,2° y, 2y, ..., 2%y} is a subgroup of
Sy isomorphic to Dys.

2. (a) Cpr = {x € C : 27" = 1}. This has a subgroup C,r—1, and I claim that
all elements not in this subgroup have order p”. For if z € C}+ then the order
of z is some divisor of p”, so it’s p® for some 0 < s < r, and s < r if and only if
the order divides p"~! if and only if 2z € Cpr-1.

So the number of elements of order p” is p” — p"~!. Similarly (applying the
argument to Cp,r—1, Cpr—2 and so on) for each 1 <4 < r, number of elements of
order p' is p* — p'~1. (And of course there is 1 element of order 1.)

(b) Pretty much the same as in (a). If g € (Cpr)* then g?" = 1 so g has
order p® for some s < r, and s < r if and only if g € (Cp7-71>k. So there are
p"=Dk elements of order less than p”, leaving p™* — p("=D* elements of order
exactly p".

3. Need to prove G, =2 G = a = b (reverse is trivial).

This is tough. Here’s the trick. The elements of order dividing p™ in G, are
simply the subgroup C’pm;n{n,al} X C’pm;n{n,az} X oo X C’pmin{n‘ak}, which has size
pA) | with A(n) = Zle min{n,a;}. Letting B(n) denote the corresponding
function for Gy, we deduce A(1) = B(1), A(2) = B(2) and so on. Now A(1) =k
and B(1) =1 so k = 1. Similarly A(2) = A(1) + (k — t) where ¢ is the number
of i such that a; = 1, and so A(2) = B(2) implies that the number of a; which
are 1 equals the number of b; which are 1. Continuing this way, get a = b.

4. This is tougher! Here is a very brief sketch of the solution. By the structure
theorem, and the fact that C,, X C,, = Cyp if hef(m,n) = 1 (applied repeatedly)
we can deduce that every group is a product of cyclic groups of prime power
order. Hence every group is isomorphic to a group of the form mentioned in the
question.

Now uniqueness. Note first that given an abelian group G and a prime
dividing the order of GG, we know from the paragraph about that we can write
G = G, x H with G, of the type in Q3 (we write G as a product of cyclic
groups of prime power order and then just group together the ones for which
the order is a power of our fixed prime p). What we want to do of course is to
figure out the subgroup G, attached to p in this way, intrinsically in terms of G
only. A little more precisely: we need to show that if if G & G, x H; & Gp X Hs
with the orders of G, and Gy a power of p, and the orders of H; and Hs both
prime to p, then G, and G}, are isomorphic. The reason for this is that both



of these groups are isomorphic to the subgroup of G consisting of elements of
order some power of p! So Ga = G,. Now we use Q3 and then repeat for each
prime dividing the order of G to finish.

5 and 6: see 7!

7. Let |G| = 2p with G non-abelian and p prime. The non-identity elements
of G have orders 2, p or 2p. There isn’t one of order 2p (otherwise G would be
cyclic, hence abelian). Not all have order 2, otherwise G would be abelian by
Sheet 2, Q6. Hence G has an element x of order p. It also has an element y of
order 2 by Proposition 5.2.

Let H be the cyclic subgroup (x) = {e,z,22,..., 277} of G. Then y ¢ H,
so H and Hy are the two different right cosets of H in G, so

G=HUHy={e,x,2% ...,2"  y ay 2%y, ..., 2P 1y} (1)

Now consider the element yz € G. It is in the above list, and is not equal to
any z¢ (as y & (z)). If yx = xy we easily see that G is abelian, a contradiction.
So yx = 2’y for some 7 with 2 <4 < p— 1.

Now we need to think a little — this is where the general case gets trickier than
the |G| = 6 case. What is the order of yz? Well, (yz)? = yaryzr = 2'yyz = z*+1.
If i < p—1 then 2°*! has order p, but yz can’t have order p, because if it did
then we get the following contradiction: p is odd so (yz)? = 2/y? = 27y (for
some j), and 27y can’t be the identity element. Hence yz has order 2p and G
is cyclic.

The remaining case is when i = p — 1; then and yz = 2P~y = 27 1y. We
now have all the equations defining the dihedral group Da,: 2P = y* = e and
yr =z~ 'y, and hence G 2 Dy,,.

8. (a) Easy.

(b) By (a) we will get all the matrices A"B*® if we take 0 < r < 3 and
0 < s <1 (note the upper limit 1 rather than 3 for s, since we can replace B2
by A?). These matrices are

1 0 0 1 0 1
= (o 0) =+ (50) =)

(c) We check the 3 subgroup properties:
(1) I €Qs
(2) Closure: using the equation BA = A3 B, we see that any product (A" B*)(A!B")
is again of the form A" B", so is in Qs.
(3) Inverses: the inverse of A" B®is B~*A~", and using the equation BA = A3B,
we see this is again of the form A™B", so is in Qg.

Hence Qg is a subgroup of GL(2,C).

(d) Check from the list of matrices in (b) that Qg has only 1 element of order
2 (namely —I). Since Dg has 5 elements of order 2, it follows that Qs % Ds.



9. (a) Let G be a non-abelian group with |G| = 8. The elements of G have order
1,2,4 or 8 by Lagrange. Now G has no element of order 8 (otherwise G = Cy
which is abelian), and not every element x satisfies 2 = e (otherwise G would
be abelian by Sheet 2, Q6). Hence G has an element x of order 4.

(b) We are given that y # 22, and also y # x or ™! as these have order 4.
Soy € G— (z) and

G = (x) U (2)y = {e,x, 2%, 2%, y, 2y, 2%y, 2%y}
Consider the product yx. It is clearly not e, z, 2%, 23 or zy (the last would force
G to be abelian). So yz = 2%y or z3y. If yx = 2%y then there are lots of ways
of fiddling around to get a contradiction. Here’s one:

yr =’y = 2> =yryt = e = (2°)? = (yay N (yay ) =yafy T =2’ =e

which is a contradiction.
Hence yx = 23y. Now we have the equations

zt=e, y? =e, yr =23y

These equations determine the multiplication table of G, and as they are also the
equations determining the multiplication table of Dyg, it follows that G = Dg.

10. By Q9(a), G has an element x of order 4. Pick y € G — (). Then
G = <£C> U <.’L'>y = {67 x, $27 1'3, Yy,ry, 1'2y, x3y}

Consider the product yx. Show exactly as in Q9(b) that yz = x3y.

If y has order 2 then G = Dg by Q9(b). The only other possibility is that
y has order 4, so assume this now. Consider 32. It cannot be equal to e,z or
23 (the latter two have order 4). It cannot be y,zy, 2%y, 23y as y & (x). So
y? = 2. We now have the equations

zt=e, 2? =42, yr =23y,

These equations determine the mult table of G, and as they are also the equa-
tions determining the mult table of Qs, it follows that G = Qg.



