KMB, 15/10/13

M2PM2 Algebra II Solutions to Sheet 2

1. (a) Say g is an isometry that fixes two points v and w # v. Say « is a general point in R2.
Then d(g(z),v) = d(z,v) = a say (as g(v) = v), and similarly d(g(x),w) = d(x,w) = b.
Let o denote the reflection about the line L through v and w. Now convince yourself either
by doing the algebra or drawing two circles, that the circles centre v radius a and centre w
radius b meet at at most two points, and that if they meet at « (which they do) then the
only other point where they can meet is at o(z). We conclude that for each z € R?, g(x)
is either = or o(x) (and in particular g(z) = x for all € L).

Now if g(x) = o(x) for all x, then ¢ = o and we’re done. So let’s say g(z) = x for
some x ¢ L and let’s prove that g must be the identity. If y is a point in R? on the same
side of L as x then d(z,y) < d(z,0(y)) = d(g(z),o(y)), so we can’t have g(y) = o(y) and
hence g(y) = y. A similar argument works for points on the opposite side of L. Hence g
must be the identity.

(b) If g fixes three non-collinear points v, w, x then by (a) g is either the identity or
the reflection about the line through v and w — but this reflection moves z. So g must be
the identity.

2. We must show three things: (i) G =2 G, (ii)) G ®* H = H 2 G, and (iii) G 2 H, H %
K=_G=K.

For (i), observe that the identity function f(z) = = (x € G) is an isomorphism from G
to G.

For (ii), let ¢ : G — H be an isomorphism. We claim ¢! is an isomorphism H — G.
It is a bijection (by M1F). And for a,b € H, we have a = ¢(c),b = ¢(d) for some ¢,d € G,
hence ¢~ (ab) = &~ 1 (9(0)6(d)) = 6 (Bled)) = cd = ¢~ (a)~}(8). Hence ¢~ : H — G
is an isomorphism, so H = G.

For (iii), let ¢ : G — H and ¢ : H — K be isomorphisms. Then ¢y o¢ : G — K is a
bijection (M1F again), and is an isomorphism since for all z,y € G,

(Yo o)(zy) = ¥(d(zy)) = Y(d(x)d(y) = ¥(o(2)) ¥((y)) = (Yo d)(x) (¢ © 9)(y).
Hence G = K.

3. (a) ¢(eg) = ey as shown in lectures, so ey = ¢(gg~!) = d(g)p(g~!) hence ¢p(g1) =
#(g9)~t. (b) Say ¢(g) had finite order. Then ¢(g)" = ey for some positive integer n, and
hence ¢(¢g") = ey = ¢(eq). Because ¢ is a bijection, this implies g" = eg, so g has finite
order, a contradiction.

4. Call these groups G1, ..., G in the order they are listed. Then Gy = (Z,+) = (71) = G5
as they are both infinite cyclic. Also G3 = (Q*, x) = G, an isomorphism being a — a — 1
(one has to check that (a —1)* (b—1) = ab—1 to check that this map is an isomorphism,
but this is easy). There are no further isomorphisms between these groups: Gs is not
isomorphic to any of Gy, Gz, G4 as it is cyclic and the others aren’t (what could a
generator be?); G is not isom to G1,G4 as it has an element of order 2 (namely —1)
and the others don’t; and finally G; 2 G4 — this is tricky, here’s the argument. Spose
¢ : Q — Q¢ is an isomorphism, sending 1 to f say. Then f # 1 (as ¢(0) = 1), and for
any n € N, ¢ must send 1/n to the n'” root of f; this cannot lie in Q for all n.

5. (a) Digo has elements of order 60, whereas S5 does not, so S5 % Disg by Prop 2.1
of lectures. And C1ag is not isomorphic to either of these groups as it is abelian and the
others are not.

(b) Isomorphism ¢ : Dg — Sz is given by sending each element of Dg to the corre-
sponding permutation of the corners of the triangle.

(c) Isomorphism z — €® shows (R, +) = (Rso, X). But (Q,+) % (Qs0, x) by Q3.
(d) One subgroup of size 4 is (p), the subgroup consisting of all rotations. Another is the



subgroup consisting of the symmetries e, p?, o, 0p?. These subgroups are not isomorphic
as one is cyclic and the other is not.

6. (a) Let 2,y € G. Then 22 = y? = (2y)? = e. So e = zwyy = xyry. Multiply on left by
z~! and on right by y !, to get 2y = yz. Hence G is abelian.

(b) Suppose |G| > 2. Pick non-identity =,y € G, * # y. Then check {e, z,y,xy} is
a subgroup (closure - write down mult table; inverses - each element is its own inverse).
Hence 4 divides |G| by Lagrange.

7. (i) The trick I explained in lectures (there are infinitely many groups of size 1) easily
generalises.

(ii) As we are considering groups up to isomorphism, we can assume that our group
elements are a fixed set, say {ai,...,a,}. Clearly there are only finitely many possible
mult tables for this set, hence only finitely many possible groups with these elements.

Note: the function sending a positive integer n to the number of groups of order n up
to isomorphism is quite interesting. It is sequence A000001 (the first one!) in the online
encyclopedia of integer sequences (oeis.org). No closed form for it is known and unless
I'm out of date, we don’t know how many groups there are of order 2048. The number
of groups of order 1024 is 49487365422 and I believe the proof of this was a brute force
computer calculation.

8. (a) Both +1 (because there are an even number of even cycles in both cases — it doesn’t
matter that the cycles aren’t disjoint).

(b) €, (3) (16 “a 3_CyC16”)a(5)7 (7)a (27 2)7 (2a 4)7 (37 3)3 (27 27 3)

(c) Elements of order 2 are those of cycle-shape (2,2). The number of these is (;) X

5 1
(5) x 3 = 105.

9. As g has odd order, it is a product of disjoint cycles, all of odd length. These are all
even perms., therefore g is even.

Alternatively argue by contradiction: if g has order m, odd, and sgn(g) = —1, then
g™ = e gives —1 = (—=1)™ = sgn(e) = +1, a contradiction.



