

**M2PM2 Algebra II****Problem Sheet 1**

Questions marked with  $\ddagger$  are challenge problems. They are probably harder than most exam questions and can be safely ignored unless you're looking for a challenge. There will be one per sheet until I run out of ideas. No answers will be supplied for the  $\ddagger$  questions.

**1.** (*Revision!*) Decide whether each of the following statements is true or false. Throughout,  $G$  is a group.

1. If we can find elements  $g, h$  in  $G$  such that  $gh = hg$  then  $G$  is abelian.
2. If  $G$  is cyclic then  $G$  is abelian.
3. If  $G$  is not cyclic then  $G$  is not abelian.
4. If  $G$  is infinite then no element of  $G$  has finite order.
5. If  $G = S_n$  then the size of every subgroup of  $G$  divides  $n!$ .
6. If  $G = S_n$  then no element of  $G$  has order greater than  $n$ .
7. If the order of every non-identity element of  $G$  is a prime number then  $G$  is cyclic.
8. If  $G = \langle g \rangle$  is an infinite cyclic group, then  $g$  and  $g^{-1}$  are the only generators of  $G$ .
9. If  $G$  is cyclic then  $G$  contains two different elements  $g_1$  and  $g_2$  such that  $G = \langle g_1 \rangle = \langle g_2 \rangle$ .
10. If  $G$  is cyclic of order 9 then  $G$  contains six different elements  $g_1, g_2, \dots, g_6$  such that  $G = \langle g_1 \rangle = \dots = \langle g_6 \rangle$ .
11. If  $G = GL(2, \mathbb{R})$ , then some elements of  $G$  have finite order and some have infinite order.
12.  $\mathbb{Z}_7^*$  is a cyclic group.
13. Every group of size 4 is abelian.

**2.** Let  $D_8$  be the dihedral group of size 8 consisting of the rotations  $e, \rho, \rho^2, \rho^3$  and reflections  $\sigma_1, \dots, \sigma_4$  described in lectures. Write  $\sigma = \sigma_1$ . Prove

- (a)  $\sigma\rho = \rho^{-1}\sigma$
- (b)  $\{\sigma, \rho\sigma, \rho^2\sigma, \rho^3\sigma\} = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4\}$
- (c) for any  $i, j$ , the product  $\sigma_i\sigma_j$  is a rotation (*hint: use (a) and (b)*)
- (d)  $D_8$  has five elements of order 2 and two elements of order 4
- (e)  $D_8$  has exactly seven different cyclic subgroups.

**3.** Do Q2, parts (a)–(c) for the dihedral group  $D_{2n}$  for  $n$  an arbitrary integer with  $n \geq 3$ .

**4.** Let  $\Pi$  be the infinite strip pattern

$$\dots D \ D \ D \ D \ D \dots$$

Show that every element of the symmetry group  $G(\Pi)$  is of the form  $\tau^n$  or  $\tau^n\sigma$ , where  $\tau$  is a suitable translation and  $\sigma$  is a suitable reflection. Prove that  $G(\Pi)$  is abelian.

**5.** For each of the following figures, describe the elements of the symmetry group of the figure, and state which of the groups is abelian:

- (a) A non-square rectangle
- (b) A circle.
- (c) Two hexagons stuck together along one edge.
- (d) A pacman (2d, without eyes).
- (e)  $\mathbb{Z}^2$ .

**6.**  $\ddagger$  Does there exist a group  $G$ , a subgroup  $H$ , and an element  $g \in G$  such that  $gH \subseteq Hg$  but  $gH \neq Hg$ ? In other words, can a right coset be strictly bigger than a left coset?