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Chapter 0: Introduction.

http://tcc.maths.ox.ac.uk/syllabi/L-Functions.shtml

(or just google TCC Oxford) for books. Syl-

labus is mildly inaccurate (my fault): Tate

didn’t give a “new proof” of the functional

equation of the Riemann zeta function—he

conceptually explained an older one.

Basic definitions.

If r > 0 is real and s is complex, define rs :=

exp(s. log(r)). Note that |rs| = rRe(s).

The Riemann zeta function is a holomorphic

function of a variable s, whose definition for

Re(s) > 1 is

ζ(s) :=
∑
n≥1

n−s.
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ζ(s) :=
∑
n≥1

n−s.

It’s easily checked to converge to a holomor-

phic function (the convergence is absolute

and locally uniform). The first big fact is

that it has a meromorphic continuation to

s ∈ C with a simple pole at s = 1 and no

other poles. We’ll see a proof of this in Lec-

ture 2.

To explain the functional equation (relating

ζ(s) to ζ(1− s) I’ll need the Γ function

Γ(z) :=
∫ ∞
0

tz−1e−tdt

which converges (absolutely and locally uni-

formly) for Re(z) > 0 and hence defines a

holomorphic function there; we’ll see that

this also has a meromorphic continuation to

z ∈ C but I want to state the functional equa-

tion before we get onto proofs.
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The theorem (due to Riemann) is

ζ(s) = 2sπs−1 sin(πs/2)Γ(1− s)ζ(1− s).

This is an equality of meromorphic functions;

one has to be a bit careful. For example if

s is a positive even integer then the simple

zero of sin(πs/2) cancels the simple pole of

Γ(1 − s) on the RHS (when we get off the

introduction and onto the details we’ll see

that Γ has some simple poles).

Here’s a nicer (more symmetric) way of writ-

ing the functional equation: this is crucial. If

we set

ξ(s) := π−s/2Γ
(
s

2

)
ζ(s)
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ξ(s) := π−s/2Γ
(
s

2

)
ζ(s)

then the functional equation can be rewritten

ξ(s) = ξ(1− s)

We’ll prove this before we do anything else

because it’s kind of important to us. And

then we’ll look at the proof and spend the

rest of the course trying to generalise it to

a conceptual proof of meromorphic continu-

ation of a huge class of functions.
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Remarks.

1) ξ is truly a “product of local factors”; one

can check that ζ(s) =
∏
p(1− p−s)−1 (where

the product is over all prime numbers; this is

because every positive integer is uniquely the

product of primes). The factor (1 − p−s)−1

is “the local factor at p”. The stuff that was

in ξ but not in ζ is the “local factor at ∞”.

We’ll make this rigorous later. It was one

of Tate’s many insights that this could be

formalised and massively generalised.
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2) Why do we care about ζ(s), either for

Re(s) > 1, or for all s ∈ C? It’s a well-

observed phenomenon that the zeta function

(and its generalisations) encode arithmetic

information, especially where ζ doesn’t con-

verge. Indeed, the general idea is that given

an arithmetic object, it could have a zeta

function, which will converge for Re(s) suf-

ficiently large, and then it might be a tough

theorem (or, more likely, a profound open

conjecture) that this zeta function has a mero-

morphic continuation to the complex num-

bers, and then “special values” of this func-

tion (i.e. its values at certain carefully-chosen

points) might tell you information about the

original arithmetic object.
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Examples of this phenomenon: ζ(2) = π2/6

and ζ(4) = π4/90 and

ζ(12) = 691π12/638512875

(denominator is 36537211.13) and ζ(−11) =

691/32760 (denominator is 2332.5.7.13; nu-

merator is prime). These numbers are re-

lated to Bernoulli numbers—for example B12 =

−691/2730. All this was known to Euler

(1700s), in some sense. Bernoulli numbers

tell us information about unramified exten-

sions of cyclotomic fields: so in some sense

the zeta function really is telling us that the

class number of Q(µ691) is a multiple of 691.

The Riemann zeta function has a simple pole

at 1 (with residue 1). Hence there are in-

finitely many primes! (think about the rep-

resentation of ζ(s) as a product). Dirichlet’s

theorem (about 150 years ago) pushed this

idea a lot further: mild generalisations of the

zeta function plus their behaviour at s = 1

give his famous theorem that there are “in-

finitely many primes in an AP”.
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The Riemann Hypothesis is that all the ze-

ros of the Riemann zeta function, other than

those at s = −2,−4,−6, . . ., lie on the line

Re(s) = 1/2. This is a deep open problem

which, were it to be true, would have lots

of applications (it and its generalisations to

other zeta functions give you all sorts of re-

sults about the error term in the prime num-

ber theorem, or the smallest quadratic non-

residue mod p, and so on).

Generalisations of the Riemann zeta func-

tion: I’ve already mentioned Dirichlet’s “L-

functions”: Also, a number field K has a zeta

function ζK(s), with ζQ(s) being the classical

Riemann zeta function. The function ζK(s)

has a simple pole at s = 1 and the residue is

lim
s→1

(s− 1)ζK(s) =
2r1 · (2π)r2 · hK ·RK

wK ·
√
| DK |
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lim
s→1

(s− 1)ζK(s) =
2r1 · (2π)r2 · hK ·RK

wK ·
√
| DK |

where, as usual, r1 is the number of real em-

beddings K → R, r2 is half the number of

non-real embeddings K → C, hK is the size

of the class group of K, RK is the regulator

(this is to do with the logarithms of the fun-

damental units), wK is the number of roots

of unity in K and DK is the discriminant of K.

Using the functional equation (this zeta func-

tion also has a functional equation) we can

recast this statement as a statement about

ζK near s = 0, and it turns out to say that

ζK(s) has a zero of order r1 + r2−1 at s = 0

(the rank of the class group) and the power

series expansion near s = 0 looks like

(−hK.RK/wK)sr1+r2−1 + . . . .
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ζK(s) = (−hK.RK/wK)sr1+r2−1 + . . . .

So in some sense the reason ζ(0) = −1/2 is

because the rational integers are a PID and

the only units are the two roots of unity (and

hence the regulator is 1).

Zeta functions hold profound arithmetic se-

crets. More general zeta functions are also

called L-functions. Putting Dirichlet’s ideas

together with the generalisations to number

fields gives the “correct” analogue and proof

of Dirichlet’s theorem for the integers of a

number field.
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Other things with zeta functions: automor-

phic forms, elliptic curves, algebraic varieties,. . . .

Special values of L-functions and analogues

of the class number formula above give pro-

found conjectures. For example the Birch–

Swinnerton-Dyer conjecture is just the ana-

logue of the above theorem about ζK(s) near

s = 0, but for the L-function of an elliptic

curve.

Hecke proved Tate’s theorem first; but Tate’s

proof was amenable to vast generalisations

and has run and run.
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Chapter 1: Meromorphic continuation and

functional equation of the Riemann ζ func-

tion.

1.1 The Γ function.

Definition:

Γ(z) =
∫ ∞
0

tz−1e−tdt.

Converges for Re(z) > 0 [integrand blowing

up at zero if Re(z) < 1 but not too badly: in-

tegral converges] to a holomorphic function.

13



Integrate by parts: for Re(z) > 0 we have

Γ(z + 1) =
∫ ∞
0

tze−tdt

= [−tze−t]∞0 +
∫ ∞
0

ztz−1e−tdt

= zΓ(z).

Hence for Re(z) > 0 and n ∈ Z≥1 we have

Γ(z + n) = (z + n− 1)Γ(z + n− 1)

= (z + n− 1)(z + n− 2) . . . (z + 1)zΓ(z)

and hence Γ(z) = Γ(z+n)/[(z+n−1)(z+n−
2) . . . (z + 1)(z)], and the right hand side is

meromorphic for Re(z) > −n, with (at worst)

simple poles at z = 0,−1,−2, . . . ,1 − n. So

we can now regard Γ as a meromorphic func-

tion on the entire complex plane, satisfying

zΓ(z) = Γ(z + 1).
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Easy: Γ(1) = 1 (just compute the integral),

and now it’s an easy exercise from zΓ(z) =

Γ(z + 1) to check that

• Γ(n+ 1) = n! for n ∈ Z≥0

• Γ(z) has a simple pole at z = 0,−1,−2, . . .

and no other poles. (exercise: compute

the residue at these poles).
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To check the two versions of the functional

equation that I gave in the first lecture are

the same, one has to check

2sπ−1/2 sin(πs/2)Γ(1−s)Γ(s/2) = Γ((1−s)/2).

but I won’t use this because we’ll never use

the asymmetric functional equation. [It fol-

lows easily if you can prove

• Euler’s reflection formula

Γ(1− z)Γ(z) = π/ sin(πz)

• and Legendre’s duplication formula

Γ(z) Γ
(
z +

1

2

)
= 21−2z √π Γ(2z).

]
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1.2: Poisson summation.

Define

θ(t) =
∑
n∈Z

e−πn
2t2

(a function on the positive reals); it’s easily

checked to converge, and tends to one (very

rapidly) as t → ∞. Our goal here is to show

the fundamental fact

θ(1/t) = tθ(t).

This is not at all obvious (to me)—for exam-

ple e16π ∼ 1020 so it’s not surprising (looking

at the definition) that

θ(4) = 1.0000000000000000000002958 . . .

but it is surprising (to me) that

θ(1/4) = 4.00000000000000000000118322 . . .

(or equivalently, why, if r = e−π/16 = 0.821724958 . . .

then r + r4 + r9 + r16 + r25 + r36 + r49 =

1.49999 . . ..
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The fundamental fact

θ(1/t) = tθ(t)

follows from the Poisson Summation formula,
which follows from the general theory of Fourier
series. Here’s how a proof goes.

First let me remind you of a crucial integral:∫ ∞
−∞

e−πx
2
dx = 1

because if I denotes the integral then I2 =∫
R2 e−π(x

2+y2)dxdy which is (recalling dxdy =
rdrdθ) ∫

r≥0

∫
0≤θ≤2π

e−πr
2
rdrdθ

which is 2π[−e−πr2/2π]∞0 = 1. As a conse-
quence we deduce∫ ∞

−∞
e−πy

2+2πirydy = e−πr
2

(∗)

for r > 0 real (complete the square with
x = y−ir and use Cauchy’s theorem). As an-
other consequence we deduce Γ(1/2) =

√
π

(Exercise: comes straight from the definition
after a simple substitution).
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Now let’s get back to θ. Fix t > 0 and define

(for x ∈ R) a function f(x) = e−πt
2x2, and

then define

F (x) =
∑
n∈Z

f(x+ n)

=
∑
n∈Z

e−πt
2(x+n)2.

Note that F (0) = θ(t). But note also that

F is continuous and periodic with F (x) =

F (x + 1) so by the theory of Fourier series

[which we’ll do in some generality later on,

but let me just assume the classical theory

now] we must have F (x) =
∑
m∈Z ame

2πimx

and we can compute

am =
∫ 1

0
F (x)e−2πimxdx.
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am =
∫ 1

0
F (x)e−2πimxdx

and this comes out to be∑
n∈Z

∫ 1

0
f(x+ n)e2πimxdx

=
∑
n∈Z

∫ 1

0
f(x+ n)e2πim(x+n)dx

because changing x to x+ n changes things

by e2πimn which is 1. And now this is just∫ ∞
−∞

f(x)e2πimxdx

so we have proved that

am =
∫ ∞
−∞

e−πt
2x2+2πimxdx.
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am =
∫ ∞
−∞

e−πt
2x2+2πimxdx.

Now setting y = tx and r = m/t we get

am = t−1e−πm
2/t2

from (∗) above. So that’s am and now (from

the definitions)

θ(t) = F (0)

=
∑
m∈Z

am

= t−1θ(1/t)

so we’re done.

Corollary: θ(t) ∼ 1/t for t > 0 small.
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1.3: Meromorphic continuation of ξ(s)

and ζ(s).

Define, for Re(s) > 1,

ξ(s) :=
∫ ∞
t=0

(θ(t)− 1)ts−1dt.

Note: this was not the definition of ξ we saw

in the first lecture; but we’ll prove it’s the

same. This function ξ is the Mellin Trans-

form of θ(t) − 1, and we’ll now see that the

relation between θ(t) and θ(1/t) translates

into proof of meromorphic continuation and

functional equation for ξ(s).

If Re(s) > 1 then this integral converges. In-

deed the integral from 1 onwards is fine, be-

cause θ(t) − 1 is decaying exponentially, and

the integral from 0 to 1 is OK because θ(t)

is like 1/t so we’re just OK.

Now breaking up the integral at the point

t = 1 we see
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ξ(s) =
∫ ∞
t=1

(θ(t)−1)ts−1dt+
∫ 1

t=0
(θ(t)−1)ts−1dt.

The first integral converges for all s ∈ C,

and using the fact that θ(t) = θ(1/t)/t and

subbing u = 1/t we get that the second is∫ ∞
u=1

(uθ(u)− 1)u−1−sdu

and we can break this up into two pieces as∫ ∞
u=1

θ(u)u−sdu−
∫ ∞
u=1

u−1−sds

(noting that both integrals converge in the

region Re(s) > 1). The second piece is just

−1/s. Changing that θ back to θ − 1 in the

first piece by adding and subtracting
∫∞
1 u−sdu =

−1/(1− s), and putting everything together,

gives us

ξ(s) =
∫ ∞
t=1

(θ(t)− 1)ts−1dt

+
∫ ∞
u=1

(θ(u)− 1)u−sdu− 1/(1− s)− 1/s
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so

ξ(s) =
∫ ∞
t=1

(θ(t)− 1)(ts−1 + t−s)dt

− 1/(1− s)− 1/s

Now that integral converges for all s ∈ C to a

holomorphic function which is visibly invari-

ant under s 7→ 1 − s. We deduce that ξ has

simple poles at s = 0 and s = 1 with residues

−1 and +1 respectively, and no other poles,

and satisfies ξ(s) = ξ(1− s).

So what’s left is to check that ξ(s) has got

something to do with the zeta function! And

we do this by now assuming Re(s) > 1 again,

and writing

ξ(s) = 2
∫ ∞
t=0

∑
n≥1

e−πn
2t2ts−1dt

and interchanging the sum and the integral,

and observing that we can then do the inner

integral: it’s ∫ ∞
t=0

e−πn
2t2ts−1dt

24



∫ ∞
t=0

e−πn
2t2ts−1dt

and now setting u = nt we get

n−s
∫ ∞
u=0

e−πu
2
us−1du

and now setting v = πu2 so 2πudu = dv we

get

n−s
∫ ∞
v=0

e−v(v/π)s/2−1(2π)−1dv

which is

n−s2−1π−s/2Γ(s/2)

so ξ(s) = π−s/2Γ(s/2)ζ(s) for Re(s) > 1 and

that was what we wanted!
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Finally, let’s think about poles. We saw ξ(s)

had simple poles at s = 0 and s = 1, with

residues −1 and +1 respectively, and no other

poles. So

ζ(s) = ξ(s).πs/2/Γ(s/2)

(an equation which now gives us the mero-

morphic continuation of the Riemann zeta

function!) will have a simple pole at s = 1

with residue π1/2/Γ(1/2) = 1, and will be

holomorphic at s = 0 because Γ has a simple

pole at s = 0. Furthermore, the only other

poles of ζ(s) will come from zeros of the Γ

function—but if the Γ function had a zero

then zΓ(z) = Γ(z + 1) implies it would have

zeros with arbitrarily large real part and hence

ζ(s) would have poles with arbitrarily large

real part—but this is impossible because ζ(s)

is holomorphic for Re(s) > 1.
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What Tate did was he managed to under-

stand the above argument to such an extent

that he could generalise it. Perhaps you can’t

see the wood from the trees at the minute,

but somehow the ingredients are: clever def-

inition of ξ, and two ways of evaluating it:

one by “brute force” and one by viewing it

as a Mellin transform of a theta function,

breaking up the integral into two pieces, and

using Poisson summation. This is the strat-

egy that we shall generalise, once we have

spent at least half of the course creating the

necessary machinery.
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Chapter 2: Local fields.

Let k be a field. A norm on k is |.| : k → R

with

(i) |x| ≥ 0 with equality iff x = 0

(ii) |xy| = |x||y|

and some version of the triangle inequality,

which varies from book to book. Let me use

the following variant:

(iii) There’s some constant C ≥ 1 such that

|x| ≤ 1 implies |1 + x| ≤ C.

We say that a pair (k, |.|) consisting of a field

k and a function |.| : k → R satisfying the

above axioms is a normed field.
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(i) |x| ≥ 0 with equality iff x = 0

(ii) |xy| = |x||y|

(iii) There’s some constant C ≥ 1 such that

|x| ≤ 1 implies |1 + x| ≤ C.

There’s now lots of things to do and no (for

me) clear order in which to do them. We

need comments about the axioms, basic prop-

erties deducible from the axioms, and ele-

mentary examples.

Let me first make a comment about the ax-

ioms: Why not the triangle inequality? Why

not |x+ y| ≤ |x|+ |y| instead of (iii)? In fact

(iii) is slightly weaker than the triangle in-

equality, as can be easily seen: if |x + y| ≤
|x| + |y| for all x and y then (iii) is satisfied

with C = 2.
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(i) |x| ≥ 0 with equality iff x = 0

(ii) |xy| = |x||y|

(iii) There’s some constant C ≥ 1 such that

|x| ≤ 1 implies |1 + x| ≤ C.

The “problem” with the triangle equality if

you take a norm on a field which satisfies the

triangle inequality, and then cube it, it might

not satisfy the triangle inequality any more.

On the other hand, one can easily check that

|.| is a norm in the sense above iff |.|r is for

any r > 0 (easy exercise: replace C by Cr).

Definition We say that two norms |.| and |.|′

on a field k are equivalent if there’s some

r > 0 such that |x|r = |x|′ for all x ∈ k.

We only really care about norms up to equiv-

alence.
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(i) |x| ≥ 0 with equality iff x = 0

(ii) |xy| = |x||y|

(iii) There’s some constant C ≥ 1 such that

|x| ≤ 1 implies |1 + x| ≤ C.

Basic properties of a normed field: |0| = 0,

and |1| = |1|2 and hence |1| = 1 so |−1|2 = 1

and hence | − 1| = 1 and | − a| = |a|.

Examples: k = R (or any subfield, for exam-

ple Q), and |x| is the usual norm: |x| = x for

x ≥ 0 and −x for x < 0.

Trivial example: the “trivial norm” on a field:

|0| = 0 and |x| = 1 for all x 6= 0.
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Back to the triangle inequality. I’ve already

mentioned that if a function |.| on a field k

satisfies (i) and (ii) and |x+ y| ≤ |x|+ |y| for

all x and y, then it clearly satisfies (iii) with

C = 2.

Conversely,

Lemma. if (k, |.|) is a normed field and if

|x| ≤ 1 implies |1 + x| ≤ 2 (that is, if we can

take C = 2 in the definition of the norm),

then |.| satisfies the triangle inequality.

I’ll sketch a proof of this because the proof

is slightly tricky and we use corollaries of this

result quite a bit. Let me mention some

corollaries first.

Corollary 1. Any norm is equivalent to a norm

satisfying the triangle inequality.

Proof: Cr ≤ 2 for some appropriate r.
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Corollary 2. A norm defines a topology on k:

if we say that a subset U of k is open iff for

all u ∈ U there’s ε > 0 such that |u − v| < ε

implies v ∈ U , then the open sets satisfy the

axioms for a topology.

Proof: equivalent norms define the same open

sets, and if the norm satisfies the triangle in-

equality then d(x, y) = |x− y| is a metric and

the open sets for a metric form a topology.

OK, now onto the proof of the lemma.
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Lemma. if (k, |.|) is a normed field and if

|x| ≤ 1 implies |1 + x| ≤ 2 (that is, if we can

take C = 2 in the definition of the norm),

then |.| satisfies the triangle inequality.

Proof (sketch).

(a) The definition implies |x+y| ≤ 2max{|x|, |y|}.

(b) Hence (induction) |x1 + x2 + . . .+ x2n| ≤
2nmax{|x1|, |x2|, . . .}

(c) Hence

|x1+x2+. . .+xN | ≤ 2N max{|x1|, |x2|, . . . , |xN |}

(choose n with 2n−1 < N ≤ 2n and use (b)

with xN+1 = . . . = 0).
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(c)

|x1+x2+. . .+xN | ≤ 2N max{|x1|, |x2|, . . . , |xN |}

(d) Hence |N | ≤ 2N for all N ∈ Z≥0.

(e) Now use the binomial theorem, (c) and

(d) to check that

|(x+ y)m| ≤ 4(m+ 1)(|x|+ |y|)m

for all m ∈ Z≥1.

(f) Now let m → ∞ and take mth roots to

get the result.
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There’s a dichotomy: if we can take C = 1 in

(iii) then C = 1 will also do for any equivalent

norm. But if we need C > 1 in (iii) then by

replacing |.| with |.|N for some N >> 0 we can

make C as large as we like (and equivalently

as small as we like, subject to it being bigger

than 1, by letting N → 0+).

Definition: a norm is non-archimedean if we

can take C = 1 in (iii) above. A norm is

archimedean if it’s not non-archimedean. This

definition is good on equivalence classes. Note

that a norm is non-archimedean iff |x+ y| ≤
max{|x|, |y|} for all x, y ∈ k (easy check). This

is much stronger than the triangle inequality!

The usual norm on R is archimedean. The

trivial norm is non-archimedean. Other ex-

amples: k = C and |x + iy| =
√
x2 + y2, or

even |x+iy| = x2+y2: these are archimedean.
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A less trivial example of a norm: k = Q,

choose a prime p, and define |p| = p−1 (or

indeed |p| = r for any 0 < r < 1) and |q| = 1

for any other prime q, and extend multiplica-

tively (and set |0| = 0). So we have∣∣∣∣pn · uv
∣∣∣∣ = p−n

for n ∈ Z and u, v integers prime to p.

I claim that this is a non-archimedean norm

(it’s called the “p-adic norm” on Q). This is

such an important norm for us that I’ll check

the axioms.

37



Definition: |0| = 0 and∣∣∣∣pn · uv
∣∣∣∣ = p−n

for n ∈ Z and u, v integers prime to p.

Check it’s a norm: (i) and (ii) are obvious.

So it suffices to check that for all x and y

we have |x+ y| ≤ max{|x|, |y|}; then (iii) will

follow with C = 1.

Now |x + y| ≤ max{|x|, |y|} is clear if any of

x, y or x+ y is zero. In the general case we

may assume |x| ≥ |y|, so x = pnuv and y = pms
t

with n ≤ m, and we see that

x+ y = pn
(
u

v
+
pm−ns

t

)

= pn
ut+ pm−nsv

vt

= pn
′u′

v′

with v′ = vt and n′ ≥ n, so |x+ y| = p−n
′ ≤

p−n = |x| = max{|x|, |y|}.
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Easy exercise: check (by beefing up the proof)

that in fact the p-adic norm on Q satisfies

|x+ y| = max{|x|, |y|} if |x| 6= |y|.

More fun: check that if |.| is any non-arch

norm on any field k then |x| 6= |y| implies |x+

y| = max{|x|, |y|}. There’s a one-line proof

from the axioms which I sometimes struggle

to find.
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Natural generalisation of the p-adic norm: if

K is any number field with integers R, and if

P is a non-zero prime ideal of R, then there’s

a P -adic norm on K, defined by |0| = 0 and,

for 0 6= x ∈ K, if we factor the fractional

ideal (x) as (x) = xR = P e ·
∏
iP

ei
i with the

product finite and only involving prime ideals

other than P , then we can define |x| = re for

any r with 0 < r < 1; traditionally we take

r = 1/N(P ) where N(P ) is the size of the

finite field R/P . Again one checks that this

is a norm, and indeed it’s non-archimedean.

These norms generalise the p-adic norm on

Q.

Note that if p factors into more than one

prime in R, then there is more than one P -

adic norm on K that induces a norm equiva-

lent to the p-adic norm on Q. For example,

the (2+ i)-adic norm on Q(i) is certainly not

equivalent to the (2− i)-adic norm [because

|2 + i| = 1/5 for one of them and |2 + i| = 1

for the other].
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There are also natural generalisation of the

usual archimedean norm on Q to a number

field: if K is a number field then for any field

homomorphism K → C (C the complexes),

the usual norm on C induces (by restriction)

a norm on K. There is a subtlety here: if

τ : K → C is a field homomorphism then τ ,

defined by τ(x) = τ(x), is also a field homo-

morphism, and τ may or may not be equal

to τ , but τ and τ induce the same norm on

K, because |z| = |z| on C. So in fact we’re

led to the following equivalence relation on

field homomorphisms τ : K → C defined by:

τ ∼ τ and τ ∼ τ , and nothing else. The

equivalence classes are easily described: the

maps K → R each give one equivalence class

(the standard notation is that there are r1
of these) and the maps K → C which don’t

land in R come in pairs {τ, τ} of equivalence

classes: there are r2 equivalence classes (and

hence 2r2 embeddings). Let’s stick with this

notation throughout the course.

41



If K = Q(α) and P (X) ∈ Q[X] is the minimal

polynomial of α, then r1 is the number of

real roots of α, and r2 is half the number of

non-real roots. This shows that r1 + 2r2 is

the degree of P . This leads us easily to a

proof that r1 + 2r2 = [K : Q].

We won’t logically need the following result

so I won’t prove it:

Theorem. If K is a number field, then any

non-trivial norm on K is either equivalent to

a P -adic norm for a unique P (this is iff it’s

non-archimedean), or equivalent to the valu-

ation induced by an embedding K → C, for a

unique equivalence class {τ, τ} of embeddings

as above (this is iff it’s archimedean).

The case K = Q is due to Ostrowski (an

explicit elementary calculation), and the gen-

eral case can be deduced from this case (after

a little work).
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Now here’s a crucial property of norms. Given

a normed field (and you can assume C ≤ 2 if

you like, because what we do here only de-

pends on the equivalence class of the norm)

there are obvious notions of a Cauchy se-

quence and a convergent sequence:

A sequence (an)n≥1 is Cauchy if for all ε > 0

there is M > 0 such that m,n ≥ M implies

|am − an| < ε.

A sequence (an)n≥1 is convergent if there ex-

ists b ∈ k such that for all ε > 0 there’s M > 0

with n > M implies |an − b| < ε.

Both notions only depend on the equivalence

class of the norm. Every convergent sequence

is Cauchy (easy). We say a normed field is

complete if every Cauchy sequence is con-

vergent.

Examples: R with the usual norm is com-

plete. Q with the usual norm isn’t.
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In fact, if we’re defining mathematics from

the ground up we would build R by “com-

pleting” Q. This is a process that works in

much more generality!

Theorem. Given a normed field (k, |.|) it

has (up to unique isomorphism) a completion

(K, ||.||), by which I mean:

(i) a complete normed field (K, ||.||), and

(ii) an inclusion k → K which preserves the

norm (so if you’re thinking of K as containing

k then I’m just saying that for x ∈ k we have

|x| = ||x||),

such that

(iii) if we endow K with the topology induced

by ||.||, then the closure of k is K.

Note that (iii) is absolutely crucial: we want

R to be the completion of Q, whereas Q ⊂ C

satisfies (i) and (ii).
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Proof. Let’s do existence first. WLOG |.|
satisfies the triangle inequality. Let R denote

the set of all Cauchy sequences in k; it’s a

ring with respect to pointwise addition and

multiplication; the constant sequences give a

map k → R of rings (so 1 ∈ R is the sequence

(1,1,1, . . .)).

One checks that if (an)n≥1 is a Cauchy se-

quence in k then (|an|)n≥1 is a Cauchy se-

quence of real numbers, so it’s convergent.

Say `((an)) is its limit.

Let I denote the ideal in R of sequences

which tend to zero; this is easily checked

to be an ideal. Let K denote the quotient

R/I. It’s easily checked that if (an)−(bn) ∈ I
then `((an)) = `((bn)). So ` induces a map

||.|| : K → R.

The claim is that this works. Let’s see why.
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To check that K is a field one needs to check

that I is maximal; this is because if (an) is

Cauchy but doesn’t tend to zero then an 6= 0

for all n sufficiently large and one can check

that the sequence bn defined by bn = 1/an
(unless an = 0 in which case set bn = 59)

satisfies (an)(bn)− (1) ∈ I; this is enough to

prove that I is maximal.

It’s clear that the obvious map k → K is a

map of rings, and hence it’s an injection be-

cause k is a field. The first two axioms for

a norm are easily checked to be satisfied by

||.||. We’re assuming that |.| satisfies the tri-

angle inequality, and we deduce that ||.|| does

too. Hence (iii) is satisfied.

To check denseness of k in K we need to

check that for any (an) ∈ K and ε > 0 we

can find a ∈ K with ||(an − a)|| < ε, but this

is easy from the definition of Cauchy.
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Finally, to check completeness of K we use

the fact that Cauchy sequences in k converge

in K, and that any Cauchy sequence in K can

be approximated by a Cauchy sequence in k

in a sufficiently sensible way to ensure that

the limits coincide.

So we’ve done existence. For uniqueness we

need to check that if (K1, ||.||1) and (K2, ||.||2)
both work then there’s a norm-preserving iso-

morphism of fields K1 = K2 which is the

identity on k. The reason for this is that

the map k → K2 can be extended to a map

K1 → K2 thus: write λ ∈ K1 as the limit

of a sequence in k; this sequence converges

in K2; send λ to this element. Now check

that this gives a well-defined bijection—just

follow your nose. �
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The only complete archimedean fields we care

about in this course are the reals and the

complexes (in fact Ostrowski proved that any

field complete with respect to an archimedean

norm was equivalent to (R, |.|) or (C, |.|), with

|.| denoting the usual norm, but we won’t

need this: see Chapter 3 of Cassels’ “Local

Fields”).

So now we press on with the (arguably more

subtle) theory of the structure of complete

non-archimedean fields. It’s easy to give ex-

amples of such things: for example let’s de-

fine the p-adic numbers to be the completion

of Q with respect to the p-adic norm—the

usual notation for the p-adic numbers is Qp

(note: we haven’t yet proved that Q with its

p-adic norm isn’t complete, or equivalently

that Qp 6= Q. But this will come out in the

wash later).
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It turns out that if k is a number field and P

is a non-zero prime ideal of its integer ring,

and if P contains the rational prime number

p, then the completion of k with respect to

the P -adic norm is naturally a finite extension

of Qp (I’ll prove this later but it shouldn’t

surprise you because k is a finite extension

of Q), so in some sense the basic example of

a complete non-archimedean field is the p-

adic numbers, and the most general example

we’ll ever use in this course is a finite field

extension of the p-adic numbers.

Before we start on the general structure the-

ory, let me observe that the norm on Qp or

more generally kP is “discrete”, in the fol-

lowing sense: the P -adic norm on a number

field k has the property that there’s a real

number q > 1 (the way I normalised it we

have q = N(P ), the norm of P ), such that

every element of k had norm either equal to

zero, or to an integer power of q. What does

this imply about the norm on kP?
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Recall that in the definition of the completion

of a field, the norm of a Cauchy sequence

was the limit of the norms of the elements,

and hence (easy calculation) we see that |.| :
kP → R is also taking values in the set {0} ∪
{. . . , q−2, q−1,1, q, q2, q3, . . .}.

We say that a norm on a field K is discrete

if there’s some ε > 0 such that a ∈ K and

1 − ε < |a| < 1 + ε implies |a| = 1. In fact,

because |K×| := {|a| : a ∈ K×} is a subgroup

of R>0 it’s easy to check that if a norm on

a field K is discrete then either |K×| = {1}
(the trivial norm) or there’s some q ∈ R>1

with |K×| = {qn : n ∈ Z}.
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The usual norm on the reals or complexes is

of course not discrete, but the P -adic norm

on a number field k is, and we’ve just seen

that even the completion kP of k with respect

to this norm is a discretely-normed field. Don’t

get confused though—there are blah non-

archimedean norms that aren’t discrete—for

example if kn is the field Q(p1/2
n
) (so we

“keep square rooting p”) and k∞ is the union

of the fields kn (note that kn is naturally a

subfield of kn+1) then the p-adic norm on Qp

extends to a non-discrete, non-archimedean

norm on k∞. Note that k∞ isn’t a number

field though, it’s an infinite extension of Q.
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Ok so let’s let K now denote an arbitrary

field equipped with a non-archimedean norm

|.| (so |x + y| ≤ max{|x|, |y|} and so at least

the triangle inequality holds). Let’s set

R = {x ∈ K : |x| ≤ 1}

and

I = {x ∈ R : |x| < 1}.

It’s easy to check that R is a ring: the sur-

prising part is that if x, y ∈ R then x+ y ∈ R,

and this is because |x+y| ≤ max{|x|, |y|} ≤ 1.

We say R is the integers of K. Note that in

the archimedean case this part already fails:

the closed unit disc is not a subring of the

complex numbers. The fact that R is a ring

in the non-archimedean case is, perhaps ini-

tially at least, a little psychologically disturb-

ing: for example it implies that the integers

are bounded within K.
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Once we have re-adjusted, it’s easy to check

from the axioms that I is an ideal of R, and

in fact I is the unique maximal ideal of R

because if r ∈ R and r 6∈ I then |r| = 1 so

r 6= 0 and s := 1/r ∈ K has |s| = 1/|r| = 1 so

s ∈ R, and we see that r is a unit (exercise:

this is enough).

We say that the field R/I is the residue field

of K.

Example: K = Q with the p-adic norm. Then

(writing a general rational as a/b in lowest

terms)

R = {a/b : a, b ∈ Z, p - b}

and

I = {a/b ∈ R : p | a} = pR.
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R = {a/b : a, b ∈ Z, p - b}

and

I = {a/b ∈ R : p | a} = pR.

I claim that R/I = Z/pZ, and to check this all
I have to do is to check that {0,1,2, . . . , p−1}
meets every coset r + I exactly once, which
follows easily from the statement that given
a, b ∈ Z with p - b there’s a unique blah blah
t ∈ {0,1,2, . . . , p − 1} with a ≡ bt mod p. So
the residue field of Q with its p-adic norm is
Z/pZ.

My aim now is to basically prove a struc-
ture theorem for characteristic zero blah non-
archimedean fields K which are complete with
respect to a discrete valuation; this will eas-
ily give us enough to show that if K is the
completion of a number field at a non-zero
prime ideal then K and K× are “locally com-
pact abelian groups”, which is the buzz-word
we’ll need to do the abstract Fourier analysis
we’ll need for Tate’s thesis later on.
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Structure of complete discrete non-arch

fields.

The first (and main) goal of this lecture is to

explain “what a complete discretely-valued

non-arch field looks like”—we’ll end up with

some kind of “structure theorem”, analogous

to the theorem that every real has an essen-

tially unique decimal expansion, but with 0.1

replaced by a small number in the field—for

example the role of 0.1 is played by p in Qp.

This structure theorem (plus the associated

exercises on the example sheet) will hopefully

greatly clarify what fields like the p-adic num-

bers (and their finite extensions) look like.

Hopefully, by the end of the lecture, we’ll

begin to have a concrete feeling about how

to compute with Qp, just as we have a con-

crete feeling about how to compute with real

numbers.
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Let K be a field complete with respect to a

non-arch norm (we don’t need discreteness

for the next few slides). I’m going to do

some “abstract analysis” now—things which

will be familiar from basic analysis classes,

but which will work just as well in K because

they work for any complete field, not just the

reals or complexes.

Definition. If x1, x2, x3, . . . ∈ K then we say

that
∑
n≥1 xn converges if the partial sums

tend to a limit `: we write
∑
n≥1 xn = `. Be-

cause we’re assuming K is complete, the sum

converges iff the partial sums sm =
∑m
i=1 xi

are Cauchy, and the standard argument shows

that if the sum converges then xn = sn−sn−1

had better tend to zero (Cauchyness implies

sn − sn−1 gets arbitrarily small).
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[
∑
xn converges implies xn → 0].

The weird thing is that, in the non-arch world,
the converse is true. Let x1, x2, x3, . . . be a
sequence in a complete non-arch field K.

Lemma. If xn → 0 as n → ∞ then
∑
n≥1 xn

converges! Furthermore, if B is real and
|xn| ≤ B for all n then

∑
xn = s with |s| ≤ B

too.

Proof. By an easy induction on n, using
the definition of a non-archimedean norm,
we see that if |xi| ≤ B for 1 ≤ i ≤ n then
|
∑n
i=1 xi| ≤ B (note that this is a finite sum).

It’s easy (but crucial) to deduce from this
that a sequence (an) is Cauchy if and only if
an−an−1 tends to zero as n→∞. Now apply
this with an =

∑n
i=1 xi to deduce that xn → 0

implies that the the an form a Cauchy se-
quence, and hence converge. One way of do-
ing the second part is to prove that if an → `

as n → ∞ then |an| → |`| in R—this is true
in any normed field (hint: WLOG triangle
inequality holds; now use it judiciously).
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Before we go any further, let me explain why
the residue field of a non-archimedean normed
field is the same as the residue field of the
completion. This is easy. Let k be a non-
archimedean normed field with completion k̂.
Let R, I be the integers and maximal ideal
for k, and let R̂, Î denote the corresponding
things for k̂. There’s a natural map k → k̂
sending R to R̂ and I to Î, and hence sending
κ = R/I to κ̂ = R̂/Î. We’ll see a bit later that
k̂ can be “much bigger than k” (analogous
to R being much bigger than Q). But. . .

Lemma. The map κ→ κ̂ is an isomorphism
of fields.

Proof. Injectivity is clear (k → k̂ is norm-
preserving, so R∩ Î = I). To get surjectivity,
for r̂ ∈ R̂ simply choose r ∈ k with |r − r̂| < 1
(this is possible by denseness) and observe
that this implies |r| ≤ 1 and hence r ∈ R.
Moreover r− r̂ ∈ Î, so R̂ = Î+R which shows
that κ→ κ̂ is surjective.

Corollary. The residue field of Qp is Z/pZ.
For this is the residue field of Q with the
p-adic norm.
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Exercise: let k be a number field and let

P denote a non-zero prime ideal of its in-

teger ring A. Show that the residue field of

k equipped with the P -adic norm is canon-

ically isomorphic to A/P (hint: if R and I

are the usual things then construct a natural

surjective ring homomorphism R→ A/P with

kernel equal to I). Deduce that the residue

field of kP is A/P .

Clarification: A is the integers of k (so, for

example, Z is the integers of Q) but we also

referred to R = {x ∈ k : |x| ≤ 1} as the “in-

tegers of k”—this notion of course depends

on the choice of a norm on k. Sorry. If

k = Q above then A = Z and if P = (p) then

R = {a/b : p - b} and I’m saying that there’s

a natural map R→ Z/pZ.
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As a consequence, we see that if kP is the

completion of a number field at a non-zero

prime ideal then the residue field of kP is

finite—such fields have a much more arith-

metic flavour than general complete normed

fields (for example you can do analysis in any

complete normed field, but if the norm is

discrete and the residue field is finite then

you can do local class field theory (i.e., arith-

metic) too).
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Exercise: consider the ring C[[T ]] of power

series
∑
n≥0 anT

n with complex coefficients

(and no convergence conditions—just abstract

power series) (NB this exercise would work

if you replaced C by any field at all). Let

k := C((T )) denote its field of fractions.

Check that a general element of C((T )) is∑
n≥M anTn with M a possibly negative in-

teger. Define a norm on C((t)) by |0| = 0

and, for f =
∑
n≥M anTn with aM 6= 0, set

|f | = e−M (where e could really be replaced

by any real number greater than 1). Check

that this is a non-arch norm on k, that the

integers R are C[[T ]], that the maximal ideal

I is TC[[T ]] and that the residue field is C

again. So “we can do analysis in k but not

arithmetic”.
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Before we go on to prove the structure the-

orem, let’s play about a bit with Cauchy se-

quences in Q with the p-adic norm, and see

if any of them converge.

Example 1: Consider the sequence

3,33,333,3333, . . .

in Q with the 5-adic norm.

(a) It’s Cauchy! Because if an is “n threes”

then for n ≤ m we have 10n | (am − an) so

|am − an| ≤ 5−n.

(b) In fact it’s even convergent! Because

3an + 1 = 10n+1 which tends to zero in the

5-adic norm, so an → −1
3.
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Example 2: Let’s put the 3-adic norm on

Q. Set a1 = 1 and a2 = 4 and note that

32 | (a22−7). Let’s try and find an integer a3
with 33 | (a23−7). Let’s try a3 = 4+9n; then

a23 = 16+72n mod 27 so a23− 7 ≡ 0 mod 27

iff 1 + 8n ≡ 0 mod 3 so let’s set n = 1 and

a3 = 13; this works.

Can we pull this trick off in general? Say

m ≥ 1 and am ≡ 1 mod 3 and

a2m ≡ 7 mod 3m.

Can we find am+1 with a2m+1 ≡ 7 mod 3m+1?

Let’s try setting am+1 = am + 3mn for some

n to be determined. Then we see that

a2m+1 ≡ a2m + 2n.3m (mod 3m+1)

≡ 7 + tm.3
m + 2n.3m (mod 3m+1)

and we can solve 2n+ tm ≡ 0 mod 3 for n,

so we can indeed find am+1 whose square is

3-adically close to 7, and by letting m go to

infinity we can get as close as we want.
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Upshot: we have a sequence a1, a2, a3, . . . of

elements of Z, with an+1 − an a multiple of

3n, and a2n tending to 7 in Q with the 3-adic

norm.

Because am+1−am is a multiple of 3m we see

that the am are a Cauchy sequence, and their

limit ` in Q3 is visibly going to satisfy `2 = 7.

Hence Q is not complete with respect to the

3-adic norm!
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Exercise: check that −7 is a square in Q2

and 1− p < 0 is a square in Qp for any p > 2.

Hence Q is not complete with respect to the

p-adic norm, for any p.

Remark: I’ve collected up these exercises and

put them on an example sheet. See the

course web page.

65



Now let’s assume that F is a field with a non-

trivial non-archimedean discrete norm. In this

case we have seen that |F×| := {|a| : a ∈ F×}
is {qn : n ∈ Z} for some q > 1; set ρ = 1/q < 1

and let’s choose π ∈ F with |π| = ρ. We call π

a uniformiser in F . As an example, if F = Q

or Qp with the p-adic norm then we can set

ρ = 1/p and π = p, and more generally if

F is a number field k or a completion kP at

a prime ideal then ρ = 1/N(P ) and, even

though P may not be principal, we can find

x ∈ k an algebraic integer with (x) = PJ and

P - J (for example, by uniqueness of factor-

ization we have P2 6= P and any x ∈ P with

x 6∈ P2 will do), and then |x| = 1/N(P ) = ρ

so x is a uniformiser for both k and kP with

their P -adic norms.

Now let R be the integers of K, and let I

denote the maximal ideal of R. If π is a uni-

formiser, then y ∈ I implies |y| < 1 and hence

|y| ≤ |π|, so y = zπ with |z| ≤ 1 and we have

proved that I = (π) is a principal ideal.
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Now here we go with the structure theorem.

Let K be complete with respect to a non-

trivial non-arch norm. Let R be the integers,

I the maximal ideal of R, let π be a uni-

formiser (so I = (π)) and let κ denote the

residue field R/I. Let S denote a subset of

R, containing 0, such that the reduction map

S → R/I is a bijection (so S is a set of rep-

resentatives for R/I).

Theorem.

(a) If a0, a1, a2,. . . is an arbitrary infinite se-

quence of elements of S, then the infinite

sum
∑
n≥0 anπ

n converges in R, and further-

more for every element r of R it’s possible to

write r =
∑
n≥0 anπ

n with the an as above, in

a unique way.

(b) If 0 6= r ∈ R then r =
∑
n≥0 anπ

n with at

least one an 6= 0 and in fact |r| = |π|m, where

m ≥ 0 is the smallest non-negative integer

such that am 6= 0.
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(c) A general non-zero element α of K can

be written uniquely as α =
∑
n≥M anπn with

aM 6= 0, an ∈ S for all n, and we have |α| =
|π|M .

Before we go on, let’s observe the conse-

quences for Qp. Let Zp denote {x ∈ Qp :

|x| ≤ 1}.

Corollary. A general element of Zp can be

written uniquely as
∑
n≥0 anp

n with each an ∈
{0,1,2, . . . , p − 1}. A general non-zero ele-

ment of Qp can be written
∑
n≥M anpn with

M ∈ Z, 0 ≤ an ≤ p− 1 and aM 6= 0.

Note that we now see why π is called a blah

uniformiser—it’s playing some kind of ana-

logue to the role of a local uniformiser in the

theory of complex analytic functions of one

variable, with the theorem giving a power se-

ries expansion near a point.
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Corollary. Q 6= Qp. Indeed we see that Qp

is uncountable.

Exercise: if α ∈ Q× and we write α =
∑
n≥M anpn

with 0 ≤ an < p then check that the sequence

an is ultimately periodic. Hence a number like∑
n≥1 p

n! is an explicit example of an element

in Qp but not Q.
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Let’s state the theorem again because it’s a

new lecture.

Let K be complete with respect to a non-

trivial non-arch norm. Let R be the integers,

I the maximal ideal of R, and let π be a

uniformiser (so |π| = ρ with 0 < ρ < 1 and

|K×| = ρZ, and I = (π)). Let κ denote the

residue field R/I. Let S denote a subset of

R, containing 0, such that the reduction map

S → R/I = κ is a bijection (so S is a set of

representatives for κ).
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Theorem.

(a) If a0, a1, a2,. . . is an arbitrary infinite se-

quence of elements of S, then the infinite

sum
∑
n≥0 anπ

n converges in R, and further-

more for every element r of R it’s possible to

write r =
∑
n≥0 anπ

n with the an as above, in

a unique way.

(b) If 0 6= r ∈ R then r =
∑
n≥0 anπ

n with at

least one an 6= 0 and in fact |r| = |π|m, where

m ≥ 0 is the smallest non-negative integer

such that am 6= 0.

(c) A general non-zero element α of K can

be written uniquely as α =
∑
n≥M anπn with

aM 6= 0, an ∈ S for all n, and we have |α| =
|π|M .
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Proof of theorem.

If a0, a1, a2, . . . are arbitrary elements of R

then |an| ≤ 1 so |anπn| ≤ ρn → 0, where

0 < ρ < 1 is the real number which gen-

erates the norm group |K×| as above. So

the sequence (anπn) tends to zero, so the

sum
∑
n≥0 anπ

n converges, and furthermore

|anπn| ≤ 1 for all n ≥ 0 and hence the sum

converges in R. That’s done the first part of

(a), because S ⊆ R by definition.

Next note that again by definition a ∈ S im-

plies that either a = 0 or |a| = 1. So now if

r =
∑
n≥0 anπ

n with an ∈ S and not all of the

an equal to zero, and if m ≥ 0 is the smallest

non-negative integer with am 6= 0, then

r =
∑
n≥0

anπ
n

= amπ
m +

∑
n≥m+1

anπ
n

and |amπm| = ρm whereas each term in blah∑
n≥m+1 anπ

n has norm at most ρm+1 < ρm,
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so the sum converges to something with norm

at most ρm+1, so |amπm| > |
∑
n≥m+1 anπ

n|
and we see |r| = |amπm| = ρm. This does

(b).

Now the uniqueness in (a) is easy: if r =∑
n≥0 anπ

n =
∑
n≥0 bnπ

n with the ai and bi in

S then 0 =
∑
n≥0(an − bn)πn. But it’s easily

checked that for a, b ∈ S, either a − b = 0 or

|a − b| = 1. So the argument above shows

that if an 6= bn for some n then |
∑

(an −
bn)πn| > 0, contradicting

∑
n≥0 anπ

n =
∑
n≥0 bnπ

n.

Hence “π-adic expansions” are unique, if they

exist.

To finish (a) we need a construction proof:

given r ∈ R we need to find an ∈ S with

r =
∑
n≥0 anπ

n. There’s a natural way to do

this. Given r ∈ R we consider the image r of

r in κ, the residue field. Choose a0 ∈ S whose

reduction is r. Now r− a0 reduces to zero in

κ, so |r − a0| < 1 and hence |r − a0| ≤ ρ.
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Hence r1 := (r − a0)/π satisfies |r1| ≤ 1 and

we can apply the same trick to find a1 with

|r1 − a1| ≤ ρ. Hence |πr1 − πa1| ≤ ρ2 and we

deduce

|r − a0 − πa1| ≤ ρ2.

Set r2 = (r − a0 − πa1)/pi
2 and continue in

this way. At the Nth step we find

|r −
N∑
i=0

aiπ
i| ≤ ρN+1

so, by definition,
∑
n≥0 anπ

n = r.
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That’s done (a) and (b). For (c) we just ob-

serve that any α ∈ K with α 6= 0 we have

|α| = ρM for some integer M , and hence

π−Mα ∈ R (with norm 1). So

π−Mα =
∑
n≥0

bnπ
n

with bn ∈ S and b0 equal to a lift of the re-

duction of π−Mα in κ, so b0 6= 0. So

α =
∑
n≥M

anπ
n

with an = bn−M .

We’re done with our structure theorem; now

go and do some exercises on the example

sheet.
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A corollary whose importance will become
clear later is:

Corollary. If K is complete with respect to
a non-trivial non-arch discrete norm, and K

has integer ring R with maximal ideal I and
residue field κ, then R (with the topology
induced from the metric d(x, y) = |x − y|) is
compact iff κ is finite.

Proof. Because R is a metric space, com-
pactness is equivalent to sequential compact-
ness, which I’ll remind you means that given
a sequence (rm)m≥1 with rm ∈ R we can al-
ways find a convergent subsequence, that is
m0 < m1 < m2 < m3 < . . . such that (rmj)j≥0
converges. Let’s firstly assume κ is finite and
prove that R is sequentially compact.

By the structure theorem we can write

rm =
∑
n≥0

am,nπ
n

with am,n ∈ S (a set of coset representatives
for κ).
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Now κ is finite so S is finite, so we can ap-

ply the usual trick: König’s Lemma (which

according to Wikipedia is due to Kőnig). Ex-

plicitly, we know that am,0 assumes at least

one value in S infinitely often; call it a0, and

let m0 be any m such that am,0 = a0. Now,

amongst the infinitely many m > m0 with

am,0 = a0, we know that am,1 takes on a

value infinitely often—call it a1. Let m1 be

one of the infinitely many m with m > m0,

am,0 = a0 and am,1 = a1. Continue in this

way and we see easily that
∑
n≥0 anπ

n is the

limit of the infinite subsequence rm0, rm1, rm2, . . ..

Conversely, if κ is infinite, then here’s an infi-

nite open cover of R with no finite subcover:

for any s ∈ S the open disc centre s and ra-

dius 1 is everything of the form s + α with

|α| < 1, so it’s s+ I. Because S is a set of

coset representatives for κ we see that R is

the disjoint union of the open sets s+ I for

s ∈ S, and this is an infinite disjoint cover of

R by open sets, which visibly has no finite

subcover.
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Corollary. If k is a number field equipped

with a P -adic norm, and if R is the integers

of kP , then R is compact.

Indeed, the residue field of kP is A/P , where

A is the integers of k in the sense of algebraic

number theory.

That corollary is very important for Tate’s

thesis, as we’ll see later on. I want to finish

local fields today, so, rather than developing

the theory in some kind of logical way (for

example Hensel’s Lemma would be a natural

thing to do next) I am just going to prove the

other main thing we’ll need, which is that if

kP is the completion of a number field at a

prime ideal then kP is naturally a finite ex-

tension of Qp, and I’ll say a little about the

structure of such extensions.
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Let k be a number field, and P a non-zero

prime ideal of its integer ring. We can think

of k as a finite-dimensional vector space over

Q. Now let’s say that P contains the rational

prime p. The restriction of the P -adic norm

|.|P on k, to Q, is easily checked to satisfy

|`|P = 1 for ` a prime with ` 6= p, and |p|P =

p−m for some positive integer m, so |.|P on k

induces a norm equivalent to the p-adic norm

on Q (in fact it’s just the mth power of the

p-adic norm, where m is easily checked to

be ef , where the size of kP is pf and where

(p) = P e.J with J and ideal coprime to P .

Now there are inclusions of fields Q → k →
kP , and kP is complete. Of course kP might

not be the completion of Q, because there’s

no reason to expect that Q is dense in kP
[the archimedean analogue of what’s going

on is that C is an archimedean completion

of Q(i) with i2 = −1 but the resulting map

Q → C doesn’t have dense image].
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[Q → k → kP ]

But we can certainly take the closure of Q in

kP . A closed subspace of a complete metric

space is complete, and it’s easy to check that

the closure of Q in kP is a field (limit of sum

is sum of limits, limit of product is product

of limits, limit of reciprocals is reciprocal of

limits when this makes sense), and hence a

normed field (the norm is induced from kP
hence the axioms are satisfied). Hence this

closure must be the completion of Q with re-

spect to the mth power of the p-adic norm

(because it’s a completion, we showed that

completions are unique up to unique isomor-

phism).

We deduce that kP contains a copy of Qp

(although, as already mentioned, the norm

on kP restricts on Qp to a norm which is in

general a non-trivial power of the usual p-adic

norm). Now k/Q was a finite extension,
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so it won’t surprise you to learn that kP/Qp

will also be a finite extension. Perhaps what

will surprise you is that the degree of kP/Qp

might be smaller than that of k/Q. In fact

let me prove something stronger, which will

clarify what’s going on.

Let me start with some abstract algebra.

Let L be a field and let K be a subfield of

L. Then L is naturally a vector space over

K. The dimension of L as a K-vector space

might be finite (for example C has dimen-

sion 2 over R, Q(i) has dimension 2 over Q,

Q(21/57) has dimension 57 over Q) or infi-

nite (for example C has infinite dimension as

a Q-vector space). Recall that by definition

a number field is a field k that contains a

copy of Q and such that the Q-dimension of

k is finite.
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Let’s go back to the general case K ⊆ L and

let’s assume that the dimension of L as K-

vector space is a finite number n. We say “L

is finite over K”, and “L has degree n over

K” or even “L/K has degree n”. Note that

L/K isn’t a quotient, it’s just notation.

Now for λ ∈ L, multiplication by λ is a map

L → L which is L-linear and hence K-linear,

so we can regard it as a linear map on an n-

dimensional vector space, and as such it has

a trace and a determinant.

We define the trace of λ, written Tr(λ) or

sometimes TrL/K(λ), to be the trace of this

linear map, and we define the norm of λ to

be the determinant of that linear map and

write N(λ) or NL/K(λ).

Note that the trace and the norm of an el-

ement of L is an element of K. Moreover

Tr(α + β) = Tr(α) + Tr(β) and N(αβ) =

N(α)N(β).
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Example: Multiplication by x + iy ∈ C is,

when you think of C as R2 with basis 1, i,

represented by the matrix
(
x −y
y x

)
and hence

has trace 2x and determinant x2 + y2. So

TrC/R(x + iy) = 2x and NC/R(x + iy) =

x2 + y2.

Example: if K ⊆ L and L is finite over K

of degree n, and α ∈ K then TrL/K(α) =

nα, and NL/K(α) = αn (proof: the matrix

representing multiplication by α is scalar).
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Because the norm N is multiplicative, it should

be no surprise that it can be used to extend

norms (i.e. maps of the form |.|).

Lemma. Let K ⊆ L with L finite over K,

of degree n. Assume furthermore that K

is equipped with a non-archimedean norm |.|
that makes K complete.

Then there is a unique norm ||.|| on L which

restricts to |.| on K. It’s non-archimedean, it

makes L into a complete normed field, and

it is given by the formula

||λ|| = |NL/K(λ)|1/n

Proof. Omitted. On example sheet. Ele-

mentary but a little long.
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Note that the uniqueness statement needs

K to be complete. For example Q(i) is fi-

nite over Q but if A = Z[i] then in A we have

(5) = (2+i)(2−i) = PQ and the P -adic norm

and the Q-adic norm on Q(i) both extend the

5-adic norm on Q. So in fact the lemma gives

another proof that Q isn’t complete with re-

spect to the 5-adic norm (and it’s not much

trouble to deduce that it’s not complete with

respect to any p-adic norm this way).
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Using this lemma let’s deduce its analogue
in the “incomplete” case (although I’m really
only interested in the case of number fields).
So now say L/K is a finite extension of fields
of characteristic zero (or more generally, a fi-
nite separable extension of fields, if you know
what that means). As we’ve just seen, it is
now no longer true that a non-arch norm on
K extends uniquely to a non-arch norm on L.
Indeed, if L and K are number fields and if
P is a prime ideal of the algebraic integers of
K, and P factors in L as Qe11 Q

e2
2 . . . Qerr in L,

then we have at least r norms on L extending
the P -adic norm on K (namely the appropri-
ate powers of the Qi-adic norms for each i).
But it turns out to be true that in the general
case there are only finitely many norms on L
that extend a given non-arch norm on K.

Let’s fix a norm |.| on K. We’re asking how
to extend it to L. The key construction is
the following. Let K̂ denote the completion
of K with respect to |.|. Then L and K̂ both
contain copies of K, so we can form the ten-
sor product L ⊗K K̂. I can write down what
this is explicitly:
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We know that L can be written as K(α), for
some α ∈ L (that is, L is the smallest field
containing K and α). Hence we can write
L = K[X]/(P (X)) where P (X) is the minimal
polynomial of α, that is the monic polynomial
of smallest positive degree with coefficients
in K and having α as a root. For example
C = R(i) = R[X]/(X2+1). Now if you’re not
completely certain about the tensor product,
you can simply define L⊗K K̂ to be the ring

K̂[X]/(P (X)).

Now, considered as a polynomial with coeffi-
cients in K, P (X) was irreducible, and hence
(P (X)) was a maximal ideal of K[X] (and
thus L was a field!). However, P (X) might
not be irreducible in K̂[X]. One thing is
for sure though, and that’s that P (X) has
no repeated roots (because if it did then
it would have a factor in common with its
derivative, contradicting the fact that it’s ir-
reducible). So, in K̂[X], if P (X) factors, it
will factor as Q1(X)Q2(X) . . . Qr(X) with the
Qi(X) ∈ K̂[X] irreducible and pairwise co-
prime.
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So by the Chinese Remainder Theorem we

see that

L⊗K K̂ = K̂[X]/(P (X))

= K̂[X]/(
r∏

i=1

Qi(X))

= ⊕ri=1K̂[X]/(Qi(X))

= ⊕ri=1L̂i

(this last line is a definition) where L̂i =

K̂[X]/(Qi(X)) is a field with a name that is

currently only suggestive of what is to come

rather than being any kind of completion of L.

Note that there’s a completely canonical nat-

ural map L → L ⊗K K̂, sending α to X, and

hence a map L → ⊕ri=1L̂i so, by projection,

maps L→ L̂i for each i.

Theorem. L/K finite as above, and |.| a

norm on K. Then there are only r exten-

sions ||.||i (1 ≤ i ≤ r) of |.| to L, and if Li de-

notes L equipped with the ith extension then

the completion of Li is (after re-ordering if

necessary) isomorphic to L̂i.
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Proof. Let ||.|| be any norm of L extending
|.| on K. Let L̂ denote the completion of L
with respect to this norm. Then the closure
of K in L̂ is isomorphic to K̂ (we saw this ar-
gument once today already). Now consider
the subfield K̂(α) of L̂. Clearly K̂(α) is a
finite extension of K̂. Moreover K̂(α) inher-
its a norm from L̂. So by the lemma-to-be-
proved-on-the-example-sheet, K̂(α) is com-
plete! In particular it’s a closed subspace of
L̂ that contains L and hence it is L̂. Let Q(X)
denote the minimal polynomial of α over K̂.
Then Q(X) divides P (X) (because P (α) = 0)
and hence Q(X) is one of the Qi(X) above
and

L̂ = K̂[X]/(Q(X))

= K̂[X]/(Qi(X))

= L̂i

for some i.

Conversely, each L̂i is visibly a finite exten-
sion of K̂ and hence inherits a unique norm
extending that on K̂, and the inclusion L →
L̂i induces a norm on L.
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All that remains is to show that distinct i’s

induce non-equivalent norms on L. But this

is clear—if the norms corresponding to two

distinct is were equivalent, then the comple-

tions would be isomorphic as L-algebras, but

Qi(α) = 0 in L̂i whereas Qj(α) 6= 0 in L̂i if

i 6= j.

I’ll remind you that I stated earlier in the

course, without proof, a theorem saying that

the only non-arch norms on a number field k

were the P -adic norms; it’s not hard to use

the above argument to reduce this statement

to the case of k = Q, which can be checked

directly using a brute force argument due to

Ostrowski.

As a final remark, we can now deduce that kP
is a finite extension of Qp if p ∈ P . For we’ve

just shown that kP is a direct summand of

the ring k⊗Q Qp and hence the dimension of

kP/Qp is at most the dimension of k/Q.
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[Remark: people who want to see more of

the theory of fields with norms have two ex-

cellent choices for books—Cassels’ “Local

fields”, which does everything I did here but

which is also completely stuffed with beauti-

ful applications of the theory to number fields

and Diophantine equations and lots of other

things, and Serre’s “Local Fields” which is

more highbrow in nature and which goes much

further than Cassels, going as far as proofs of

the main theorems of local Class Field The-

ory.]

Chapter 3: Haar measure and abstract

Fourier theory.

3.1: Introduction.

If f is a continuous function R → C such that∫∞
−∞ |f(x)|dx converges, then f has a Fourier

transform f̂ : R → C, defined by

f̂(y) =
∫ ∞
−∞

f(x)e−iyxdx.
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f̂(y) =
∫ ∞
−∞

f(x)e−iyxdx.

In general f̂ bears little resemblance to f .
Let’s do an example to stress this: let’s say
f(x) = 1/(1 + x2). Then

f̂(y) =
∫ ∞
−∞

e−iyx

1 + x2
dx.

We do this integral via closing up the contour
and getting back from +∞ to −∞ via a big
arc |z| = R. We have a choice of two arcs—
upper half plane and lower half plane—and
which one we choose turns out to depend on
the sign of y.

Let’s imagine closing up via the upper half
plane. So y is always real, but now we’re
thinking of x as a complex number with big
positive imaginary part. If we want the inte-
gral along the big arc to be small then we’d
better make sure that the integrand is small.
So closing up along the top will work if y < 0
(because then we’re integrating something
whose value is at most c/R2 along an arc
whose length is O(R)).
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And so, for y < 0,

f̂(y) =
∫ ∞
−∞

e−iyx

1 + x2
dx

= lim
D

∫
D

e−iyx

1 + x2
dx

where D is a contour that looks like a D ly-

ing on its back, and is getting bigger and

bigger. Now this integral is just going to

be 2πi times the sum of the residues at the

poles of e−iyx/(1+x2) for x in the upper half

plane. The only pole is at x = i, the residue

is ey/(2i) and we deduce

f̂(y) = πey

for y < 0.

A similar argument shows f̂(y) = πe−y if y >

0 (now using the lower half plane). Finally

f̂(0) = [tan−1(x)]∞−∞ = π so we conclude

f̂(y) = πe−|y|.

The purpose of this was just to show that f̂

is of an entirely different nature to f .
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Summary: if f(x) = 1/(1 + x2) then f̂(u) =

πe−|y|. So in this case f̂ is “rapidly decreas-

ing” (this means f̂(y).P (y) tends to zero as

|y| → ∞, for any polynomial P ∈ C[X]) but

not differentiable, whereas f was infinitely

differentiable but decreasing not particularly

quickly.

Two very elementary exercises about Fourier

transform:

(1) If g(x) = f(x + r) (r real) then ĝ(y) =

f̂(y)eiry.

(2) If g(x) = f(x)eiλx then ĝ(y) = f̂(y − λ).

[Proof: change of variables]

This also indicates that f̂ is very much “not

like f”: it’s transforming in a different way.

94



But here’s a nice thing: sometimes f̂ also
has a Fourier transform (for example the f̂
we just saw is certainly continuous and inte-
grable). So we can take the Fourier trans-
form again! And (1) and (2) together imply
that ˆ̂f behaves in a similar way to f (for ex-
ample if g(x) = f(x+r) then ˆ̂g(z) = ˆ̂f(z−r)).

Now let’s try our toy example f(x) = 1/(1+
x2), so f̂(y) = πe−|y|. Then

ˆ̂f(z) = π
∫ ∞
−∞

e−|y|e−izydy

and this integral can be done easily because
the integrand has an indefinite integral. Split
the integral into

∫ 0
−∞+

∫∞
0 ; the first integral

is

π
∫ 0

−∞
ey−izydy

= π[ey(1−iz)/(1− iz)]0−∞
= π/(1− iz)

and the second one is π/(1 + iz) so the sum
is 2π/(1 + z2) and ˆ̂f is looking remarkably
similar to f . In fact, for this f , we have
ˆ̂f(x) = 2πf(x) = 2πf(−x) because f was
even.
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But the general theorem is that if f is now

an arbitrary function which is, say, infinitely

differentiable and rapidly decreasing (much

weaker conditions will do, but these will suf-

fice for us), then f̂ is also infinitely differ-

entiable and rapidly decreasing, so ˆ̂f makes

sense and

Theorem (Fourier Inversion Theorem)

ˆ̂f(x) = 2πf(−x).

Now not only will I freely confess that I have

no idea (yet) how to prove the above state-

ment, but also, more importantly, before I

had read Tate’s thesis, I would never have be-

lieved that there would or could be some “ab-

stract” version of this theorem which would,

say, work over the p-adic numbers (what would

play the role of 2π, for example??
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So now I know better. In fact the Fourier

transform should be thought of as some sort

of “duality” sending functions on one R to

functions on “a dual R”, and the Fourier in-

version theorem is some form of the state-

ment that the dual of the dual is the function

you started with (up to some fudge factors).

A good analogy is with finite abelian groups

G. Say G is finite abelian, and let Ĝ be the

set of (1-dimensional) characters of G. Then

Ĝ is a group non-canonically isomorphic to G.

Now for f : G→ C, define f̂ : Ĝ→ C by

f̂(χ) =
1

|G|
∑
g∈G

f(g)χ(g).

Exercise: if
̂̂
G is identified with G in the

following STRANGE way: let g ∈ G define

a group homomorphism Ĝ → C× by send-

ing χ to χ(g−1) [NOT χ(g)], then ˆ̂f(g) =

(1/|G|).f(g).
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[ ˆ̂f(g) = (1/|G|).f(g).]

Note the minus sign in the Fourier inversion

theorem corresponds to the strange identi-

fication of G with its double dual, and the

fudge factor 2π corresponds to the fudge fac-

tor 1/|G|. The analogy in fact is more than

an analogy—our goal in this chapter is to

formulate and prove an “abstract” Fourier

inversion theorem and both the above things

will be special cases. We need to start by

coming up with an integration theory that

works in much more generality than blah Rie-

mann/Lesbesgue integration. Before we do

that, I need to introduce the objects we’ll

be integrating on: locally compact Hausdorff

topological groups.
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3.2: Locally compact Hausdorff topolog-

ical groups.

So on the real numbers we have the Rie-

mann Integral. I’m going to explain in this

lecture and the next a far more general inte-

gration theory that will work on an arbitrary

locally compact Hausdorff topological group.

So I have to start by explaining what a locally

compact Hausdorff topological group is.

A topological group is a group G equipped

with a topology on G such that m : G×G→ G

and i : G → G defined by m(x, y) = xy and

i(x) = x−1, are continuous (where G × G is

equipped with the product topology). Exam-

ples: any group, with the discrete topology.

The real numbers with its usual topology.

The non-zero real numbers with its usual

topology. If K is any normed field then K

with the topology coming from the norm.
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[One might ask whether continuity of m im-

plies continuity of i. It doesn’t: for exam-

ple if G is the integers with the order topol-

ogy (so the open sets are the empty set,

the whole thing, and all sets of the form

{n, n+1, n+2, n+3, . . .} then multiplication

is continuous but inverse isn’t).]
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Here’s a slightly more subtle example: if K is

a normed field, then K×, with the topology

induced from K, is a topological group. The

reason one has to be careful here is that one

has to check that inverse is continuous—but

it is (exercise), because the topology is com-

ing from a metric. I’ll perhaps make the cryp-

tic remark that if R is an arbitrary topological

ring (so + and − and ∗ are continuous) then

its unit group, with the induced topology, is

not always a topological group, because in-

verse really might not be continuous in this

generality; this can however be fixed by em-

bedding R× into R2 via u 7→ (u, u−1), and giv-

ing it the subspace topology—then R× really

is a topological group.

Pedantic exercise: if K is a normed field, then

check that the two topologies I’ve just put on

K× (the subspace topology coming from K,

and the one coming from K2) coincide.
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Back to examples: If K is a normed field and

G is an algebraic group over K (for exam-

ple GLn or Spn or something) then G(K) is

a topological group (so for example GLn(R)

and GLn(Qp) are topological groups, or E(Qp)

for E/Qp an elliptic curve, and so on). I

won’t prove these things because we don’t

need them, but they’re not hard.
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If g ∈ G then the map G → G × G sending

h ∈ G to (g, h) is continuous (think about

the definition of the product topology, or

the universal property) and hence if we fix

g ∈ G then “left multiplication by g”, the

function G → G sending h to gh, is contin-

uous, and similarly right multiplication by g

is continuous—and even homeomorphisms,

because left/right multiplication by g−1 is a

continuous inverse. In particular G is blah

“homogeneous”—if a, b ∈ G then left multi-

plication by ba−1 is a homeomorphism G→ G

sending a to b. In words, G “looks the same

at a and at b”; the group of homeomorphisms

of G acts transitively on G, if you prefer.
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A remark on non-Hausdorff groups: It turns

out that if G is a topological group which

isn’t Hausdorff, and if e is the identity el-

ement, then {e} isn’t a closed set, and its

closure H is a normal subgroup of G such

that G/H is naturally a Hausdorff topolog-

ical group. Using this argument, questions

about topological groups can frequently be

reduced to the Hausdorff case, and we’ll only

be concerned with Hausdorff groups in prac-

tice anyway—for example, all the examples

we saw above were Hausdorff; moreover topolo-

gies will usually come from metrics and hence

will automatically be Hausdorff.
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So let’s get on. Let G be a hausdorff topo-
logical group. We want to integrate a class
of continuous functions G→ C. Which ones?
Well, probably not all of them—for example
if G = R then f(x) = 1 for all x won’t be inte-
grable. So let’s restrict, at least for the time
being, to continuous functions which vanish
outside a compact set—this is a good finite-
ness condition. Unfortunately, in this gener-
ality, there might not be any such things! For
example if G = Q with its subspace topol-
ogy coming from R, a continuous function
G→ C which vanishes outside a compact set
must be identically zero (exercise). This is
unsurprising—who would do integration on
Q?? Here’s a nice condition which will at
least ensure the existence of lots of functions
which vanish outside a compact set:

Definition. If X is a topological space and
x ∈ X, we say that U ⊆ X is an open neigh-
bourhood of x ∈ X if U is open and x ∈ U .
We say S ⊆ X is a neighbourhood of X if x
is in the interior of S. We say that X is lo-
cally compact if every x ∈ X has a compact
neighbourhood.
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For the rest of this chapter, we are only in-

terested in locally compact Hausdorff topo-

logical groups. Let’s call them LCHTGs.

Note that to check that a topological group

is locally compact, it suffices to find a com-

pact neighbourhood of the identity (by ho-

mogeneity).

Good examples of LCHTGS: if K is either

the real numbers, or the complex numbers,

or kP for k a number field, then K (consid-

ered as a group under addition) is a LCHTG;

for the reals and the complexes a compact

neighbourhood of the identity is the closed

unit ball, and for kP the ring of integers will

work, once we remember that the residue

field is finite in this setting. Moreover, I claim

that K× (with the subspace topology induced

from that of K) is also a LCHTG–if K = kP
then this follows because 1+πR is a compact

neighbourhood of 1, and in the archimedean

case consider the closed ball centre 1 ra-

dius 1/2.

106



Now if X is a Hausdorff topological space
then for f : X → C continuous, it’s easily
checked that the following are equivalent:

(1) f vanishes outside a compact set (that
is, there’s some compact K ⊆ X such that
f(x) = 0 if x 6∈ K), and

(2) the support of f is compact

[recall that the support of a function f : X →
C is just the closure of the set {x ∈ X :
f(x) 6= 0}].

So for a LCHTG G, let’s define K(G) to be
the continuous functions G → R with com-
pact support. The point is that this space is
very rich (and in particular non-zero!). We’ll
see this in a second, using Urysohn’s Lemma.
First let me remark that we’d really like to
integrate more functions than those in K(G),
but K(G) is a good start and turns out to be
where the work is; we’ll expand our horizons
later by taking limits. First I’ll show K(G)
is big. We need a lemma in order to prove
Urysohn’s Lemma.
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First let me remind you that if X is compact

Hausdorff and C ⊆ U ⊆ X with C compact

and U open, then we can find V open and D

compact with C ⊆ V ⊆ D ⊆ U . For C and

K := X\U are compact and disjoint, and by

Hausdorffness it’s easy (and fun!) to find

C ⊆ V and K ⊆ W with V and W open and

disjoint.
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Definition, for convenience: S ⊆ T ⊆ X are

subsets of a topological space, we say that T

is a neighbourhood of S if T is a neighbour-

hood of s for all s ∈ S.

Lemma. If X is locally compact and Haus-

dorff and C ⊆ X is compact, then every neigh-

bourhood of C contains a compact neigh-

bourhood of C.

Proof. It suffices to check that if C ⊆ U ⊆
X with C compact and U open, then there

exists V open and D compact with C ⊆ V ⊆
D ⊆ U . Here’s the idea; each c ∈ C has

a compact neighbourhood Nc, with interior

Mc. Now C is covered by finitely many of the

Mc, and the union X ′ of the corresponding

Nc is compact and a neighbourhood of C.

Replacing X with X ′ and U with U ′ = X ′ ∩U
reduces us to the case where X is compact,

which we just did.
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Lemma (Urysohn’s Lemma): if X is a lo-

cally compact Hausdorff topological space,

and C ⊆ U ⊆ X with C compact and U open,

then there’s a continuous function f : X → R

such that

(1) f(x) = 1 for x ∈ C

(2) f(x) = 0 for x 6∈ U

(3) 0 ≤ f(x) ≤ 1 for all x ∈ X

(4) Supp(f) is contained in U and is com-

pact.

Proof.

The proof is sort of “constructive” (but does

involve infinitely many choices). We apply

the previous lemma infinitely often, basically.

Set C(1) = C and define C(0) to be any

compact neighbourhood of C in U .
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[C = C(1); C(0) a compact neighbourhood

of C(1)]

Now by the previous lemma (applied to C

and the interior of C(0)) we get a compact

C(1/2) such that C(0) is a neighbourhood

of C(1/2) and C(1/2) is a neighbourhood

of C(1). Applying this trick again we get

C(1/4) between C(1/2) and C(0), and C(3/4)

between C(1) and C(1/2). Continuing in this

way, we construct compacts C(i/2n) for all

n ≥ 1 and positive odd i with 0 < i < 2n,

such that C(α) is in the interior of C(β) for

α < β.
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Now here’s the magic: for 0 ≤ r ≤ 1 an ar-

bitrary real, define C(r) = ∩s≤r,s=i/2nC(s).

Now we have a decreasing sequence of com-

pact sets; let’s finish the job by defining C(r) =

∅ for r > 1 and C(r) = X for r < 0.

We define f : X → R by letting f(x) be the

supremum of the α with x ∈ C(α). This sup

visibly exists and is at most 1, the support

of f is within C(0), and indeed all properties

we require of f are easy to check, the one

with the most work being continuity, which

goes like this: f(x) < β if and only if x 6∈
∩α<βC(α) and the intersection is closed so

the complement is open, and f(x) > γ if and

only if x ∈ ∪α>γ Int(C(α)) (with Int meaning

interior), which is also open, and so the x

with γ < f(x) < β are an open set, and that’s

enough.

Corollary If G is a LCHTG then K(G) sepa-

rates points and in particular is non-zero.
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3.3: Haar Measure/integral on a LCHTG.

As people probably realise, I’m preparing these

lectures on the fly, but I might actually have

to number lemmas in this section because the

results are elementary but sometimes slightly

tricky. I’ll sometimes be sketchy with the

easier proofs however, for the following rea-

son: the only groups for which we’ll actually

need Haar integrals/measures are: (i) the re-

als and complexes (where the Haar integral is

just the Lesbesgue integral), (ii) the p-adics

and finite extensions thereof (where you can

define the measure by hand), and (iii) the

adeles (we’ll get to these) (where you can de-

fine Haar measure as just a product of things

in (i) and (ii)). My main motivation for go-

ing through this stuff really is that it’s the

kind of thing I wish I had been taught as a

graduate student.
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Let G be a LCHTG. We’ve seen that K(G) is
non-zero, and moreover if we define K+(G)
to be the f : G → R in K(G) such that
f(x) ≥ 0 for all x and f(x) > 0 for some x
(that is, f isn’t identically zero), then we’ve
also see that K+(G) isn’t zero either. The
reason we’re sticking with the reals rather
than the complexes is that we’re after some
kind of “integral”

∫
G which will take an ele-

ment of K(G) to a real number and is guar-
anteed to take an element of K+(G) to a
non-negative real number; if we worked with
the complexes then we couldn’t enforce this
sort of “positivity” condition so easily.

It’s easy to define what a Haar integral is—
the hard part is existence and uniqueness. If
f : G → C and x ∈ G then define fx : G → C
by

fx(g) = f(gx−1).

So it’s just f composed with right multiplica-
tion by x−1 (don’t read anything significant
into the x−1; it’s easier to TEX fx than xf).
Note that f ∈ K(G) implies fx ∈ K(G) and
similarly for K+(G).
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Definition. A Haar Integral on G is a non-

zero R-linear map

µ : K(G) → R

such that

(1) µ(f) ≥ 0 for f ∈ K+(G)

(2) µ(f) = µ(fx)

Idea: think µ(f) =
∫
G f .

Remark: as I’ve already mentioned, ideally

one would like to integrate more functions

than just those with compact support, but

these will come later on without too much

trouble. The hard work is all in

Theorem. If G is a LCHTG then a Haar

integral exists on G, and furthermore if µ1

and µ2 are two Haar integrals, then there’s

some c > 0 such that cµ1(f) = µ2(f) for all

f ∈ K(G).
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As I mentioned before, we will principally be

interested in the case G = K or K× for K a

completion of a number field; in the archimedean

case we have K isomorphic to R or C and we

can use Riemann integration or Lesbesgue in-

tegration to produce a Haar measure (don’t

forget that it’s “dx/x” in the K× case to

make it invariant under multiplication), and

in the non-arch case one can check that K(G)

is generated by step functions so (by linearity

and translation-invariance) we only need to

define the measure of the characteristic func-

tion of πnR, which can be q−n, and that does

existence in all the cases we need. So in some

sense this lecture and the next are not really

logically necessary. So I might race through

the elementary-undergraduate-exercise parts

of some proofs a bit, although I will stress all

of the key ideas.
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In fact the proof contains several ideas. If

you think about how the Riemann integral

works, we first integrate “rectangular” func-

tions (like the characteristic function of an

interval) and then bound more general func-

tions above and below by rectangular func-

tions. The problem at this level is that such a

“rectangular” function might not be continu-

ous. Moreover, G is only a group, not a field,

so we can’t yet say things like “this open

set is twice as big as this one”. We fix this

by, instead of using “rectangular” functions,

setting up an “approximate” theory using an

arbitrary element of K+(G)—indeed our first

goal is, for F ∈ K+(G), to define an “approx-

imate integral” µF .

Notation: for f, g : G → R we say f ≤ g if

f(x) ≤ g(x) for all x ∈ G, and we say f < g if

f ≤ g and f 6= g. So, for example, K+(G) is

the f ∈ K(G) with f > 0.
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Lemma 1. Say f, F ∈ K+(G). Then there
exist real numbers α1, . . . , αn ≥ 0 and x1, x2, . . . xn ∈
G such that ∑

1≤i≤n
αiF

xi ≥ f.

Hence if µ is a Haar integral, we have µ(f) ≤
(
∑
iαi)µ(F ).

[think: what does this lemma “mean”?]

Proof. We know F (t) = r > 0 for some
t ∈ G, so by continuity there’s some open
neighbourhood U of e ∈ G such that F (ut) >
r/2 for all u ∈ U . Now the support of f is
covered by translates Uh of U and hence by
finitely many translates; this gives the xi (if
Uh is in the cover then one of the xi will
be t−1h). Finally note that f ∈ K(G) so f

is bounded, say by M ; now we can just let
all the αi be M/(r/2). The final statement
follows immediately from positivity, linearity
and translation-invariance.

�
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[µ(f) ≤ (
∑
iαi)µ(F )]

As a consequence, which will guide us later,

we deduce that for any F ∈ K+(G) and for

any Haar integral µ we have µ(F ) > 0 [or

else taking F with µ(F ) = 0 shows that µ is

identically zero on K+(G); but for f ∈ K(G)

we have 2f = (|f |+ f) − (|f | − f) and both

bracketed terms on the right are in K+(G) ∪
{0}, so µ is identically zero, contradiction].
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If we pretend that F is one of those “rect-

angle functions” then this motivates the fol-

lowing definition: for f, F ∈ K+(G) we set

(f : F ) to be the inf of the
∑
iαi over all the

possibilities for αi in the lemma, that is, the

inf over all the possible ways of choosing αi
and xi with f ≤

∑
iαiF

xi.

Exercise: prove (f : h) ≤ (f : g)(g : h) by

observing that if f ≤
∑
iαig

xi and g ≤
∑
βjh

yj

then f ≤
∑
i,j αiβjh

yjxi.

Now (f : F ) looks like a good candidate for

the integral of f , at least if “the support of

F is small”, but in fact as well as “rounding

errors” caused by F not being fine enough,

there’s a “normalisation” issue: if we replace

F by 2F , say, we see (f : 2F ) = 2(f : F ).

So if we want to define the integral of f as

some kind of limit of the (f : F ) as, say, the

“support of F tends to zero”, we need to

scale things.
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So here’s a crucial remark that shows that

scaling is possible. Let f, F be as above

(both in K+(G)). We defined (f : F ) to be

the inf of the
∑
iαi such that

∑
iαiF

xi ≥ f .

Now any function in K+(G) has a positive

supremum, which it attains. Furthermore∑
iαiF

xi ≥ f implies that (
∑
iαi) sup(F ) ≥

sup(f) which gives us a lower bound
∑
iαi ≥

(sup(f)/ sup(F )). Hence blah blah blah blah

(f : F ) ≥ sup(f)/ sup(F ) > 0 and we’ve shown

that (f : F ) > 0 for all f, F ∈ K+(G).

So here’s the next good idea:

FIX ONCE AND FOR ALL A FUNCTION

η ∈ K+(G) (it doesn’t matter what it is).

We know that if a Haar integral exists, it will

take η to something positive. We want to de-

fine “approximate Haar integrals” and tease

the existence of a Haar integral from these

approximate ones. For the approximate Haar

integrals to be “compatible” we will simply

force each of them to integrate η to 1.
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Definition. For f, F ∈ K+(G) define

µF (f) := (f : F )/(η : F ).

The idea: µF might not be a Haar integral

but it’s a good first approximation. We’ll see

that in fact as the support of F gets smaller

the µF become better and better approxima-

tions to a Haar integral.

Exercise: Use the previous exercise to check

that µF (f) ≤ (f : η).

Now this definition of µF is great because

it’s impervious to linear changes of F . In

fact it almost does the job already, at least

for functions in K+(G): µF is positive on

K+(G), it’s translation-invariant, and satis-

fies µF (αf) = αµF (f) for α > 0. It’s nor-

malised in the sense that µF (η) = 1. Unfor-

tunately it’s not additive; it’s trivial to check

that µF (f1 + f2) ≤ µF (f1)+µF (f2) (easy ex-

ercise) but there’s no reason why equality

should hold (and it won’t, in general).
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[µF (f) := (f : F )/(η : F ) and µF (f1 + f2) ≤
µF (f1) + µF (f2)]

We need more than subadditivity, we need an

“approximate additivity”, which is given by

Lemma 2. Let G be a LCHTG. Say f1, f2 ∈
K+(G). Say ε > 0. Then there’s a symmetric

open neighbourhood V (that is, V = {v−1 :

v ∈ V }) of the identity in G (depending on f1
and f2 and ε) such that, for any F ∈ K+(G)

with support in V , we have

µF (f1 + f2) ≥ µF (f1) + µF (f2)− ε.

Proof. Let C be the union of the supports

of f1 and f2. Choose (Urysohn) q ∈ K+(G)

with q(x) = 1 for x ∈ C. Choose some tiny

δ > 0 (we’ll say how tiny later—we could

take a vote on this issue if the audience is

sufficiently offended by this idea though); I’ll

tell you now that δ < 1 though.
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Set p = f1 + f2 + δq, so p(x) ≥ δ for x ∈ C.

The key construction is to define (for i =

1,2) the functions

hi(x) = fi(x)/p(x) (if x ∈ C)

= 0 (if x 6∈ C)

[before you ask—there were overflow vbox

issues]
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[p = f1 + f2 + δq

hi(x) = fi(x)/p(x) (if x ∈ C)

= 0 (if x 6∈ C)

]

We need δ to ensure that the hi are continu-

ous! The sum of h1 and h2 is approximately

the characteristic function of C. One checks

easily that hi ∈ K+(G) (the support of hi is

closed in C) and 0 ≤ h1+h2 ≤ 1. Now contin-

uous with compact support implies uniformly

continuous, by the usual argument, so we can

let W be a sufficiently small open neighbour-

hood of the identity such that |hi(x)−hi(y)| <
δ/2 whenever xy−1 or x−1y ∈ W . By replac-

ing W with W ∩ {w−1 : w ∈W} we may even

ensure that W = W−1. Note that V will be

our W when we’ve decided upon a δ.

So now choose any F ∈ K+(G) with support

in W . By Lemma 1 we can find αj and xj
with p ≤

∑
j αjF

xj.
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[p ≤
∑
j αjF

xj]

We’ve just bounded p above by translates of

F , and now we can bound the fi above by

translates of F too. First note that Fxj(t) =

0 if t 6∈Wxj, and for t ∈Wxj we have |hi(xj)−
hi(t)| < δ/2 for 1 ≤ i ≤ 2. So in either case

we have

hi(t)F
xj(t) ≤ (hi(xj) + δ/2)Fxj(t).

Hence

fi = phi ≤
∑
j

αjhiF
xj

≤
∑
j

αj(hi(xj) + δ/2)Fxj .

Hence, by definition,

(fi : F ) ≤
∑
j

αj(hi(xj) + δ/2).

And, because h1(xj)+h2(xj) ≤ 1, we deduce

(f1 : F ) + (f2 : F ) ≤
∑
j

αj(1 + δ).
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(f1 : F ) + (f2 : F ) ≤
∑
j

αj(1 + δ).

Now the last thing we chose were the αj and

xj with p ≤
∑
j αjF

xj, so by letting these vary

we deduce from the previous equation

(f1 : F ) + (f2 : F ) ≤ (1 + δ)(p : F )

and hence (dividing by (η : F ))

µF (f1) + µF (f2) ≤ (1 + δ)µF (p)

for any F ∈ K+(G) with support in W . You

can now presumably see that we’re on the

right track, because p is approximately f1 +

f2.

In fact p = f1+f2+δq, and we deduce (from

subadditivity of µF ) that

µF (f1) + µF (f2) ≤ (1 + δ)(µF (f1 + f2) + δµF (q))

≤ µF (f1 + f2) + δ.R,

with R = µF (f1 + f2) + 2µF (q).
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[µF (f1) + µF (f2) ≤ µF (f1 + f2) + δ.R, with

R = µF (f1 + f2) + 2µF (q).]

Now unfortunately R depends on F which de-

pends on W which depends on δ, but fortu-

nately you all did the exercise earlier which

showed µF (f) ≤ (f : η), and hence R ≤
(f1 + f2 : η) + 2(q : η), which were all cho-

sen before δ. So now choose δ such that

δ((f1+f2 : η)+2(q : η)) < ε, let V denote the

corresponding open set W , and we’re home.

�

Corollary 3. Given f1, f2, . . . , fn ∈ K+(G)

and ε > 0 there exists a symmetric open

neighbourhood V of the identity in G such

that whenever F ∈ K+(G) has support in V ,

we have

µF (
∑
i

fi) ≥
∑
i

µF (fi)− ε.

Proof. Induction. �
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In the last lecture we proved some lemmas

and in this lecture we need one or two more,

but we also need to actually prove existence

and uniqueness of the Haar integral. There

are several ways to do this; I’ll use a method

that I found in P. J. Higgins’ book “An intro-

duction to topological groups” because in my

view the uniqueness proof is the least painful

out of all the references I’ve seen (it’s still

pretty painful though :-( ). We’re going to

deduce existence and uniqueness of Haar in-

tegrals from some Zorn’s Lemma argument

applied within the real vector space K(G) of

continuous functions with compact support.

Here’s the abstract linear algebra we’ll need

to pull this off.
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Let V denote a real vector space. A non-

empty subset E of V is called convex if v, w ∈
E and 0 ≤ λ ≤ 1 implies λv + (1 − λ)w ∈ E.

A subset C of V is called a cone if c ∈ C and

λ > 0 implies λc ∈ C. One checks that for E

non-empty, E is a convex cone iff

(i) v ∈ E and λ > 0 implies λv ∈ E

(ii) v, w ∈ E implies v+ w ∈ E.

(examples: (r,0) ∈ R2 with r > 0 or r ≥ 0).

Finally, we say that a convex cone E is open

if w ∈ E and f ∈ V implies that there’s some

δ > 0 such that w + αf ∈ E for all α with

|α| < δ. So the (r,0) examples above aren’t

open, but (r, s) with r, s > 0 would be. Note

that the complement of a cone is a cone, but

the complement of a convex cone might not

be convex.

A subspace H of V is called a hyperplane if

V/H is 1-dimensional.
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[convex cone: λE = E for λ > 0, and E+E ⊆
E]

Note that a Haar integral is a non-zero R-

linear map K(G) → R and is hence, up a

non-zero constant, determined by its kernel

(the functions whose integral is zero). The

kernel will be a hyperplane in K(G) and our

existence and uniqueness proofs of Haar in-

tegrals will be done via existence and unique-

ness of hyperplanes with certain properties.

Proposition. (“Haar integral machine”) Say

V is a real vector space, E is an open convex

cone in V , and W is a subspace of V that

doesn’t meet E.

(i) There’s a hyperplane H ⊇ W such that

H ∩ E is empty.

(ii) If furthermore V \E (the complement of

E) is convex, then H is unique.

Proof. This is elementary, unsurprisingly.
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(i) By Zorn’s Lemma one can choose a max-
imal subspace H containing W and missing E
and the claim is that it’s a hyperplane. Set
D = H + E. It’s easy to check that D is
an open convex cone (H and E are convex
cones, and E is open). By assumption H ∩E
is empty, so H ∩D is also empty.

First I claim that V is the disjoint union of H,
D and −D. Disjointness is trivial (if D ∩ −D
was non-empty then use convexity to show
0 ∈ D which is false). The fact that V is the
union of H, D and −D follows from maximal-
ity: if v ∈ V with v 6∈ H then H+Rv intersects
E and hence Rv meets H+E = D, but 0 6∈ D
so ±v ∈ D for some choice of sign.

Now I claim that H is a hyperplane. Note
that H 6= V because E is non-empty, so V/H

has dimension at least 1. Say v, w ∈ V gen-
erate a 2-dimensional subspace of V/H and
let’s get a contradiction. Well, w 6∈ H so (af-
ter changing sign if necessary) we may as-
sume w ∈ −D. Similarly (after changing sign
of v if necessary) we may assume v ∈ D.
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Now consider the line joining v to w; think

about it as the image of [0,1]. Because D

is an open convex cone, one checks easily

that the intersection of D with this line is an

open interval containing 0 but not 1. Sim-

ilarly the intersection of the line with −D
is a open interval containing 1 but not 0.

But D and −D are disjoint, and two disjoint

open intervals can’t cover a line, so we have

λv + (1 − λ)w ∈ H for some 0 < λ < 1 and

there’s a linear relation in V/H between v and

w, the contradiction we seek.

(ii) Let E∗ denote the complement of E in

V ; then E∗ is assumed convex and is hence

a convex cone. Now 0 6∈ E so E ∩ (−E) is

empty; let X be the complement of E∪(−E).

Now X = (E∗)∩(−E∗) so it’s a convex cone,

and −X = X, so X is a vector subspace of

V . The argument from (i) (with X replac-

ing H and E replacing D) shows that X is a

hyperplane; moreover any subspace of V dis-

joint from E will be contained in X, so we’re

home. �
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The application is of course the following.

Let G be a LCHTG, set V = K(G), let W

be the subspace of V spanned by all func-

tions of the form f − fx for f ∈ K(G) (so

everything in L should integrate to zero), set

E = K+(G) +W (think of E as “everything

for which the axioms imply that the integral

should be positive”). I claim that the hy-

potheses of the “Haar integral machine” are

satisfied. Let’s check these in a second, but

let’s first observe that if they are, then (i)

gives us a Haar integral, and (ii) (if it applies,

that is, if E∗ is convex) gives us uniqueness

up to a positive scalar. For (i) gives us a

hyperplane H; let µ denote any R-linear iso-

morphism V/H → R. Then clearly µ is lin-

ear and translation-invariant; furthermore if

f, g ∈ K+(G) then the line from f to g lies

within K+(G) so doesn’t meet H, and hence

µ(f) and µ(g) have the same sign, so either µ

or −µ is a Haar measure. Conversely any ker-

nel of a Haar integral will contain W and be

disjoint from E, so if (ii) applies then there’s

only one possibility for the kernel.
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[W spanned by f − fx; E = K+(G) +W ]

So what is left to do? For existence of a Haar

integral, we just need to check the hypothe-

ses of the proposition (that is, that W ∩E is

empty and that E is an open convex cone;

we’ve done the work to prove these easily

though). For uniqueness up to positive scalar

we need to check that the complement of

E is convex (we need another lemma to do

this). Let’s do existence first because it ac-

tually helps with uniqueness.
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Existence of Haar integral.

To check W ∩ E is empty we just have to
check W ∩ K+(G) is empty. This isn’t a
surprising result, because everything in W

should integrate to zero, and nothing in K+(G)
should. But let’s give the proof. Now W is
generated by things of the form f − fx; fur-
thermore using the 2f = (|f |+ f)− (|f | − f)
trick we can check that W is generated by
things of the form f − fx for f ∈ K+(G). So
if W ∩ K+(G) is nonempty then we can find
f, fi ∈ K+(G) and xi ∈ G with

f =
∑
i

(fi − f
xi
i ).

We rewrite as

f +
∑
i

f
xi
i =

∑
i

fi

and for any ε > 0 we use Corollary 3 to find an
open neighbourhood V of the identity such
that for any F ∈ K+(G) with support in V ,
we have

µF (f +
∑
i

f
xi
i ) ≥ µF (f) +

∑
i

µF (fxii )− ε.
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Now we easily get a contradiction, for choos-

ing F as above (Urysohn), we see∑
i

µF (fi) ≥ µF (
∑
i

fi)

= µF (f +
∑
i

f
xi
i )

≥ µF (f) +
∑
i

µF (fxii )− ε

≥ (η : f)−1 +
∑
i

µF (fi)− ε

so if we had chosen ε with 0 < ε < (η : f)−1

then we get a contradiction.
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All that’s left for existence is the check that

K+(G) + W is an open convex cone. It’s

clearly a convex cone; the issue is openness.

If f = p+q is an arbitrary element of K+(G)+

W , and k ∈ K(G) is arbitrary, we need to show

f ± λk ∈ K+(G) +W for 0 < λ small. Here’s

how. By Lemma 1 we can bound |k| above

by
∑
iαip

xi and WLOG not all of the αi are

zero. So

f ± λk ≥ p+ q − λ
∑
i

αip
xi

= p+ q − λ
∑
i

αip− λ
∑
i

αi(p
xi − p)

= p(1− λ
∑
i

αi) + q′

with q′ ∈W , so f±λk ∈ K+(G)+W if 0 < λ <

(
∑
iαi)

−1, and we have proved the existence

of the Haar integral.
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For uniqueness we need to show that (with
the above notation) E∗ is convex. The rea-
son we don’t yet have enough is that we have
“only approximated a function from above”—
we now really need to approximate a function
in K(G) uniformly across G. To do this we
need the a standard application of the “bump
functions” that Urysohn’s lemma gives us.

Lemma 4. If G is a LCHTG and f ∈ K+(G)
and W is any neighbourhood of the identity
in G, then one can find x1, x2, . . . , xn all in the
support of f and f1, f2, . . . , fn ∈ K+(G) with
the support of fi in Wxi, and

∑
i fi = f .

Proof. This is easy. First choose a compact
neighbourhood N of the identity in W , with
interior U . Now the support of f is com-
pact so it’s covered by finitely many Uxi,
1 ≤ i ≤ n, with xi all in the support of f .
By Urysohn, there exists hi ∈ K+(G) which
is identically 1 on Nxi and whose support is
contained within Wxi. Now set h =

∑
i hi

and fi(x) = f(x)hi(x)/h(x) for x in the sup-
port of f , and fi(x) = 0 otherwise. It’s an
easy check that this works.
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Say F : G→ C is symmetric if F (x) = F (x−1)
for all x. The following lemma is the last
piece of the puzzle.

Lemma 5. (Uniform approximation) If f ∈
K+(G) and ε > 0, then there exists some
neighbourhood V of the identity in G such
that for every symmetric F ∈ K+(G) with
support contained in V there are real num-
bers α1, α2, . . . , αn ≥ 0 and x1, x2, . . . , xn ∈ G
such that

|f(x)−
∑
i

αiF
xi(x)| < ε

for all x ∈ G.

Proof. By uniform continuity we can choose
a neighbourhood V of the identity such that
|f(x)− f(y)| < ε/2 whenever y ∈ V x and this
V is going to work. Say F ∈ K+(G) is sym-
metric with support in V . Then of course
the support of Fx is within V x, and one de-
duces easily that |f(x)− f(y)|Fx(y) ≤ ε

2F
x(y)

for all x, y ∈ G, so by definition we have (as
functions of y)

|f(x)Fx − f.Fx| ≤
ε

2
Fx.
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|f(x)Fx − f.Fx| ≤
ε

2
Fx (1)

(as functions of y). Now for any δ > 0, by

uniform continuity of F , we can find some

neighbourhood W of the identity such that

|F (y)− F (z)| < δ

for all y ∈ Wz, and hence, for any x ∈ G,

|Fx(y)− Fx(z)| < δ for all y ∈Wz.

Now by (bump function) Lemma 4, applied

to f and W , we write f =
∑
i fi with fi ∈

K+(G) and the support of fi in Wxi. The

same trick as above gives us

fi(y)|Fx(y)− Fx(xi)| ≤ δfi(y)

for all x, y ∈ G (check separately for y ∈ Wxi
and y 6∈Wxi).

A labour-saving observation now is that F is

symmetric so Fx(xi) = Fxi(x), and summing

the last equation over i we get
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|f(y)Fx(y)−
∑
i

fi(y)F
xi(x)| ≤ δf(y).

This latter equation is true for all x, y ∈ G,

and hence (by definition)

|f.Fx −
∑
i

Fxi(x)fi| ≤ δf. (2)

Recall now equation 1:

|f(x)Fx − f.Fx| ≤
ε

2
Fx (1)

and we get

|f(x)Fx −
∑
i

Fxi(x)fi| ≤ ε/2Fx + δf (3)

(an inequality of functions of y) for all x.

What we did here was used uniform continu-

ity of f and uniform continuity of Fx to get

two good approximations for f.Fx, and we

reaped the consequences.

142



[ |f(x)Fx −
∑
i F

xi(x)fi| ≤ ε/2Fx + δf (3) ]

A painless way to finish now is to assume the

existence of a Haar integral! We have already

proved this so it’s OK. Apply a Haar integral

µ to this last equation (observing that if φ ∈
K(G) then φ ≤ |φ| and −φ ≤ |φ|, so |µ(φ)| ≤
µ(|φ|)) and deduce

|f(x)µ(F )−
∑
i

Fxi(x)µ(fi)| ≤ ε/2µ(F )+δµ(f).

It’s an easy check that µ(f) ≤ (f : F )µ(F )

[look at the definition of (f : F ) and apply µ]

and we deduce

|f(x)µ(F )−
∑
i

Fxi(x)µ(fi)| ≤ (ε/2+δ(f : F ))µ(F ).

Now divide by µ(F ), set αi = µ(fi)/µ(F ), let

δ be ε/(3(f : F )) and we get

|f(x)−
∑
i

αiF
xi(x)| < ε

and we have won. �
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Corollary 6. Set E = K+(G)+W as before.

Then, for any f ∈ K(G), there exists some

h ∈ K+(G) such that for every ε > 0, either

f + εh ∈ E or f − εh ∈ −E.

Proof. Let C be the support of f ; let D be

a compact neighbourhood of C. By Urysohn

there’s h ∈ K+(G) with h(x) > 2 for x ∈ D.

This h will work. For we can write f =

f1 − f2 with fi ∈ K+(G), and by the pre-

vious Lemma (uniform approximation) both

f1 and f2 can be uniformly approximated by

scalings of translates of any symmetric func-

tion with support in some V , which is WLOG

symmetric and satisfies V C ⊆ D.

The trick now is if F0 ∈ K+(G) has sup-

port in V then F (x) = F0(x) + F0(x
−1) is

symmetric with support in V , and we can

uniformly approximate f1 and f2 using F ,

and hence we can find α1, . . . , αn ∈ R with

|f(x)−
∑
iαiF

xi(x)| < 2ε for all x ∈ G.
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We have rigged it so that f and Fxi all have

support in D, so we can conclude that

|f −
∑
i

αiF
xi| < εh.

Now if α =
∑
iαi then k := αF −

∑
iαiF

xi ∈W
and

f − εh < αF − k < f + εh.

But this implies what we want: if α ≥ 0 then

we’ve shown f + εh > −k ∈ W so f + εh ∈
K+(G) +W , and if α ≤ 0 then we’ve shown

f − εh < −k and hence f − εh ∈ −E. �
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Uniqueness of Haar integrals.

As usual W is generated by f − fx, E =

K+(G)+W and all we need to do is to prove

that the complement of E in V = K(G) is

convex. The complement is certainly a cone,

so we need to show it’s a convex cone, so we

need to check that if f1, f2 ∈ E∗ (the com-

plement of E) and f1 + f2 ∈ E then we have

a contradiction. This is now easy. Write

f = f1 − f2 and apply the previous corol-

lary to deduce that there’s some h ∈ K+(G)

such that for all ε > 0 either f + εh ∈ E or

f−εh ∈ −E. But E is open and f1+f2 ∈ E, so

there’s some ε > 0 such that f1+f2− εh ∈ E.

If f+ εh ∈ E then 2f1 ∈ E, and if f − εh ∈ −E
then 2f2 ∈ E, and either one is a contradic-

tion.
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We now consider consequences of the exis-

tence and uniqueness of Haar integrals, and

extend our range of definition somewhat. We

established the existence of a Haar integral

which, by definition, was impervious to right

translations. These are sometimes called “right

Haar integrals”. We could instead demand

that the integral of f ∈ K(G) was equal to

the integral of the function g 7→ f(xg) [invari-

ance under left translation]. Such a gadget

would then be called a “left Haar integral”.

But these exist and are unique too:

Theorem. Left Haar integrals exist and are

unique up to a positive constant.

Proof. If f ∈ K(G) then the function f̃ :

x 7→ f(x−1) is also in K(G) and if we define

µL(f) = µ(f̃) then µL is a left Haar integral

iff µ is a right Haar integral.

�
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Note that the left Haar integral might not be
(a positive constant times) the right Haar in-
tegral! The moral reason for this is that it’s
not hard to find a LCHTG G with a sub-
group H and g ∈ G with gHg−1 a proper
subset of H. If there were a left and right
invariant Haar integral on G then a good ap-
proximation to the characteristic function of
H would have the same measure as a good
approximation to the characteristic function
of gHg−1 which can’t happen because gHg−1

is “strictly smaller than H”.

Exercise: Let G be the matrices
(
a b
0 1

)
in

GL2(R). Conjugating by g :=
(

2 0
0 1

)
sends(

a b
0 1

)
to
(
a 2b
0 1

)
so if f is any continuous func-

tion on R with compact support and which
is increasing on (−∞,0), has f(0) > 0, and is
decreasing on (0,∞), then the function F on
G defined by F (

(
et b
0 1

)
) = f(t)f(b) (and F = 0

if a < 0) is continuous with compact support
and satisfies x 7→ F (x) − F (gxg−1) ∈ K+(G),
which is enough to show that no bi-invariant
measure can exist (µ(F ) > µ(gFg−1) for any
right Haar measure).
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If µ is a (right) Haar integral on G then let’s

write ∫
G
f(x)dµ(x)

for µ(f); it’s a more suggestive notation.

Then we have the following result:

Fubini’s Theorem. If G and H are LCHTGs

with Haar integrals µ and ν, and f ∈ K(G×H)

then ∫
G

(∫
H
f(x, y)dν(y)

)
dµ(x)

and ∫
H

(∫
G
f(x, y)dµ(x)

)
dν(y)

exist, are equal, and are both right Haar in-

tegrals on G×H.

Proof. Existence is easy. First, f has com-

pact support so has support within a com-

pact set of the form C × D (projection of a

compact set is compact), so certainly the in-

ner integral
∫
H f(x, y)dν(y) exists and, as a

function of x, has compact support.
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We need to check
∫
H f(x, y)dν(y) is continu-

ous as a function of x but this isn’t hard (big

hint: if f is supported within C × D and we

choose k ∈ K+(H) which equals 1 on D then

by uniform continuity we have that x close to

x′ implies |f(x, y)−f(x′, y)| ≤ εk(y) so chang-

ing x to x′ changes the integral by at most

εν(y) which can be made arbitrarily small).

It follows easily that both integrals are Haar

integrals. To check that they’re the same,

it suffices to check that they agree on one

positive function! So check it for f(x, y) =

p(x)q(y) with p ∈ K+(G) and q ∈ K+(H),

where both integrals are just µ(p)ν(q) 6= 0.

�
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Finally let me talk about extending our range

of integrable functions. This is rather formal,

really.

Let G be a LCHTG and let U denote all the

functions f : G→ R∪{+∞} which are point-

wise limits of increasing sequences f1 ≤ f2 ≤
f3 ≤ . . . with fn ∈ K(G). If f ∈ U then one

can check that µ(f) := limn µ(fn) ∈ R∪{+∞}
is well-defined and independent of the choice

of fn. Set −U = {−f : f ∈ U}, define µ on

−U by µ(−f) = −µ(f) ∈ R ∪ {−∞}.

Definition. A function f : G → R ∪ {±∞} is

summable if there exists g ∈ −U and h ∈ U

with g ≤ f ≤ h and, crucially,

sup
g≤f,g∈−U

µ(g) = inf
h≥f,h∈U

µ(h).

The common value is defined to be µ(f) ∈ R

(note: it can’t be infinite).

Note that a summable function certainly doesn’t

have to be continuous.
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Exercise: if G = R then check that the char-

acteristic function of [0,1] is summable, and

has integral equal to 1 (if the Haar measure is

normalised in the usual way). Similarly check

that the characteristic function of a point is

summable and has integral equal to zero.
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If L1(G) denotes all the summable functions,
then there’s a natural “norm” on L1(G), de-
fined by ||f || = µ(|f |) (one can check |f | ∈
L1(G)). Unfortunately there are plenty of
functions in L1(G) with ||f || = 0 (for exam-
ple the characteristic function of a point, if
G = R). Say a function f is null if ||f || = 0.

Definition. L1(G) is defined to be L1(G)
modulo the null functions.

One can check that L1(G) is in fact a real Ba-
nach space. In fact more generally, if 1 ≤ p <
∞ one can define Lp(G) to be the functions
f : G→ R∪{±∞} such that |f |p is summable,
one can define a “norm” on Lp(G) by ||f ||p =
µ(|f |p)1/p and then let Lp(G) be the quotient
of Lp(G) by the subspace of f with ||f ||p = 0.
It turns out that these are all Banach spaces
(this needs a little proof), which are abso-
lutely fundamental to the further develop-
ment of the theory. Note also that L2(G) is
a real Hilbert space, because one can make
sense of

〈f, g〉 =
∫
G
f(x)g(x)dµ(x)
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for f, g ∈ L2(G). One can also tensor all these
spaces with the complexes to get complex
Banach spaces and a complex Hilbert space
in the usual way. All these spaces are inde-
pendent of the explicit choice of Haar mea-
sure, but the inner product on L2(G) does
depend on the choice (it affects things by a
scaling factor).

Convolution (definition below) defines a prod-
uct on L1(G); this is not hard to check. To
make this work we have to fix a choice of
Haar measure µ. Now if f, g ∈ L1(G) then we
define f ∗ g ∈ L1(G) by

(f ∗ g)(z) =
∫
G
f(zy−1)g(y)dµ(y).

One checks that this is defined on L1(G),
descends to L1(G), and is associative and
norm-non-increasing (||f ∗ g||1 ≤ ||f ||1||g||1).

One can define a measure on G associated to
the integral µ; one says that a subset A ⊆ G

is measurable if its characteristic function χA
is summable, and one defines µ(A) = µ(χA).

154



3.4: Overview of Pontrjagin duality and

Fourier inversion.

I’ve decided/realised that one simply needs

to assume too much measure theory/spectral

theory to give a reasonable presentation of

this stuff :-( and, given that I do actually

want to spend some lectures talking about

Tate’s thesis, I’ve decided that it’s impossi-

ble to give full proofs here (it would probably

take 6 or so lectures to go through the de-

tails) and hence I may as well just give an

overview of results. The original paper by

Cartan and Godement (“Théorie de la du-

alité et analyse harmonique dans les groupes

abéliens localement compacts”) is a good

reference, and it seems to me that the 40-

page Chapter 3 of Ramakrishnan–Valenza is,

to a large extent, an English translation of

this paper (and chapter 2 of Ramakrishnan-

Valenza is 30 pages of spectral theory and so

on which one needs as prerequisites).
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If you want to see a complete presentation

of this stuff then, these 70 pages are per-

haps one place to look. It is possible to read

this stuff, but it would be helpful if you knew

e.g. what a Radon measure was and knew

some of the basic spectral theory of Banach

algebras, and a fair bit of functional anal-

ysis too (the Banach–Alaoglu theorem, the

Krein–Milman theorem and so on). I don’t

know if there is a simpler way to get to the

results in the cases that we’re interested in.

I do know a low-level proof of the Fourier In-

version theorem for p-adic fields but we also

need this result in an “adelic setting”.

I will prove some basic results, and then give

precise statements of deeper theorems.
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Let G be a topological group (later on it will

be locally compact and Hausdorff, of course,

but we don’t need that yet). The big new

assumption now that we do need, is that

G must be abelian. The non-abelian story

is much more subtle (it occupied much of

Harish-Chandra’s mathematical life and there

are still plenty of questions left unanswered).

Even the abelian case needs some work (c.f.

those 70 pages I just mentioned).

So let G be an abelian topological group. De-

fine Ĝ, the dual of G, to be the group of

continuous group homomorphisms

χ : G→ S1

with S1 = {z ∈ C : |z| = 1} the circle group

(remark that if G isn’t abelian then Ĝ should

probably contain some higher-dimensional uni-

tary representations so the non-abelian the-

ory diverges at this point).
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[G an abelian topological group; Ĝ = {χ :

G→ S1}]

One checks easily that Ĝ is a group (the

product of two continuous group homomor-

phisms is continuous, and if χ is continuous

then so is g 7→ χ(g)−1). Our first job is to

make Ĝ into a topological group. There are

subtleties here. In the analogous linear the-

ory (topological vector spaces) there is more

than one way to topologise the dual space of

a topological vector space (look up “Weak

topology” on Wikipedia, for example).
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Here’s how we’re going to topologise Ĝ. At

the minute all we need to assume is that G is

an abelian topological group. If K is a com-

pact subset of G and V is a neighbourhood

of the identity in S1 then define

W (K,V ) := {χ ∈ Ĝ : χ(K) ⊆ V }.

Note that 1, the identity character (the one

sending all g ∈ G to 1 ∈ S1) is in all W (K,V ).

We define a topology on Ĝ by letting the

W (K,V ) be a base of neighbourhoods of 1.

Explicitly, a subset U of Ĝ is defined to be

open iff for all ψ ∈ U there is K and V (pos-

sibly depending on ψ) such that W (K,V )ψ ⊆
U .

Lemma. Let G be an abelian topological

group. Then the construction above does

define a topology on Ĝ, and moreover Ĝ be-

comes a topological group with respect to

this topology.
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[W (K,V ) := {χ ∈ Ĝ : χ(K) ⊆ V }.]

To check that we’ve defined a topology on Ĝ
we first need to check firstly that the empty
set and the entire space are open (which
just boils down to checking that at least one
set of the form W (K,V ) exists; for exam-
ple K = {e} for e ∈ G the identity will do).
Next we need to check that an arbitrary union
of open sets is open, which is obvious. Fi-
nally we need to check that the intersection
of two open sets is open, which boils down
to checking that W (K1, V1)∩W (K2, V2) con-
tains some W (K,V ); but this is true because
one can set K = K1 ∪K2 and V = V1 ∩ V2.

To check that multiplication on Ĝ is contin-
uous with respect to this topology, we need
to ensure that if φψ = ρ then, for all W (K,V )
there is W (K1, V1) and W (K2, V2) with

W (K1, V1)φW (K2, V2)ψ ⊆W (K,V )ρ.

This immediately simplifies to

W (K1, V1)W (K2, V2) ⊆W (K,V )

because G is abelian.
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Given K and V , we need Ki, Vi with

W (K1, V1)W (K2, V2) ⊆W (K,V ).

If we set K1 = K2 = K then all that’s left

is to check that for all neighbourhoods V of

the identity in S1 there exists V1 and V2 with

V1V2 ⊆ V , which is clear because S1 is itself

a topological group! �

Of course we could have done this more ex-

plicitly: if V contains eiθ with −ε < θ < ε

then we could let V1 = V2 = {eiθ : |θ| < ε/2}.
While we’re at it,

Notation. If 0 ≤ r <∞ then define N(r) :=

{eiθ : |θ| < r}.
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Exercise. Let G = R be the real numbers,

under addition. Prove that the continuous

maps G→ S1 are precisely those of the form

r 7→ eirt with t ∈ R (hint: consider a neigh-

bourhood N(ε) in S1 and its pre-image in G;

this gives a map (−δ, δ) → (−ε, ε) which is

“additive” whenever this makes sense; draw

some conclusions). Check that that this iden-

tification of R̂ with R induces an isomorphism

of topological groups R̂ = R.
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Proposition. Say G is an abelian topological

group and Ĝ is its dual, topologised as above.

(i) If G is discrete (that is, if all subsets are

open) then Ĝ is compact.

(ii) If G is compact then Ĝ is discrete.

Proof.

(i) Consider Ĝ as a subset of Hom(G,S1), the

(arbitrary set-theoretic) maps from G to S1.

This latter space is just
∏
g∈G S

1; give it the

product topology (reminder: a basis for the

product topology, when considering an infi-

nite product, are the subsets which are prod-

ucts of open sets such that all but finitely

many of the prodands are the entire space).
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First I claim that Ĝ is a closed subset of

Hom(G,S1); this is because its complement

is clearly open, as if χ(ab) 6= χ(a)χ(b) then

one can choose neighbourhoods Vx of χ(x)

for x ∈ {a, b, ab} with Vab ∩ VaVb = ∅.

Next I claim that the subspace topology on

Ĝ is the compact-open topology. The com-

pact subsets of G are just the finite subsets,

and with this in mind it’s easy to check that

a set is open in one topology iff it’s open in

the other (both topologies give Ĝ the struc-

ture of a topological group and this reduces

the question to one about neighbourhoods

of the identity, which just follows from the

definitions).

Finally I claim that this does it, and this is be-

cause Tychanov’s theorem says that a prod-

uct of compact spaces is compact, so
∏
g S

1

is compact, and a closed subspace of a com-

pact space is compact.
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(ii) If G is compact then I claim that subset

{1} containing only the trivial character is an

open subset of Ĝ, and because Ĝ is a topo-

logical group this will suffice to prove that Ĝ

is discrete. To check that it’s compact we

need to show that W (K,V ) = {1} for some

K and V ; take K = G and V = N(ε) for

any ε < π/3. If χ(G) ⊆ N(1) then χ(G)

is a subgroup of N(ε), but the only sub-

group of S1 contained in N(ε) is {1}; hence

W (G,N(ε)) = {1} and we’re done. �

I will now start stating things without proof.

Theorem. If G is locally compact Hausdorff,

then so is Ĝ.

I have seen a low-level proof of this, and

a more abstract one. The low-level proof

(which is long, but completely elementary—

it could be a long example sheet question,

with hints) goes as follows.
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[Theorem. If G is locally compact Haus-

dorff, then so is Ĝ.]

One checks firstly that if K is a compact

neighbourhood of the identity in G then blah

W (K,N(π/6)) is a compact neighbourhood

of the identity in Ĝ (a dull check), and sec-

ondly that this suffices (which boils down to

checking that as K shrinks, W (K,N(π/6))

gives a basis of neighbourhoods of 1).

The higher-level proof (which one needs later

on in the theory anyway) proceeds by first in-

troducing the Fourier transform of f ∈ L1(G).

Notational note: from now on, Lp(G) will al-

ways denote the complex Lp-functions, rather

than the real-valued ones, so it’s the thing I

originally called Lp(G), tensored over R with

C.
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Fix a Haar measure on G. If f ∈ L1(G) then

define f̂ : Ĝ→ C by

f̂(χ) =
∫
G
f(y)χ(y)dy.

Note that f ∈ L1(G), and |f(y)χ(y)| = |f(y)|,
and it’s easy to check that the integrand is

also in L1(G) (do it!). In particular the in-

tegral makes sense. We call f̂ the Fourier

transform of f .

Example: if G = R and f ∈ L1(G), and if

we identify Ĝ with R by associating the real

number r with the character x 7→ eixr, and if

we use the usual Lesbesgue measure as our

Haar measure, then we see that

f̂(r) =
∫
R
f(x)e−irxdx

which is the definition of Fourier transform

that I learned as an undergraduate.
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[f̂(χ) =
∫
G f(y)χ(y)dy.]

If however one identifies Ĝ with R by identify-

ing r with the character x 7→ e2πixr then one

gets the definition of the Fourier transform

which is used at the top of the Wikipedia

page about Fourier transforms. Finally, if one

sticks to x 7→ eixr but uses the Haar measure

which is
√

2π times Lesbesgue measure, then

one gets a third way of normalising things,

which according to Wikipedia is another pop-

ular choice. Which choice you prefer depends

on why you’re taking Fourier transforms, but

the point of this discussion is that all three

choices are covered by our definition.
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Back to G locally compact and abelian. For

every f ∈ L1(G) we get a function f̂ : Ĝ→ C

(pedantic remark that even though f “isn’t a

function” because two functions which differ

on a null set are the same element of L1, f̂

really is a function).

Define the transform topology on Ĝ to be the

weakest topology that makes every f̂ contin-

uous. A computation which is basically el-

ementary (if you know that the continuous

functions with compact support are dense in

L1(G) and that L1(G) is a Banach space,

something I didn’t prove) but long shows that

the transform topology coincides with the

compact-open topology (note that local com-

pactness here is essential for this strategy

even to make sense, as we used a Haar mea-

sure). So we get another proof of G-locally-

compact-implies-Ĝ-locally-compact if we check

that the transform topology is locally com-

pact, which follows from Gelfand’s theory

of commutative Banach algebras, applied to

L1(G).

169



This latter approach (via the Fourier trans-

form) might seem heavy-handed, but in fact

all of these techniques, and more, seem to

be needed later on anyway.

The next step in the theory, at least in the

development I’ve seen, is to consider an arbi-

trary Radon measure µ̂ on Ĝ with the prop-

erty that µ̂(Ĝ) ≤ 1 (note: Haar measure

may well not have this property! We are

not demanding that µ is invariant under right

translations). For such a measure we define

its Fourier transform Tµ̂ to be the function

G→ C such that

Tµ̂(y) =
∫
Ĝ
χ(y)dµ̂(χ)

and in some sense the crucial result seems to

me to be an intrinsic characterisation of these

functions on G; the functions Tµ̂ that arise

in this way are precisely the functions which

are are essentially bounded by 1 and are “of

positive type” (see below). The argument

needs some graduate-level functional analysis

and measure theory,
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in the sense that it needs results which seem
to be standard but which I didn’t see in my
undergraduate courses on functional analysis
and measure theory).

Once one has all this, one can prove the first
form of the Fourier inversion formula. Here G
is an abelian LCHTG. First a definition. Say
that φ : G → C, continuous and bounded, is
of positive type if for any f ∈ K(G) we have∫

G

∫
G
φ(s−1t)f(s)dsf(t)dt ≥ 0.

Fourier inversion formula (first form).

There exists a Haar integral µ̂ on Ĝ with the
following property: If f ∈ L1(G) with Fourier
transform f̂ : Ĝ→ C, and if f is furthermore a
C-linear combination of functions of positive
type, then

f(y) =
∫
Ĝ
f̂(χ)χ(y)dµ̂(χ).
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f(y) =
∫
Ĝ
f̂(χ)χ(y)dµ̂(χ).

This is hard work. If one could interchange
the integrals on the right hand side then it
might perhaps be easier, but the problem is
that

∫
G χ(y)χ(t)dy probably won’t converge.

I would almost certainly make a fool of my-
self were I to try and summarise the 16-page
proof in Ramakrishnan-Valenza.

As a consequence of the Fourier inversion
formula, and I know of no simple proof of
this statement, we get

Theorem. If G is an abelian LCHTG and
z ∈ G is not the identity character, then there
exists χ ∈ Ĝ with χ(z) 6= 1.

Proof. If no such χ exists, then for every
f ∈ L1(G) we would have f̂ = f̂z. Hence for
every f for which the Fourier inversion for-
mula applies, we would have f = fz. But
by Hausdorffness we can find a neighbour-
hood U of the identity with U ∩ Uz empty.
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We next find a neighbourhood V with V 2 ⊆ U

and V symmetric; finally we observe that if

φ is real-valued supported in V and φ(1) = 1

then f := φ ∗ φ̃ (with φ̃(g) = φ(g−1)) is of

positive type but has support disjoint from

that of fz, a contradiction. �

Corollary. If G is an abelian LCHTG then

the obvious map G→ ˆ̂G is injective. �

It will of course turn out that if G is an

abelian LCHTG then G → ˆ̂G is an isomor-

phism. But we have used analysis (rather

than topology) to prove injectivity, and in

particular we used that G was locally com-

pact. If G is an arbitrary abelian topological

group then one can still make sense of ˆ̂G but

I don’t know, and very much doubt, if G→ ˆ̂G

is bijective (or even injective) in this gener-

ality; consider the case of double-duality of

a vector space for some analogue of this—

V = V ∗∗ iff V is finite-dimensional.]
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So from now on let’s say G is an abelian

LCHTC. I’ll explain how the theory can be

developed.

Next one checks that G→ ˆ̂G has the property

that the induced map from G to its image

(with the subspace topology) is a homeomor-

phism onto a closed subspace (this argument

is elementary).

Now one checks that for f, g ∈ L1(G) we havêf ∗ g = f̂ ĝ. This is just an unravelling of

things (once one has realised that ∗ maps

L1(G)×L1(G) to L1(G), which can be proved

using Fubini: in fact ||f ∗ g||1 ≤ ||f ||1||g||1.
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If f ∈ L2(G) then set f̃(x) = f(x−1), so f̃ ∈
L2(G), and define h = f ∗ f̃ (so h is integrable
and of positive type: this is some analogue of
the fact that if A is a real matrix then AtA is
positive semidefinite). Now unravelling the
definitions we see that if µ and µ̂ are Haar
measures normalised so that the first form
of Fourier inversion holds, then∫

G
|f(x)|2dµ(x) = h(1)

=
∫
Ĝ
ĥ(χ)dµ̂(χ)

=
∫
Ĝ
|f̂(χ)|2dµ̂(χ)

(the second = is Fourier inversion, the other
two are elementary). So the integrals of |f |2
and |f̂ |2 coincide. This is the first form of
the Plancherel theorem. But in fact, by a
density argument one can now conclude

Plancherel Theorem.

For G an abelian LCHTG one can extend the
Fourier transform uniquely to an isometric
isomorphism

ˆ : L2(G) → L2(Ĝ).
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One has to be careful here: I am not as-

serting that if f ∈ L2(G) then the original

definition of f̂ that I gave makes sense. All

I’m saying is that the map, which we defined

using an integral, extends to give a map on

all of L2(G) in some way.

From this one gets, without too much trou-

ble,

Pontrjagin duality.

If G is an abelian LCHTG then the obvious

map G→ ˆ̂G is a group-theoretic isomorphism

and a topological homeomorphism.

And then finally this leads us to a cleaner

version of the Fourier Inversion theorem:
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Fourier Inversion Theorem (final form).

Fix Haar measures on G and Ĝ. Then there

exists a positive real constant c > 0 such that

if f ∈ L1(G) is continuous, and f̂ ∈ L1(Ĝ),

and if we identify G with ˆ̂G, then

ˆ̂f(x) = cf(x−1)

for all x ∈ G. Furthermore, for any choice

of Haar measure on G there’s a unique Haar

measure on Ĝ which ensures c = 1.

We haven’t given a complete proof of this.

I do know complete proofs in certain explicit

cases. I currently don’t know whether the

proofs I know suffice to cover the instances

needed for Tate’s thesis, but I’ll probably find

out within a few weeks.
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Case studies.

1) G = R. Here it’s not so hard to give a

proof. The trick is to introduce the following

rapidly-decreasing functions: for t > 0 and

x ∈ R fixed, consider φ(y) = eiyx−t
2y2. One

explicitly computes the Fourier transform of

this (good clean fun) and now, instead of

integrating f̂(y)eiyx with respect to y, one

integrates f̂(y)φ(y). The trick is that this is

easily shown to be the integral of f(r)φ̂(r).

Now one lets t tend to zero from above,

and uses the dominated convergence theo-

rem (and the fact that the Fourier trans-

form is continuous, which also needs to be

checked, and which also follows from the

dominated convergence theorem).
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2) G = S1 with its usual topology, so Ĝ = Z

with the discrete topology. In this case, the

Fourier inversion theorem simply says that for

a periodic function f on R (that is, a func-

tion on S1), the Fourier series of f converges

to f . This just boils down to the statement

that if z is the inclusion S1 → C then the

functions zn : n ∈ Z is an orthonormal basis

for the Hilbert space L2(S1). Orthonormality

is easy, and checking that the functions give

a basis is just a standard application of the

Stone-Weierstrass theorem (polynomials in z

and 1/z separate points, and z = 1/z on S1).

Orthonormality also gives Plancherel’s the-

orem (which is called Parseval’s theorem in

this context; Parseval was 1799 and thinking

about Fourier series, Plancherel was 1910).

3) G = Qp or kP : we’ll come back to these.

In some sense they’re much easier (in the

sense that you don’t have to remember what

the dominated convergence theorem or the

Stone-Weierstrass theorem are!). I’ll treat

these cases carefully in the next chapter.
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Chapter 4. Local zeta functions.

The reference for this is chapter 2 of Tate’s

thesis. Throughout this section K will be a

field which is either the reals, an algebraic

closure of the reals (you can think “the com-

plexes” but perhaps a more pedantic way of

thinking about it is “the complexes except

that there is no way of distinguishing between

the two square roots of −1”), or a finite ex-

tension of Qp for some p. In the global appli-

cations, K will be the completion of a num-

ber field k with respect to a norm. There is

another case where everything in this section

applies, and that is the “equicharacteristic

case”, that is, K = Fq((t)), where Fq is a

finite field with q elements and Fq((t)) is the

field obtained by adjoining 1/t to the integral

domain Fq[[t]] of power series. Personal pref-

erences mean that I will stick to the number

field case, rather than the function field case,

later on, but one might want to bear in mind

that there are no obstructions to making this

sort of thing work in the function field case.
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In all cases (K = R, K ∼= C, K = kP finite)
we have got a canonical equivalence class of
norms on K, and we have seen that K is a
locally compact abelian group under addition
(in the p-adic case the crucial observation
was that the residue class field was compact).
Now here’s a completely wacky construction:
we are going to single out a canonical norm
in each equivalence class. Here’s the idea.
Choose a random Haar integral µ on K. For
α ∈ K× consider the function µα : K+(K) →
R defined by

µα(f) = µ(x 7→ f(αx)).

In words, µα is Haar measure, “stretched” by
multiplication by α. One checks easily that
µα is well-defined and is also a Haar mea-
sure, and hence cµα = µ, where c = c(α) is a
positive real number. One checks easily that
c(α) does not depend on the choice of µ—it
is truly intrinsic. The reason we didn’t see
this structure before is that we’re not just
thinking of K as an additive group, we’re us-
ing its ring structure.

Let’s write |α| := c(α), and define |0| = 0.
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[c(α)µα = µ]

This choice is a canonical choice of norm on

K. One does need to check it’s a norm—but

this is easy by a brute force calculation, which

I’ll now do: in each case we see that we’re

reconstructing the norm I’ve already put on

these fields—but now we see that the norm

I put on them is “the natural norm”.

1) If K = R then (think about a good ap-

proximation to the characteristic function of

[0,1]) |α| is just the usual absolute value of

α.

2) If K = C then (think about the character-

istic function of a square) we see |x+ iy| =
x2+y2, so our canonical norm is the square of

the usual norm (and hence doesn’t satisfy the

triangle inequality, which is the unique reason

that I didn’t make the triangle inequality an

axiom earlier).
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3) If K = Qp then let’s compute |p|. Well,

if χ is the characteristic function of Zp, the

integers of Qp, then χ really is continuous

with compact support. Now Zp is the disjoint

union of a+ pZp for a = 0,1,2, . . . , p − 1, so

by finite additivity and translation-invariance

of Haar measure we see that if ψ is the char-

acteristic function of pZp then pµ(ψ) = µ(χ),

so µp(ψ) = µ(χ) = pµ(ψ) and hence that

|p| = p−1. So in fact the canonical norm on

Qp is just the usual p-adic norm, normalised

the way I normalised it.

4) More generally (easy check) if π ∈ kP is

a uniformiser and q is the size of the residue

field A/P (A the global integers of the num-

ber field k), then we showed that the residue

field of kP has size q (residue fields don’t

change under completion) and one checks

easily that the canonical norm sends π to 1/q.
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5) [optional extra] K = Fq((t)). Then again
we see that the index of tFq[[t]] in Fq[[t]] is
q, so multiplication by t is making things q

times smaller, so |t| = q−1—again the norm
of a uniformiser is the reciprocal of the size
of the residue field.

4.1: the dual of (K,+).

The next thing we’ll do is to compute Ĝ,
where G = (K,+). As ever in this section,
K is either the reals, the complexes, a com-
pletion of a number field at a prime ideal,
or, if we’re feeling adventurous, a the field of
fractions of a power series ring over a finite
field. Let’s call these things “local fields” for
simplicity, and let’s always endow them with
their canonical norms.

Theorem. If G = (K,+) is a local field,
considered as a group under addition, then Ĝ
is isomorphic to (K,+) (not in a particularly
canonical way, mind).

Remark. The case K = R was an exercise
earlier.
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Theorem. If G = (K,+) is a local field,

considered as a group under addition, then

Ĝ is isomorphic to (K,+).

Remark. I am going to be lazy and give

Tate’s proof, which appears to me to as-

sume (a consequence of) Pontrjagin duality,

but which works for an arbitrary locally com-

pact complete normed field (so, for example,

it works for a power series field over a finite

field). On the example sheet I’ll give an ex-

plicit proof when K/Qp is finite.

Proof. First let me assume that K̂ 6= 0 (of

course here K is considered as a group under

addition). We’ll check this later in a case-by-

case way, although if you believe Pontrjagin

duality then it’s obvious because K̂ 6= 0 im-

plies K = 0. Anyway, let’s fix once and for

all a non-zero element χ of K̂, and later on

I’ll write one down explicitly just to prove one

exists.
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Now consider the map i : K → K̂ (which

depends on χ), defined by letting i(λ) be

the character x 7→ χ(λx) (so again we’re cru-

cially using both the additive and multiplica-

tive structure of K). It’s easily checked that

i(λ) ∈ K̂ and that the induced map i : K → K̂

is a group homomorphism. Injectivity is also

easy: if (i(λ))(x) = 1 for all x ∈ K then χ is

trivial on λK which is impossible if λK = K,

because χ is non-trivial, so λ had better not

have an inverse.

It’s slightly more delicate to finish the job.

We’ll follow Tate and again assume Pontr-

jagin duality. A consequence of this dual-

ity is that one can show that the “annihila-

tor” construction, sending a subgroup X of

an abelian LCHTG G to the subgroup of Ĝ

consisting of characters which vanish on X,

induces an order-reversing bijection between

the closed subgroups of G and of Ĝ.
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Apply this to the closure of i(K) ⊆ K̂ and we

observe that the corresponding closed sub-

group X of K must be be contained in the

set {x ∈ K : (i(λ))(x) = 1∀λ ∈ K} but this

set is easily checked to be {1}. Hence the

image of K is dense in K̂.
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Next I claim that the map i : K → K̂ is a

homeomorphism onto its image. To check

this we need to remember the definition of

the topology on K̂: a general neighbourhood

of the origin was given by W (L, V ) with L ⊆
K compact and V a neighbourhood of the

identity in S1. So what we have to do is

to first check that each W (L, V ) contains an

i(B(0, ε)) (the open ball centre zero radius

ε in K), and conversely that each i(B(0, ε))

contains i(K)∩W (L, V ) for some L, V . Both

of these are easy; I’ll do the slightly harder of

the two, which is the latter one. Given ε > 0

we need to come up with with L and V such

that if λ ∈ K and χ(λL) ⊆ V then |λ| < ε,

and we do this thus. Choose k ∈ K with

χ(k) 6= 1. Let L be a huge closed disc centre

0 radius M (these are compact, as is easily

checked), with the property that |k| < εM ,

and let V be any open neighbourhood of the

identity in S1 such that χ(k) 6∈ V . Then for

λ ∈ K, if |λ| ≥ ε then k ∈ λL so i(λ) 6∈W (L, V )

which is what we want.
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Finally let’s show that i(K) is a closed sub-
space of K̂; this will do us because we al-
ready know that it’s dense. Because any
compact set in K is bounded, it’s easy to
check that the identity in K̂ has a countable
basis of neighbourhoods (this isn’t logically
necessary, I don’t think, but it’s psychologi-
cally satisfying for what follows). For exam-
ple if CM denotes the closed disc centre zero
radius M and VM is {eiθ : |θ| < 1/M} then
NM := W (CM , VM) will do. So now choose
an arbitrary ψ ∈ K̂. For each integer M ≥ 1
choose xM ∈ K with i(xM) ∈ ψNM (we can
do this by density of the image of i). It’s eas-
ily checked (it’s an argument similar to the
one showing i was a homeo onto its image,
but it seems to me to be not quite a for-
mal consequence of what we already have)
that the xM form a Cauchy sequence, so
xM → x ∈ K, and we have i(xM) → ψ and
i(xM) → i(x), so by Hausdorffness we have
ψ = i(x) and we’re home. �

Actually that’s not really the end of the proof
because I still need to exhibit a non-zero χ ∈
K̂. Let’s do this on a case-by-case basis.
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1) K = R. Then define χ(x) = e−2πix.

2) K = Qp. Then, by the structure theorem

for elements of Qp we can write any k ∈ K as

k =
∑∞
n=−N anp

n with an ∈ {0,1,2, . . . , p− 1}.
Set q(k) =

∑−1
n=−N anp

n ∈ Q (so q(k) = 0 iff

k ∈ Zp). It’s an easy check that q is a group

homomorphism Qp/Zp → Q/Z and hence that

χ(k) = e2πiq(k) will work.

3) K a finite extension of K0 := Qp or R;

then the trace map TK/K0
is an additive map

K → K0 and it’s surjective (it’s multiplication

by [K : K0] on K0), so we take this map and

then just compose it with the relevant map

coming from (1) or (2).

Note that if we write χ(y) = e2πiΛ(y) with Λ :

K → R/Z then our map i is just (i(x))(y) =

e2πiΛ(xy).
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4) K = Fq((t)). Then “coefficient of t−1” is

a surjection K → Fq, and Fq is just a finite-

dimensional vector space over Fp, so choose

a non-zero linear map Fq → Fp (if we want to

fix one then we should use the trace map—

but if you don’t know about separable exten-

sions it might not be immediately clear to you

that this is non-zero), and finally x 7→ e2πix̃/p

gets you from Fp to S1, where x 7→ x̃ is a

lifting Z/pZ → Z.

It’s convenient, but not essential, to fix a

non-zero character of K once and for all; in

cases (1)–(3) above I’ve written down pre-

cisely one character, so let’s always use this

one. Note that this is not a canonical choice

however; it seems to me that K and K̂ are

not canonically isomorphic.

While we’re here, let’s fix a choice of Haar

integral on K. If K = R then let’s choose the

obvious one—the one such that the integral

of the characteristic function of [0,1] is 1. If

K = C then let’s choose twice the obvious
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one—the one such that the integral of the
characteristic function of [0,1] × [0,1] is 2
(unsurprisingly, this 2 is related to the fact
that our norm on C is the square of the usual
norm).

If K is a finite extension of Qp then we do
something perhaps a bit more surprising. If
K has degree n over Qp then the integers R
of K are isomorphic to (Zp)n as a Zp-module
(this is elementary if you know that finitely-
generated torsion-free modules over a PID
are free) and one can define the discrimi-
nant in the usual way: choose a Zp-basis
{e1, e2, . . . , en} for R, and define an n×n ma-
trix Aij whose (i, j)th entry is the trace of
eiej. The determinant of this matrix is in
Zp (easy) and generates an ideal called the
discriminant ideal of K/Qp; it is a non-zero
ideal (this is a standard fact from field theory,
coming from separability) and is well-defined
independent of all choices (easy). Say the
discriminant ideal is pmZp. Let’s define our
Haar integral on K by letting the integral of
the characteristic function of R be p−m/2 ∈
R. [One can check that
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if k/Q is a number field then the discriminant

of kP/Qp will be Zp if P is unramified in k,

and in particular if you regard k as fixed then

all but finitely many of its P -adic completions

will have the property that their discriminant

ideals will be Zp.]

Why are we labouring over these choices?

Well, we have fixed a choice of Haar mea-

sure on K, and we have fixed an isomor-

phism K → K̂, so we get an induced Haar

measure on K̂, and we’re now in a posi-

tion to apply Fourier transforms twice. Re-

call that if f is continuous and f ∈ L1(K)

with f̂ ∈ L1(K̂) = L1(K) then we know that
ˆ̂f(x) = cf(−x) where c is some constant de-

pending only on our choices of Haar measure.
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Proposition. With the choices we made,

c = 1.

Non-proof. It suffices to check for just one

function, and we’ll have to compute loads of

Fourier transforms quite soon, so I’ll post-

pone this. We don’t need this result at all,

it’s just psychologically satisfying.

4.2: The dual of (K×,×).

Let K be as usual. Actually not really in-

terested in the Pontrjagin dual of K×, we’re

much more interested in the continuous group

homomorphisms K× → C×, that is we are

dropping the unitary assumption on our char-

acters in this section. Let me call a contin-

uous map G → C× a quasi-character of G.

The main results we need here are rather easy

to prove. Let U denote {x ∈ K× : |x| = 1}—
the units of K. Say that a quasi-character is

unramified if it’s trivial on U .
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Lemma. The unramified quasi-characters c :
K× → C× are all of the form λ 7→ |λ|s for s
complex. If K = R or C then s is uniquely
determined, but if K is p-adic or Fq((t)) then
s is only determined modulo 2πi

log(q)Z with q
the size of the residue field. In either case,
however, the unramified quasi-characters are
naturally a 1-dimensional complex manifold.

Proof. Recall |λ|s means es. log(|λ|). Every-
thing is immediate once we observe that K×/U
can be explicitly computed as the image |K×|
of the norm map in R>0. If K = R or C
then |.| gives an isomorphism K×/U → R>0,
and if K is non-arch then |.| : K×/U → qZ

is an isomorphism. Assuming that you know
that the continuous group homomorphisms
R>0 → C× are all of the form x 7→ xs then
we’re home. �

For simplicity we now fix a continuous split-
ting of the map |.| : K× → |K×|, that is, we
choose a subgroup V of K× with the prop-
erty that every element of K× is uniquely of
the form uv with u ∈ U and v ∈ V . Again it’s
impossible, in general, to do this naturally.
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If K = R or C then we can just let V be
the positive reals. If K is non-arch then let’s
choose a uniformiser π ∈ K and let V be πZ;
this is easily checked to work. Now K× = U×
V so Hom(K×,C×) = Hom(U,C×)×Hom(V,C×).

Notation: for α ∈ K×, write α = α̃v for α̃ ∈
U and v ∈ V . This clearly depends on our
choice of V but we’ll only use this notation
temporarily.

Corollary. The quasi-characters c : K× →
C× are all of the form α 7→ ψ(α̃).|α|s with
s ∈ C and ψ a character of U .

Proof. This is just an explicit rephrasing of
the statement Hom(K×,C×) = Hom(U,C×)×
Hom(V,C×). �

Note that that corollary gives the group of all
quasicharacters the structure of a 1-dimensional
complex manifold (again given by the s vari-
able; U is compact and we regard Hom(U,C×) =
Hom(U, S1) = Û as discrete). Pedants might
like to check that this
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complex structure is independent of the choice

of V . In fact ψ is well-defined independent

of the choice of V (it’s just c|U) and s is

well-defined up to the 2πi/ log(q) ambiguity

mentioned earlier.

Explicitly, what is happening is that if Û is

the set of characters of U , then the quasi-

characters of K× are just one copy of either

C or C/ 2πi
log(q)Z for each element of Û , the

dictionary being that if ψ is any character of

U and c is any quasi-character of K× which

restricts to ψ, then the connected component

of c in the manifold of quasi-characters is just

c.|.|s for s ∈ C.

Let’s do examples to see what these mani-

folds look like.
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[ c : K× → C× are all of the form α 7→
ψ(α̃).|α|s with s ∈ C and ψ a character of

U .]

The easiest example to think about is K = R;

then K× = ±R>0, U = {±1}, and a qua-

sicharacter of K× is just a sign (where we

send −1) and a complex number (where we

send the positive reals), and the complex

structure is given by the complex number;

the space is just two copies of the complexes.

If K = C then K× = S1 ×R>0, U = S1, and

the characters of S1 are just Z, so here the

quasicharacters are countably infinitely many

copies of the complex plane, indexed by the

integers. If K is an algebraic closure of R

then we get the same thing, but where Z is

replaced by an infinite cyclic group.
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If K = Qp then we get a cylinder C/( 2πi
log(p)Z)

for each primitive Dirichlet character (Z/pnZ)× →
C× and in the general non-arch case the pic-

ture is a generalisation of this.

Let me make two definitions before we go

any further: using the corollary above one

sees that if we have a quasi-character of K×

as in the corollary, then |c| := |.| ◦ c : K× →
R>0 (note that the target C× always has

the usual norm |x + iy| =
√
x2 + y2) must

just be the map α 7→ |α|σ with σ = Re(s)

(note that this is well-defined even in the

non-arch case). This real number σ is called

the exponent of c, and “quasi-character of

exponent at least σ” is going to be our ana-

logue of “complex number with real part at

least σ” later on. Also, let’s say that two

quasi-characters are equivalent if their ratio

is unramified—this is just the same as de-

manding that they are in the same compo-

nent of the quasi-character manifold.
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We need now to fix a Haar integral on K×.

If f ∈ K(K×) then the function x 7→ f(x)/|x|
is a function on K\{0} and (by compactness

of support) its extension to K (send 0 to

0) is continuous with compact support, so

we can integrate it using our fixed choice of

Haar measure on K; the resulting functional

is easily checked to be a Haar integral µ1 on

K×. If K is archimedean then this will be

our fixed choice of Haar integral on K×. If

however K is p-adic then we’re going to do

something else.
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Let’s compute µ1(χU) (the characteristic func-

tion of the units) in the p-adic case. Because

|.| is trivial on U , we see µ1(χU) = µ(χU)

and we normalised µ on K so that the in-

tegers R had measure p−m/2, where pmZp is

the discriminant ideal of K. So, because U =

R\$R, we see µ(χU) = (1−1/q)µ(χR) = (1−
1/q)p−m/2. It will be convenient to choose a

Haar measure µ∗ on K× such that U has mea-

sure 1 for almost all P , as P runs through the

primes of a number field k and K = kP , so

we define µ∗ on K× by µ∗ = q
q−1µ1 in the

P -adic case. Then µ∗(χU) = p−m/2 if K has

discriminant pm, and in particular if K = kP
then µ∗(χU) = 1 for all but finitely many P

(a number field has a discriminant and if P

is coprime to this discriminant then the dis-

criminant of kP is just Zp).

201



4.3: Local analytic continuation and func-
tional equations.

In some sense we’ve done nothing much in
this chapter so far—apart from the check
that K is isomorphic to K̂, all we’ve done
is made explicit choices of things. Here’s the
first hint that something magic is happening
though. Fix K as usual, and say f : K → C is
continuous, with f ∈ L1(K), and such that f̂
is also continuous and in L1(K̂) = L1(K) (re-
call we have fixed an identification of K with
K̂). Assume furthermore that x 7→ f(x)|x|σ
and x 7→ f̂(x)|x|σ are both in L1(K×) for any
σ > 0. One might ask whether any non-zero
such functions exist, but we’ll see plenty of
examples later on, and in fact it’s an easy ex-
ercise to come up with some examples. Let
Z = Z(K) be the set of such functions. In
words these conditions imply that f is racing
to zero more quickly than any polynomial in
|x| as |x| gets big (that’s the L1(K×) condi-
tion), and that f is bounded near zero (that’s
the L1(K) condition) and furthermore that f̂
has the same properties.
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Easy exercise: why would asking f ∈ L1(K×)
be asking a bit too much? [Hint: remember
Haar measure on K× isn’t the same as that
on K; consider what’s happening near the
origin].

Let Q denote the set of quasi-characters of
K×. If c ∈ Q then let’s write Re(c) for the
exponent of c. Given f as above, define a
function ζ(f,−) on {c ∈ Q : Re(c) > 0} by

ζ(f, c) =
∫
K×

f(t)c(t)dµ∗(t).

So we’re using the multiplicative Haar mea-
sure on K× defined above.

Lemma. The function ζ(f,−) (converges
and) is holomorphic on the complex manifold
{c ∈ Q : Re(c) > 0}.

Proof. This rather fancy-sounding lemma is
actually elementary to prove. Convergence
is not an issue because our assumptions on
f imply that the integrand defining this local
zeta function is in L1(K×)—we have |f(x)c(x)| =
|f(x)||x|Re(c) which is in L1(K×) by defini-
tion.
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The complex structure near c ∈ Q is given

by c.|.|s for s ∈ C small, so all we have to

do is to check that ζ(f, c.|.|s) is holomor-

phic in s, for s small enough. So we have

to differentiate ζ(f, c.|.|s) with respect to s,

and if you write out the definition of “dif-

ferentiation”, and remember all the bound-

edness assumptions we’ve made on f , you

see that you can differentiate under the inte-

gral sign! This reduces us to checking that∫
K× f(t)c(t)|t|s log(|t|)dµ∗(t) converges, but it

does because for |t| big, |t| beats log(|t|) and

the integral converges for all sufficiently large

exponents, and for |t| small, |t|−δ beats | log(|t|)|
(where |t| is chosen so small that δ < Re(s)

works, which makes the integral converge by

assumption). �
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But that’s not the big local insight; the big

insight is that ζ(f,−) has a meromorphic con-

tinuation to all of Q! The “global” zeta func-

tions coming later will be products of local

zeta functions for Re(c) sufficiently large. It

is however important to note that this lo-

cal analytic continuation result certainly does

not give the meromorphic continuation of

the global zeta functions that are coming

later—an infinite product of meromorphic things

might not be meromorphic (it might not even

converge). Let me illustrate this by remark-

ing that we’ll shortly see that an example

of this local meromorphic continuation state-

ment is the statement that the function
∑
i≥0 p

−is,
which converges for Re(s) > 0, can be rewrit-

ten as 1/(1 − p−s), which is meromorphic

for all s ∈ C. This observation is clearly

not enough to meromorphically continue blah∏
p(1− p−s)−1 = ζ(s).
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So let’s prove this local meromorphic contin-

uation, and even a local functional equation.

We need an analogue of s 7→ 1 − s for the

functional equation; it’s c 7→ ĉ, where ĉ is de-

fined by ĉ(x) = |x|/c(x)). Note that this hat

has nothing to do with Fourier transforms,

it’s just an elementary definition. Note also

that Re(ĉ) = 1 − Re(c). But also note that

in general ĉ won’t be equivalent to c—they

could well lie on different components of Q.

Note that we haven’t used any of our bound-

edness assumptions on f̂ so far, we’ve only

used the L1ness of f . We’ll use L1ness of f̂

now though.

Lemma. If 0 < Re(c) < 1 and f, g ∈ Z then

ζ(f, c)ζ(ĝ, ĉ) = ζ(g, c)ζ(f̂ , ĉ).

[note that all integrals obviously converge.]
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[ζ(f, c)ζ(ĝ, ĉ) = ζ(g, c)ζ(f̂ , ĉ).]

Perhaps I should remark that I have very lit-
tle “true understanding” of this equation. I
can prove it though, in fact it’s dead easy
to prove, it just follows from unravelling and
Fubini. Let’s see the proof.

First note that what we have to do, to prove
the lemma, is to prove that if left hand side
is L(f, g), then L(f, g) = L(g, f).

If we substitute in the definition of ζ(−,−)
twice on the left hand side, we get∫

K××K×
f(α)ĝ(β)c(α/β)|β|dµ∗(α)dµ∗(β)

and by Fubini we can integrate in whatever
order we want as long as 0 < Re(c) < 1 (I
only proved Fubini for K(G × H) but it ex-
tends to L1). If I think about doing the in-
tegral over β first, for fixed α, then I can
use invariance of µ∗(β) under multiplication
to change β to γ = β/α, and making this
substitution shows that the integral equals∫
K××K×

f(α)ĝ(αγ)c(γ−1)|αγ|dµ∗(α)dµ∗(γ).
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∫
K××K×

f(α)ĝ(αγ)c(γ−1)|αγ|dµ∗(α)dµ∗(γ).

Now let’s give a name to the “α” integral

Hf,g(γ) :=
∫
K×

f(α)ĝ(αγ)|α|dµ∗α;

then the integral we’re trying to prove some-

thing about is∫
K×

Hf,g(γ)c(γ
−1)|γ|dµ∗(γ).

Now if Hf,g(γ) = Hg,f(γ) then visibly this

latter integral (which has no other fs and

gs in) will also be unchanged if we switch

f and g, which is exactly what we wanted

to prove. So we’re now reduced to showing

Hf,g = Hg,f . But recall that µ∗ was, up to a

constant κ which depended only on K, just

µ(x)/|x|, so

Hf,g(γ) = κ
∫
K
f(α)ĝ(αγ)dµ(α)

where note now the integral is over K, and

now by definition of ĝ we see
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Hf,g(γ) = κ
∫
K×K

f(α)g(δ)e−2πiΛ(αγδ)dµ(α)dµ(δ)

recalling that our identification of K with K̂
sent x to the character y 7→ e2πiΛ(xy). But
now of course we’re home, because switching
f and g is just the same as changing notation
(α, δ) → (δ, α). �

Reminder: we’ve just proved that if 0 < Re(c) <
1 and f, g ∈ Z then

ζ(f, c)ζ(ĝ, ĉ) = ζ(g, c)ζ(f̂ , ĉ).

Corollary. If, for each component C of Q,
we can find one explicit function f = fC ∈ Z
such that ζ(f̂ , ĉ) doesn’t vanish identically on
{c ∈ C : 0 < Re(c) < 1} and such that ρ(c) :=
ζ(f, c)/ζ(f̂ , ĉ) has a meromorphic continua-
tion to all c ∈ C, then for any g ∈ Z, the
function ζ(g, c) has meromorphic continua-
tion to all of Q, and satisfies the functional
equation

ζ(g, c) = ρ(c)ζ(ĝ, ĉ)

for c ∈ C.
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Proof. Trivial. The left hand side is holo-

morphic for Re(c) > 0, our assumptions on ρ

show that the right hand side is meromorphic

for Re(c) < 1, and the lemma we just proved

shows that the two sides agree on the over-

lap.

4.4: Tidying up.

Here I’ll give explicit examples of fC as promised

above, check that the corresponding ρ(c) has

meromorphic continuation, and also check

the assertions about our choice of Haar mea-

sure being “self-dual”, which will of course

come out in the wash.

I have to start somewhere so let’s start with

K = Qp, the simplest case where we haven’t

done any explicit integrals yet. Recall that

if Zp is {k ∈ K : |k| ≤ 1}, the integers of K,

then Zp is a ring, and the invertible elements

Z×p of this ring are easily seen to be just {k ∈
K : |k| = 1} = U .
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What we have to do to perform the local

meromorphic continuation is, for each char-

acter χ : Z×p → S1, we need to find a function

f = fχ ∈ Z with ζ(f̂ , ĉ) not identically zero on

the region 0 < Re(c) < 1 of the component of

Q corresponding to χ, and such that we can

meromorphically continue ρ(c) := ζ(f, c)/ζ(f̂ , ĉ)

to all of this component.

A reminder of normalisations: additive Haar

measure µ on Qp is normalised so that the

characteristic function χZp of Zp has inte-

gral 1. Note that χZp ∈ K+(Qp) and by addi-

tivity of Haar measure we have µ(χa+pnZp) =

p−n for all n ∈ Z. In particular locally con-

stant functions with compact support are easy

to integrate—but these things are easily checked

to uniformly approximate anything in K(Qp),

so integration on Qp is in fact easy. One last

reminder: multiplicative Haar measure µ∗ on

Q×
p is p

p−1 times “dz/|z|”, the usual trick to

turn additive Haar measure into multiplica-

tive Haar measure.
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First let’s do the component of Q correspond-

ing to the trivial character of Z×p . Let f be

the characteristic function of Zp. Now let’s

get it straight in our heads what we have to

do.

First we need to check f ∈ Z, which involves

checking some boundedness conditions on f ,

computing f̂ and checking the boundedness

conditions on this function too.

Next we need to compute ζ(f, c) and ζ(f̂ , ĉ)

for c in the component of Q = Hom(Q×
p ,C

×)

corresponding to the trivial character of U

(that is, for c : Q×
p → C× such that c|Z×p is

trivial).

Finally we need to check that ζ(f̂ , ĉ) is not

identically zero for such c, and that ζ(f, c)/ζ(f̂ , ĉ)

has a meromorphic continuation to the entire

component.

To do all of this we just need to unwind the

definitions and then figure out the integrals.
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To check f ∈ Z we first need that f is con-

tinuous (easy), that f is integrable (it’s even

in K+(Qp) so it’s certainly integrable), and

that f(x)|x|σ is in L1(Q×
p ) for σ > 0. This

needs checking, not least because f(x) is not

in K+(Q×
p )—f is non-zero arbitrarily close

to zero, and (think about the automorphism

x 7→ 1/x of Q×
p ) this means f doesn’t have

compact support on Q×
p . But f is visibly a

pointwise increasing limit of functions with

compact support (consider the characteristic

functions fn of Zp\pnZp for n large) so we had

better compute the integrals of fn(x)|x|σ on

Q×
p and check they converge; if they do then

we will have proved f(x)|x|σ is summable and

hence in L1(Q×
p ).
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Well ∫
Q×
p

fn(x)|x|σdµ∗(x)

=
∫
Zp\pnZp

|x|σdµ∗(x)

=
n−1∑
i=0

∫
piZ∗p

|x|σ
p

p− 1
|x|−1dµ(x)

=
p

p− 1

n−1∑
i=0

µ(piZ×p )p−i(σ−1)

=
p

p− 1

n−1∑
i=0

p− 1

p
p−iσ

=
n−1∑
i=0

p−iσ

→
∞∑
i=0

p−iσ =
1

1− p−σ

as n → ∞, if σ > 0. So the boundedness

properties of f are satsified. Note: I am

being lazy and writing µ(X) for µ(χX), the

characteristic function of X.
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Now we need to compute f̂ . Well, by defini-

tion

f̂(x) =
∫
Qp

f(y)e−2πiq(xy)dµ(y)

where q is that function Qp/Zp → Q/Z defined

by “take the fractional part”. This is just∫
Zp
e−2πiq(xy)dµ(y)

so let’s do this integral. We always have y ∈
Zp so if x ∈ Zp then q(xy) = 0 and we just

get µ(Zp) = 1.

On the other hand, if x 6∈ Zp and e−2πiq(x) =

ζ 6= 1 and |x| = pn, n ≥ 1 (so ζ is a primitive

pnth root of unity), then e−2πiq(xy) only de-

pends on y mod pn and
∫
Zp e

−2πiq(xy)dµ(y) =∑pn−1
i=0 ζi = 0. Hence f̂ = f .
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But this is great—firstly we have proved that
c = 1 in the Fourier Inversion theorem, as
claimed earlier ( ˆ̂f = f(x) = f(−x)), and sec-
ondly we have proved f ∈ Z, because f̂ = f

has all the same boundedness properties as
f .

Next we need to compute ζ(f, c) and ζ(f̂ , ĉ)
on the region 0 < Re(c) < 1 of the com-
ponent corresponding to the trivial charac-
ter of U , the general element of which is
x 7→ |x|s for s ∈ C = C/ 2πi

log(p)Z. We stick
to 0 < Re(s) < 1. Now (being much lazier
about the difference between L1 and K(Q×

p )
this time)

ζ(f, c) =
∫
Q×
p

f(x)|x|sdµ∗(x)

=
p

p− 1

∫
Zp\{0}

|x|s−1dµ(x)

=
p

p− 1

∞∑
j=0

∫
pjZ×p

p−j(s−1)dµ(x)

=
∞∑
j=0

p−js = (1− p−s)−1

216



(which looks surprisingly familiar!). Note the

last line is OK because Re(s) > 0 so |p−s| < 1.

Similarly ζ(f̂ , ĉ) =
∫
Q×
p
f(x)|x|1−sdµ∗(x) which

(recalling that we’re assuming 0 < Re(s) <

1), by exactly the same calculation but with

1−s replacing s, comes out to be (1−p−(1−s))−1.

Hence ζ(f̂ , ĉ) is not identically zero on the

component we’re interested in, and ρ(c) =

ζ(f, c)/ζ(f̂ , ĉ) = 1−ps−1

1−p−s , which looks less fa-

miliar, but later on you’ll see why you’re not

expected to recognise this function—these

ρ(c) will only show up explicitly at the “bad

primes”. The crucial observation that we

need, however, is that ρ(c) has a meromor-

phic continuation to all s ∈ C, which is clear,

and so our job is done.
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Let me sketch the ramified case in this set-

ting, because there ρ(c) is quite different.

Let χ denote a Dirichlet character of conduc-

tor pn, n ≥ 1, that is, a map χ : (Z/pnZ)× →
C× (note that the image lands in S1) that

doesn’t factor through (Z/pn−1Z)×. The nat-

ural map Zp → Z/pnZ induces a map U →
(Z/pnZ)× and hence a character of U , so

we get a component of Q parameterised by

s ∈ C/ 2πi
log(p)Z whose typical element sends

x = pnu to χ(u)p−ns = χ(x̃)|x|s [we’re setting

V = {pZ} with notation as above].

We need an f = fC for this component. Let’s

set f(x) = 0 if |x| > pn, and f(x) = e2πiq(x)

for |x| ≤ pn (note |x| ≤ pn implies q(x) = a/pn

for some integer a). So again f is locally

constant (indeed it’s constant on cosets of Zp
in p−nZp) and takes values in the pnth roots

of unity. It’s clear that f ∈ L1(Qp), and we

can write f = χZp + f ′ with f ′ ∈ K(Q×
p )⊗C,

and we already showed χZp.|.|
σ ∈ L1(Q×

p ) for

σ > 0, which implies f.|.|σ ∈ L1(Q×
p ) for σ > 0.
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[f(x) = e2πiq(x) for |x| ≤ pn.] Next we need to

compute the Fourier transform of f . We can

do this by brute force or by a trick. Here’s

the brute force method:

f̂(x) =
∫
Qp

f(y)e−2πiq(xy)dµ(y)

=
∫
p−nZp

e2πiq(y−xy)dµ(y)

=
∫
p−nZp

e2πiq(y(1−x))dµ(y).

The same “cancelling” phenomenon (adding

roots of unity) hence shows f̂(x) = 0 if |1 −
x| > p−n (we’re adding roots of unity), but

if |1 − x| ≤ p−n then |y(1 − x)| ≤ 1 for y ∈
p−nZp and the integrand is just 1, showing

that the integral is just µ(p−nZp) = pn times

the characteristic function of 1+ pnZp. Note

that this integral is bounded away from zero

(as n ≥ 1) so f̂ ∈ K+(Qp) and K+(Q×
p ), and

hence f ∈ Z.
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[The trick way to do this last computation is

to observe that the f here is just χZp rescaled

and multiplied by a character, and so we can

compute the Fourier transform of our f from

the Fourier transform of χZp using basic prop-

erties of Fourier transforms.]

Next we need to compute ζ(f, c) and ζ(f̂ , ĉ)

for c of the form pnu 7→ χ(u)p−ns for 0 <

Re(s) < 1. These calculations are very sim-

ilar to the ones we have already done (al-

though perhaps slightly tougher, because in

some cases it’s trickier to check that certain

sums of roots of unity are zero). I’ll stick

them on the example sheet and just tell you

the answers: if I got it right then

ζ(f, χ(x̃)|x|s) =
pns+1−n

p− 1

pn−1∑
j=1

χ(j)e2πij/p
n

(the inner sum is called a Gauss sum) and

ζ(f̂ , χ(x̃)−1|x|1−s) just turns out to be p/(p−
1), a constant!
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So the ratio ζ(f, c)/ζ(f̂/ĉ) is of the form A.Bs

with A a constant involving a Gauss sum,

and B a positive real constant (a power of

p in fact), which means that the ratio has

meromorphic continuation to the component

C and again we’re done.

More precisely, the ratio is pn(s−1)∑pn−1
j=1 χ(j)ζj

with ζ = e2πi/p
n
. The following observation is

now surely worth remarking on. The Dirich-

let character χ we were just considering—we

were doing local calculations with it, but we

can also consider the global ζ function (or L-

function, as it’s more commonly known) at-

tached to this character, which is (for Re(s) >

1) ∑
m≥1

χ(m)/ms =
∏
`

(1− χ(`)`s)−1,

the latter product being over all primes `.

This L-function has a meromorphic continu-

ation to all of C, which turns out to be holo-

morphic in this case, because we assumed

the conductor was pn for n ≥ 1.
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We have χ(−1) = ±1 for some choice of

sign. If χ(−1) = 1 and if we multiply this L-

function by the usual “fudge factor” π−s/2Γ(s/2),

then we get a new function ξ(χ, s) satisfying

ξ(χ, s) =

p−ns pn−1∑
j=1

χ(j)ζj

 ξ(χ,1− s).

A similar sort of thing is true if χ(−1) = −1

but then the fudge factors and the functional

equation are slightly different. The moral is

that this time the local integrals aren’t show-

ing up as components of the L-function, but

the ratio ρ(c) is showing up in the functional

equation.
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I am not going to plough through all the
other cases. The computations are a little
long but completely elementary and prime
example sheet fodder. The crib is Tate’s
thesis, end of chapter 2. Here’s the an-
swers. If K is a finite extension of Qp then
the only extra subtlety is that we used the
trace map to define K → K̂, and when do-
ing the calculations one needs to compute
{α ∈ K : TrK/Qp

(αv) ∈ Zp∀v ∈ R} where R is
the integers of K. Clearly this set contains
R, and is not all of K (because it doesn’t
contain p−n for n large),so it’s a fractional
ideal of K, but what you may not know is
that if we write it as π−rR then the norm
to Qp of πr generates the discriminant ideal,
which simplifies some constants a bit. The
answers are “the same as in the K = Qp

case”: for the unramified quasi-characters
one lets f be the characteristic function of
{α ∈ K : TrK/Qp

(αv) ∈ Zp∀v ∈ R} and one

checks ζ(f, |.|s) = pm(s−1/2)/(1 − q−s) and
ζ(f̂ , |.|1−s) = (1 − qs−1), and in the ramified
case one makes a sensible choice of f and
ρ turns out to be of the form A.Bs with A
involving a Gauss sum.
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If K = R then there are two components:

on the component x 7→ |x|s use f(x) = e−πx
2
,

and on the component x 7→ sgn(x)|x|s, with

sgn(x) the sign of x, use f(x) = xe−πx
2
,

and now use your 1337 Fourier Transform

sk1llz to check that in the first case, when

c(x) = |x|s we have ζ(f, c) = π−s/2Γ(s/2) and

ζ(f̂ , ĉ) = π−(1−s)/2Γ((1 − s)/2), so the ra-

tio is meromorphic and furthermore we have

seen the ratio before! The ratio shows up

when writing ζ(1 − s)/ζ(s) as a product of

simpler functions (i.e. the “fudge factors”

in the functional equation). So now you’re

beginning to see some of the insights here—

the “fudge factors” in the functional equa-

tion may have local explanations—for exam-

ple the Γ factor is coming from the archimedean

valuation on Q. If you look at the functional

equation for the zeta function for a number

field, you will see several Γ factors, coming

from the real and complex norms on the field,

and one can check that they are the same

factors that come up in these calculations.
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The answer on the sgn(x)|x|s component is

similar, but one ends up with π−
s+1
2 Γ(s+1

2 ),

which is precisely the “fudge factor” that one

has to use in the functional equation for the

Dirichlet L-function when χ(−1) = −1.

If K = C then the components are parametrized

by the integers. Let’s say the nth compo-

nent is the quasicharacters whose restriction

to S1 ⊆ C is z 7→ zn. For n ≥ 0 Tate chooses

the function fn(x+iy) = (x−iy)ne−2π(x2+y2),

and for n ≤ 0 he chooses fn(x+ iy) = (x+

iy)−ne−2π(x2+y2). It turns out that f̂n =

cnf−n where cn is an explicit root of unity

(proof by basic integrals and induction on n)

and the local zeta values are again just pow-

ers of π and Γ functions, for example if n ≥ 0

then ζ(fn, reiθ 7→ rseinθ) = (2π)1−s+
n
2Γ(s+ n

2)

and the other answers are similar. For an ex-

plicit list of the answers, look at the end of

chapter 2 of Tate’s thesis or the new example

sheet.
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Summary of what I just breezed through:

All local zeta functions have meromorphic

continuations. The local zeta functions at-

tached to our favourite functions (the fs we

used) looked like (1 − p−s) on the unrami-

fied non-arch components and involved the

Γ function and πs in the real and complex

cases. These local factors are precisely what

one multiplies together to get the function

ξ(s) (the Riemann zeta function multiplied

by the “fudge factors at infinity”). The local

zeta functions on the ramified components in

the non-arch case are messier, but the ratio

ζ(f, c)/ζ(f̂ , ĉ) involves Gauss sums.

And let me stress once more that these local

calculations do not even come close to an-

alytically continuing the usual zeta function;

we need more to do this.
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Chapter 5. The adeles and ideles.

The Pontrjagin dual of Z (with the discrete

topology) is R/Z. But the Pontrjagin dual of

Q (with the discrete topology) turns out to

be an absolutely huge uncountable compact

topological group, rather surprisingly! The

dual turns out to be related to some kind

of infinite product of all the completions of

Q at once, as we will see later on. But we

have to be careful here: if I have infinitely

many non-empty locally compact topological

spaces Xi, their product turns out not to be

locally compact in general (because the def-

inition of the product topology has, as basic

open sets, products of open sets Ui, but all

but finitely many of the Ui have to be equal

to Xi and this makes it hard to find a com-

pact neighbourhood of such a product). So

we have to be careful—the product over all

p of Qp isn’t locally compact and hence we

can’t do Haar integration on it.
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Here’s a partial fix:

Lemma. If we have a collection Xi of locally

compact Hausdorff topological groups, and

furthermore if all but finitely many of them

are compact, then the product of the Xi is a

locally compact Hausdorff topological group.

Proof. Given a basic open neighbourhood∏
iUi of a point (xi) in the product, all but

finitely many of the Ui are equal to Xi by def-

inition, and are hence compact, so we leave

them alone, and the rest of the Ui we can

shrink to Vi, a compact neighbourhood of xi,

and the product of the Vi is a compact neigh-

bourhood of (xi) in
∏
iUi. So the product

(with its product topology) is locally com-

pact, and the rest is easy (checking haus-

dorffness, and that multiplication and inverse

are continuous).
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The problem we now face is that the com-

pletions of Q with the p-adic and real norms

are all locally compact, but none of them are

compact. Here is the abstract construction

that gets around this.

5.1: The restricted direct product.

Here’s the set-up. We have a set I (typ-

ically infinite), a locally compact Haudsorff

topological group Gi for all i ∈ I, and, for all

but finitely many i, a given fixed subgroup

Hi of Gi which is both open and compact.

Say S0 is the finite subset of I for which no

Hi is given. Say S is any finite set contain-

ing S0. Then we can form GS :=
∏
i∈S Gi ×∏

i6∈SHi; this is locally compact (with the

product topology) and, as a set, sits natu-

rally inside
∏
iGi. But no one finite set S is

better than any other, so we now take the

union (within
∏
iGi), as S gets bigger, of the

GS. Call this union G.

229



Then G is clearly a group (it’s a directed
union of groups; GS ∪GT ⊆ SS∪T ). To make
it a topological group we just have to give a
basis for the topology near the identity, and
we can do this by choosing any S ⊇ S0 and
saying that a basis of neighbourhoods of the
identity in G is just a basis of neighbourhoods
of the identity in the subgroup GS. It’s an
elementary exercise to check that this inde-
pendent of S (check that a basis of neigh-
bourhoods is given by

∏
iNi with 1 ∈ Ni ⊆ Gi

and Ni = Hi for all but finitely many i) and
that this construction makes G into a locally
compact topological group.

If all the Gi are furthermore abelian then we
have

0 →
∏
i6∈S0

Hi → G→
(
⊕i6∈S0

Gi/Hi
)
⊕
(
⊕i∈S0

Gi
)

so G is a sort of mixture of a direct product
with a direct sum.
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Note that each Gi is naturally a subgroup of

G. An element of G can be thought of as an

element (gi) of
∏
iGi with the property that

gi ∈ Hi for all but finitely many i.

Notation:

G =
∏
i

′Gi.

Not very good notation, because it doesn’t

say what the Hi are. Rotten luck.

From now on, assume that all the Gi are

abelian.

The following things are all elementary to

check and I will only hint at proofs.
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[Reminder: G ⊆
∏
iGi is the (gi) with gi ∈ Hi

for all but finitely many i]

1) If c : G→ C× is continuous, then ci := c|Gi
is trivial on Hi for all but finitely many i, and

hence one can make sense of the character∏
i ci on G (because it’s a finite product) and

one can check that
∏
i ci = c. [Proof: be-

cause c is continuous, if V is a small neigh-

bourhood of 1 then c−1(V ) is open in G and

hence contains a subgroup of the form
∏
i6∈SHi;

but c(
∏
i6∈SHi) is now a subgroup of V and

for V small enough the only subgroup is {1}].

2) If Hi is a compact open subgroup of Gi
(note that open implies closed, because Hi
is the complement of the open set ∪g 6∈HigHi)
and if we define H∗

i to be the annihiliator of

Hi in Ĝi, then H∗
i is also compact and open.

[Proof: the dual of Hi is Ĝi/H
∗
i so compact-

ness of Hi implies discreteness of Ĝi/H
∗
i im-

plies openness of H∗
i etc].
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3) The Pontrjagin dual of G =
∏′
iGi (re-

stricted product with respect to the Hi) is

Ĝ =
∏′
i Ĝi (restricted product with respect to

the H∗
i ). [Proof: we’ve seen that a unitary

character c of G is a product of its compo-

nents, and that conversely given a bunch of

ci all but finitely many of which are trivial on

Hi we can multiply them together to get a c,

and now one just unravels this.]

4) Say S ⊇ S0, so GS =
∏
i∈S Gi ×

∏
i6∈SHi

makes sense and is a LCHTG. If we choose

a Haar integral µi on each Gi (i ∈ S) and

on each Hi (i 6∈ S) and we normalise the

Hi ones such that µ(1) = 1 (where 1 is the

constant function on Hi, which is in K(Hi)),

then there’s a unique natural Haar measure∏
i µi on GS, with the property that if Ni is a

subset of Gi for all i with the property that

Ni = Hi for all but finitely many i and that∏
iNi ⊆ GS, and if χNi is summable for all i,

then µ(χN) =
∏
i µi(χNi) [this is only a finite

product of course].
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5) Hence if we fix Haar measures µi on each

Gi with the property that µi(χHi) = 1 for all

but finitely many i, we get a natural Haar

integral µ on G, given by

µ(f) = lim
S
µ(f |GS)

for any f ∈ K(G), the limit being taken over

all S ⊇ S0, and this limit will exist (because

the support of f will be contained within one

of the GS, so in fact the sequence is ulti-

mately constant).

6) (extension of 5 to summable functions).

Say, for each i, we have a summable function

fi on Gi with the property that fi|Hi = 1 for

all but finitely many i. Define a function f

on G by f((gi)) =
∏
i fi(gi) (a finite product!).

Then the integral of f |GS is just
∏
i6∈S µi(fi)

and if the infinite product converges abso-

lutely (for example if f = χHi for all but

finitely many i), we will have µ(f) =
∏
i µi(fi).
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7) If for each i we have a continuous summable

fi : Gi → C with the property that f̂i : Ĝi → C

is also continuous and summable, and if fur-

thermore fi = χHi for all but finitely many i,

then f =
∏
i fi makes sense (and is a finite

product wherever it is evaluated), it’s con-

tinuous and summable, and f̂ : Ĝ→ C is just∏
i f̂i, which is also continuous and summable.

8) Finally, if we fix Haar integrals on Gi and

Ĝi for all i with the property that the integrals

are self-dual (that is ˆ̂f(x) = f(−x), so the

positive constant that may be involved is in

fact 1 for each i) and if µi(Hi) = 1 = µ̂(H∗
i )

for all but finitely many i, then the product

Haar integrals are also self-dual.
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Recall last time: we had a collection Gi (i ∈
I) of locally compact Hausdorff topological

groups, a finite set S0 ⊆ I, and, for all i 6∈ S0

(so, for all but finitely many i), we had a

compact open subgroup Hi of Gi.

Given this data we can form G :=
∏′
iGi, the

restricted product of the Gi with respect to

the Hi. As a group it’s the elements (gi) ∈∏
iGi such that gi ∈ Hi for all but finitely

many i (where this finite set is allowed to

vary). The easiest way to think about the

topology is to realise that GS0
:=

∏
i6∈S0

Hi ×∏
i∈S0

Gi is an open subgroup, with the usual

product topology on it. It turns out that G is

also locally compact and Hausdorff, its Haar

measure can be thought of as “the product

of the Haar measures on Gi” as long as these

are normalised such that µ(Hi) = 1 for all but

finitely many Hi, and the Pontrjagin dual of

G is just the restricted product of the Ĝi with

respect to H∗
i , the annihiliator of Hi in Ĝi.
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In fact we only need two examples for Tate’s

thesis and in both cases the Gi (and hence

G) will be abelian.

5.2: The adeles and ideles.

Let k be a number field, so a finite exten-

sion of Q. [The theory works just as well

for function fields—that is, finite extensions

of Fp(T ), but I’d like to emphasize the num-

ber field case, especially as I was too lazy

to finish the proof of the meromorphic con-

tinuation of the local zeta functions in the

function field case!]

Let I be the following set: there’s an element

of I for each non-zero prime ideal P of R,

the algebraic integers in k, and there’s also

an element of I for each equivalence class of

field homomorphisms τ : k → C, with τ ∼ τ .
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Recall from ages ago that each element of I

gives us an equivalence class of norms on k;

the prime ideals P give us P -adic norms, and

the maps k → C give us norms induced from

the standard norm on C.

The elements of I are called places of k, and

a typical element of I is traditionally denoted

v (for valuation, I guess, which is another

word for norm). For each v ∈ I let Gv denote

the completion kv of k with respect to the

norm induced by v. Let S0 denote the norms

coming from k → C—these are called “the

infinite places” [this set is empty in the func-

tion field case, and finite but non-empty in

the number field case]. For v 6∈ S0 (a “finite

place”) the completion kv = kP of k has a

ring of integers Rv; let this be Hv.

Define the adeles of k, written Ak, to be the

restricted product of the kv with respect to

the Rv.
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Let’s write this out explicitly in the case k =

Q: we have AQ is the subgroup (in fact it’s

easily checked to be a subring) of

Q2 ×Q3 ×Q5 × . . .×R

consisting of (g2, g3, g5, . . . , g∞) with the prop-

erty that gp ∈ Qp for all p, and g∞ ∈ R,

and, crucially, that gp ∈ Zp for all but finitely

many p.

Indeed in the general case one can easily

check that the topological group Ak has a

natural ring structure induced by componen-

twise multiplication (because Hi is a subring

of Gi for all finite places i).

That’s the first construction we will use. As

you can see, the finite and the infinite places

are behaving quite differently (the infinite places

have no Hv) and it’s common to write

Ak = Af
k × k∞
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with Af
k the “finite adeles”, namely

∏′
P kP ,

the restricted product over all the finite places,

and k∞ the “infinite adeles”, namely the fi-

nite product
∏

[τ ] kτ , with [τ ] = {τ, τ} the

equivalence class of τ , and where kτ = R

if τ : k → R and kτ
∼= C if [τ ] = {τ, τ} with

τ : k → C with image not landing in R.

An absolutely crucial observation is that the

“diagonal map” k →
∏
v kv sending λ to (λ, λ, λ, . . .)

has image landing in Ak; this is because any

λ ∈ k can be written λ = a/b with a, b ∈ R,

the integers of k, and b 6= 0, and the factor-

ization of (b) into prime ideals only involves

finitely many prime ideals of R, and if S is S0

union this finite set then λ ∈ Hv = Rv for all

v 6∈ S.

That’s the first construction we will use. The

second is the ideles of k, which I’ll denote A×
k ,

and which is the restricted product of the k×v
with respect to the R×v . This is a topological

group. As the name indicates,
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Lemma. The ideles are the units in the ring

of adeles.

Remark. Note that this is an algebraic state-

ment; it says nothing about the toplogies of

the adeles or ideles.

Proof. If (gv) ∈ Ak has an inverse, then cer-

tainly all of the gv are non-zero and the in-

verse is (g−1
v ). For both (gv) and (g−1

v ) to

be in Ak we need gv ∈ Rv for almost all v

(n.b. “almost all” means “for all but finitely

many”) and g−1
v ∈ Rv for almost all v. This

means gv ∈ R×v for almost all v, which is pre-

cisely the assertion that (gv) is an idele. �

Historical note: ideles were invented/discovered

before adeles. Ideles were introduced by Cheval-

ley, and he actually called them “ideal ele-

ments”, which he abbreviated “id.ele.” which

became “idele”. It was later realised that

they were the units of a ring, which Tate

calls the “ring of valuation vectors” in his

thesis.
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It was Weil that introduced the terminology

“adele”, for “additive idele”. If you look at

Serre’s CV (for example at the beginning of

Vol. 1 of his collected works) you’ll see that

his mother’s name was Adele, but Serre once

told me that he had nothing to do with the

introduction of the terminology, and merely

found it ironic that his mother’s name ended

up being used in mathematics.

Pedantic/irrelevant remark (which we won’t

use later). The inclusion A×
k → Ak is contin-

uous (because a basic open neighbourhood

of the element (1,1,1,1, . . .) in Ak is
∏
vNv

with Nv = Rv for all but finitely many v, and

hence its pullback to A×
k will contain

∏
vMv

with Mv = R×v for all but finitely many v).

However the inclusion is not a homeomor-

phism onto its image; the problem is that∏
v<∞R×v ×

∏
v|∞K×

v is open in the ideles but

not in the subspace topology (because any

neighbourhood of 1 in the adeles will contain

elements of the form (1,1,1,1, . . . ,1, π,1, . . . ,1)
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(with π in the vth place and a uniformiser in

kv), for all but finitely many v. The way to fix

this up turns out to be the trick I mentioned

earlier: give Ak × Ak the product topology

and embed A×
k into this product by sending u

to (u,1/u); now the restricted product topol-

ogy on A×
k is indeed the subspace topology.

An absolutely crucial function on the ideles of

a number field is the norm function. For any

completion kv of a number field we have writ-

ten down a canonical norm (the one where

the norm of α is how much an additive Haar

measure is “stretched” under multiplication

by α). Let’s call this norm |.|v now. Note that

for v finite and uv ∈ R×v we have |uv|v = 1.

Hence there is a function

|.| : A×
k → R>0

defined by

|(gv)| =
∏
v
|gv|v
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with the usual remark that, for any given v,
this is a finite product. I’ll refer to this func-
tion as “the global norm” but note that it’s a
continuous group homomorphism rather than
a norm on a field in the sense we talked about
earlier.

Unsurprisingly, given that a Haar integral on
Ak can be thought of as a product of local
Haar integrals, it turns out that this norm on
A×
k is just the factor by which multipliaction

by an idele is stretching the additive Haar
integral on the adeles.

Our goal, of course, is to develop some ma-
chinery to work with the following sort of
idea. Let me just stick to the case k = Q.
Let’s define a function on the ideles A×

Q thus:
for p a prime number, define fp on Qp to be
the characteristic function of Zp. Define f∞
on R to be e−πx

2
. Define f : A×

Q → C by
f((gv)) =

∏
v(fv(gv)) (a finite sum). Now

consider the function

s 7→
∫
A×

Q

f(x)|x|sdµ∗(x) (1)
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where µ∗ denotes the Haar measure on the

ideles which is the product of the local Haar

measures µ∗ on Q×
p and R×. This integral

will not converge for a general s ∈ C; the

integrand isn’t L1. A sufficient condition for

the integrand to be L1 is that all the local

integrands are L1 and furthermore that the

product of the local integrals is absolutely

convergent. But we already worked these lo-

cal integrals out, at least at the finite places:

at the finite places we have∫
Q×
p

fp(x)|x|spdµ∗(x)

and when we were meromorphically continu-

ing local zeta functions we checked that this

was L1 for Re(s) > 0 and that its value was∑
j≥0 p

−js = (1−p−s)−1. At the infinite place,

I skipped the calculation so let’s do it now:

we need to compute∫
R×

e−πx
2
|x|s(dx/|x|)

= 2
∫ ∞
0

e−πx
2
xs−1dx
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and setting y = πx2 this is

π−1
∫ ∞
0

e−y(y/π)
s−2
2 dy

= π−s/2Γ(s/2)

by definition of the Γ function, if Re(s) > 0

(and the integral doesn’t converge absolutely

at zero if Re(s) ≤ 0). Hence a necessary and

sufficient condition for the adelic integral (1)

to converge is that
∏
p(1− p−s)−1 converges

absolutely, and for Re(s) > 1 this will be the

case because the product is just
∑
n≥1 n

−s =

ζ(s). So for Re(s) > 1 the adelic integral (1)

will converge, and it will converge to

ξ(s) := π−s/2Γ(s/2)ζ(s).

I proved in the second lecture that ξ(s) had

a meromorphic continuation to s ∈ C and

satisfied ξ(s) = ξ(1 − s). We now have an

adelic interpretation of the statement.
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If we can also give an adelic proof of ξ(s) =

ξ(1 − s), by interpreting our original proof

adelically, one might hope that the idea will

generalise to all number fields. Indeed, our

main theorem will be the meromorphic con-

tinuation of a wide class of integrals on idele

groups, and we will recover a theorem of

Hecke whose original proof was a real tour

de force.

We have chosen Haar measures on kv and

isomorphisms kv = k̂v in such a way that the

Fourier inversion theorem on kv is true on the

nose (the fudge factor constant is 1). For

each v our map kv → k̂v was of the form x 7→
(y 7→ e2πiΛv(xy)) where Λv, which we called Λ

at the time, was some explicitly given map

kv → R/Z. For Qp it was Qp → Qp/Zp →
Q/Z → R/Z, the middle map being called q.

For kP/Qp finite it was the trace map kP →
Qp followed by the above map. For the reals

it was x 7→ −x sending R to R/Z and for the

complexes it sent (x+ iy) to −2x.
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Note that for all finite v, we see that Rv is in

the kernel of Λv. So, by the usual trick, we

get a map

Λ : Ak → R/Z

defined by

Λ((gv)) =
∑
v

Λv(gv)

which is, as usual, a finite sum. I could now

“cheat” and say that there was an induced

map

Ak → Âk

sending x to y 7→ e2πiΛ(xy), which was a re-

stricted product of isomorphisms, and is hence

an isomorphism. But let me make a very

pedantic remark: this last statement is true,

but not completely formal: something needs

to be checked. The problem is that Âk is

the restricted product of the k̂v with respect

to the R∗v, the annihiliators of Rv. [Reminder:

for G an abelian LCHTG and H a closed sub-

group, H∗ ⊆ Ĝ is the characters of G which

are trivial on H.]
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Hence to make sure that we really do get a

continuous map Ak → Âk this way, it would

suffice to check that our fixed local isomor-

phisms kv = k̂v sent Rv to R∗v for all v. But

they don’t! By definition, R∗v is the charac-

ters of kv that vanish on Rv, whereas our lo-

cal isomorphism sends r ∈ Rv to the function

y 7→ e2πiΛv(ry), so maps Rv to the functions

which vanish on {x ∈ kv : Λv(xy) = 0∀y ∈ Rv}
and this is the “inverse different” of kv, which

is not always equal to Rv. However, an ex-

plicit calculation shows that if v is unrami-

fied in the extension k/Q then this inverse

different is Rv again (this calculation would

take me too far afield at this point, unfor-

tunately), and hence Rv becomes identified

with R∗v for all but finitely many v, which is

good enough to ensure that we get an iso-

morphism Ak → Âk this way.
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Hence for f ∈ L1(Ak) we can (using our fixed

choice of normalisations of Haar integrals and

our fixed map Ak → Âk) consider its Fourier

transform as a function on Ak again. Explic-

itly

f̂(x) =
∫
f(y)e−2πiΛ(xy)dµ(y).

And because our local Fourier transforms sat-

isfied Fourier inversion on the nose, we check

(by using a non-zero test function which is a

product of L1 functions on the factors) that

ˆ̂f(x) = f(−x)

for f ∈ L1(Ak).

Let me finish this chapter with some com-

ments on the relationship between the adeles

of a number field and the adeles of a finite

extension of this field. I’ll stick to the case

of k/Q but what I say is true for general ex-

tensions.
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We showed, when analysing extensions of norms

to finite field extensions, that a given norm

|.| on the bottom extends in at least one,

but at most finitely many ways to a norm on

the top. We showed something more precise,

in fact—we showed that if L/K was a finite

extension of fields of characteristic zero (or

more generally a finite separable extension),

and |.| was a norm on K, and K̂ was its com-

pletion (note: this hat has nothing to do with

Pontrjagin duality), then L⊗K K̂ was a finite

sum of fields, and these fields were precisely

the completions of L at the norms on L which

extend |.|.

Applying this to the extension k/Q, we find

that k ⊗Q Qp will be isomorphic to the di-

rect sum of all the completions of k at all

the norms extending the p-adic norm on Q,

and one can re-interpret the classical result

“Σieifi = [k : Q]” (with (p) =
∏
iP

ei) as sim-

ply saying that these extensions must just be

the P -adic norms for p ∈ P .
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[Alternatively one can prove this directly, as
is done in Cassels’ book, and then derive this
formula

∑
i eifi = [k : Q] from it; there is a

little work to be done here though, which I
won’t do]. The upshot is that

k ⊗Q Qp = ⊕p∈PkP
and the analogous result at infinity is that

k ⊗Q R = ⊕[τ ]kτ .

Now the closure of R, the integers of k, in
⊕p∈PkP , is just its completion in each compo-
nent, which is

∏
P RP , and from this it follows

that

Ak = AQ ⊗Z R = AQ ⊗Q k.

More generally one checks that for L/k a
finite extension of number fields, the same
proof gives that AL = Ak ⊗k L.

One can also deduce from these decompo-
sitions that traces and norms “can be com-
puted locally”. For example

Trk/Q(λ) = Trk⊗QQp/Qp
(λ) =

∑
p∈P

TrkP/Qp
(λ)
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and similar results for norms, and similar re-

sults at the infinite places too.

Chapter 6: The main theorem.

As you have surely realised by now, our strat-

egy is as follows. We’re going to define “global

zeta integrals” as integrals of f(x).|x|s on

the ideles, for f carefully-chosen functions.

We are going to use things we’ve proved in

the course to meromorphically continue these

functions to all s ∈ C. In the local case these

meromorphic continuation proofs were of the

form “check it for one f and deduce it for all

f by some trick involving Fubini’s theorem”.

In the global setting the result is deeper and

we will obtain our meromorphic continuation

from some adelic version of Poisson summa-

tion.
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Recall that the crucial fact in the proof of

the meromorphic continuation of the Rie-

mann zeta function was that θ(1/t) = tθ(t)

for some function θ, and the proof of that

latter fact came from some concrete form

of the Fourier inversion theorem, which was

just the statement that the Fourier series of

a periodic function F (x) did in fact converge

to F (x).

Tate’s insight, which has run and run, is that

in this adelic setting, the correct analogue of

the set R/Z is the set Ak/k. Let me run off a

few things we know about the inclusion Z →
R. Firstly, Z is discrete, R is locally compact,

R̂ (the Pontrjagin dual) is isomorphic to R

again, and if we use the isomorphism x 7→
(y 7→ e−2πixy) to identify R with R̂ then we

see that the annihilator Z∗ of Z (that is, the

elements r ∈ R such that e−2πirn = 1 for all

integers n) is just Z again.
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Hence the Pontrjagin dual of the discrete

group Z is the compact group R/Z, and the

dual of the exact sequence

0 → Z → R → R/Z → 0

is itself. Finally the action of Z on R ad-

mits a natural “fundamental domain” (that

is, a subset D of R, namely [0,1), with the

property that the induced map D → R/Z is

a bijection), and the measure of D, with re-

spect to the standard Haar measure on R,

is 1.

We’re going to prove analogues of all of these

things today, with Z replaced by a number

field k, and R replaced by Ak. For example

we’ll soon see that k embeds into Ak as a

discrete subgroup. So what will be the ana-

logue of our proof of the functional equation

of the theta function?
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When thinking about the θ function, we ob-

tained our function F (x) originally as F (x) =∑
n∈Z f(x+n), with f(x) = e−πt

2x2 a function

on R. The analogue of f in this setting will

be a carefully-chosen function on Ak which

is sufficiently “rapidly decreasing”, and such

that for all adeles x, the sum
∑
λ∈k f(x+ λ)

converges absolutely. We then apply Fourier

inversion to get some fact, and show that

this fact is precisely what is needed to give us

the meromorphic continuation and functional

equation of the Riemann zeta function and

a gazillion other functions too, all of which

come out in the wash.
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Historical interlude (non-examinable).

The theory of automorphic forms was really

getting off the ground in the 1950s, when

Tate’s thesis was written, but the classical

theory tended to revolve around considering

functions on groups like GLn(R) which were

invariant, or transformed in some simple way,

under the subgroup GLn(Z). In the 1950s

there was a move away from this setting to

the adelic setting of functions on GLn(Ak)

which were invariant under the discrete sub-

group GLn(k), and this insight enabled one

to reformulate various notions such as Hecke

operators in a purely local form. Indeed,

Hecke operators could now be interpreted as

operators in a purely local setting coming

from the representation theory of GLn(kv),

giving a huge new impetus to the represen-

tation theory of p-adic groups.
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There were practical consequences too in that

the theory of Hecke operators for Hilbert mod-

ular forms was very difficult to set up glob-

ally, if the integers of the base field were not

a PID, because no natural analogue at P of

the matrix
(
p 0
0 1

)
∈ GL2(Q) existed if P was

a non-principal prime. The adelic reformula-

tion of the theory removes all of these prob-

lems because even though P is not a princi-

pal ideal, the element (1,1,1,1, . . . , π 1,1, . . .)

(with π a uniformiser at P ) is still a perfectly

good idele (indeed this was one of Chevalley’s

motivations for introducing these things).
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6.1. The additive theory, and the adelic
Poisson summation formula.

Let’s prove that Z is to R as k is to Ak.
Here’s the first big reason for believing this:

Proposition. The subspace topology on k

coming from the embedding k → Ak is the
discrete topology (all sets are open). And
the quotient Ak/k is a compact topological
space.

We’ll prove this soon; first we’ll construct a
fundamental domain for k in Ak, analogous
to [0,1) in R. Let’s do this by trying to
understand how k fits into Ak “at the finite
places”, and then thinking about the infinite
places.

Consider the group that I called GS0
when

setting up the general theory of restricted
products: this is just∏

v<∞
Rv ×

∏
v|∞

kv.
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The intersection of k (embedded diagonally)

with this group is the elements of k which

are integers at all finite places. If 0 6= λ ∈ k

and we write the fractional ideal (λ) as
∏
iP

ei
i ,

and if one of the ei is negative, then we have

λ 6∈ RPi, by definition. Hence the intersection

k ∩

 ∏
v<∞

Rv ×
∏
v|∞

kv


is just the elements of k which generate in-

tegral ideals, which is just another way of

saying the (global) integers R of k.

Now let’s think about what’s going on in∏
[τ ] kτ , the infinite adeles. Note that this

space just looks like R ⊕ R ⊕ . . . ⊕ R ⊕ C ⊕
C⊕ . . .⊕C, where there are, say, r copies of

R, and s copies of C, and we also note that

the number of field homomorphisms k → C

is just r+ 2s (recalling that we only get one

completion for each pair of complex conju-

gate maps k → C).
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Now if e1, e2, . . . , en is a Z-basis for the ring

of integers R in k, then the definition of the

discriminant of k is just (up to sign) the

square of the determinant of the square ma-

trix (σi(ej))i,j, where σi runs through the field

maps k → C. Let us write |d| for the absolute

value of the discriminant of k/Q. For later

use it will be helpful to know

Lemma. The image of R in k∞ =
∏

[τ ] kτ
(embedded diagonally) is a lattice, and, with

respect to our choices of Haar integrals on

the kτ , the measure of a fundamental do-

main for this lattice is just
√
|d|, with d the

discriminant of k.

Remark. A fundamental domain for a lattice

Λ ⊆ Rn is just a connected set S with non-

empty interior such that every element of Rn

can uniquely be written λ+ s with λ ∈ Λ and

s ∈ S. One way of constructing such a thing

is to write down a basis e1, e2, . . . , en for Λ

and let S be {
∑
i λiei} with 0 ≤ λi < 1 for

all i—a “fundamental parallelogram” for Λ.
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Proof of lemma. If k is totally real (that

is, all k → C land in R) then the result is

immediate: the volume of the fundamental

domain of a lattice in Rn is just the absolute

value of the matrix whose entries form a basis

for the lattice. But if k has complex places

then we have to be a little careful.

The problem is that if σ is a map k → C

whose image does not land in R, and if σ(ej) =

x+ iy, then in the usual discriminant calcula-

tion (which uses all embeddings, both σ and

σ) we will see a contribution from x+ iy and

x− iy. But in the infinite adele computation

we only see σ, taking values in something we

can thinking of as R2, giving us coordinates

of x and y. Now we have(
x+ iy
x− iy

)
=

(
1 i
1 −i

)(
x
y

)
and the absolute value of the determinant of(

1 i
1 −i

)
is 2.
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So with respect to the naive measure on the

infinite adeles, (which is dxdy at the complex

places) the volume of a fundamental domain

for the lattice R will be
√
|d|.2−s, because

we lose a factor of 2 at each complex place.

However the normalisation of Haar measure

that we chose for the complex infinite places

was not the naive one—we inserted a factor

of 2! Hence with our fixed choice of Haar

measure the volume is again
√
|d|. �
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Now it’s convenient to make the following

definition. Define D∞ to be the following

fundamental parallelogram for the lattice R

in k∞ =
∏
v|∞ kv: choose a Z-basis (ej)1≤j≤n

for R and consider the ej as elements of k∞;

they form a lattice (because the discriminant

of a number field is non-zero!). Define D∞
to be the “box” whose typical element is∑n
j=1 λjej with 0 ≤ λj < 1. Note that the

closure D∞ of D∞ is obtained by letting the

λj range through [0,1], and the interior Do
∞

is obtained by restricting to λj in (0,1). In

particular D∞ has compact closure and non-

empty interior.

Now let’s define D ⊆ Ak to be the product

Df ×D∞, with Df ⊆ Ak,f simply being
∏
vRv.

Note that Df is an open subgroup, and hence

a closed subgroup, of Ak,f , and hence the

closure of D in Ak is simply Df ×D∞, which

is compact, and the interior is Df × Do
∞. I

now claim that D is a fundamental domain

for the action of k on Ak. More precisely,
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Lemma. Any element of Ak can be written

uniquely as d+ λ with d ∈ D and λ ∈ k.

Proof. Given an adele (gv) of k, it is in RP at

all but finitely many finite places P , by defi-

nition. Choose some 0 6= b ∈ R whose prime

factorization contains a sufficiently high power

of each of the P for which gP isn’t integral

to ensure bgP ∈ RP for all P . Now for each

prime ideal P dividing (b), say P e exactly di-

vides b and consider the equation a ≡ bgP
modulo P e. By the Chinese Remainder The-

orem these equations can all be solved at

once within R, and we set λ0 = a/b ∈ k. Now

gP −λ0 ∈ RP for all P |(b) and hence for all P ,

because gP and a/b are integral at all other

finite places.

We have now rigged it so that (gv)− λ0 has

finite part in Df , but its infinite part might

not be in D∞; however this can be fixed by

subtracting an appropriate λ1 ∈ R (because

D∞ is visibly a fundamental domain for R

acting on k∞).
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We see that we have written Ak = D + k

now, and all that is left is to prove that this

decomposition is unique. But this is easy:

if d1 + λ1 = d2 + λ2 then t := d1 − d2 =

λ2 − λ1 ∈ (D − D) ∩ k, and looking at the

finite places we see t ∈ k is in Df −Df = Df
is integral at all finite places, so t ∈ R, and

looking at the infinite places we see t = 0

because 0 is the only element of R =
∑
iZei

in D∞ −D∞ = {
∑n
i=1 λiei : −1 < λi < 1}. �

We can now prove something promised ear-

lier:
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Proposition. k ⊆ Ak is discrete and the quo-

tient is compact.

Proof. Discreteness follows because D has

a non-empty interior. More precisely, if d is

any adele in the (non-empty) interior Do of D

then Do−d is an open set in Ak containing 0,

and conversely if λ ∈ k is in Do − d then we

have d′ − d = λ for d, d′ ∈ D and hence d′ =
d+ λ, so λ = 0. Hence Do− d is an open set

in Ak whose intersection with k is just {0}
and hence for any α ∈ k, Do − d + α is an

open set in Ak whose intersection with k is

{α}.

Compactness follows because Ak/k is a con-

tinuous image of D; the lemma implies that

the map is surjective. �

Now let’s prove Ak/k-analogues of the other

R/Z-results we mentioned earlier.
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Proposition. The measure of (the charac-

teristic function of) D (with respect to our

fixed choice of Haar measuse on Ak) is 1.

Proof. D = Df × D∞. We computed the

measure of D∞ as
√
|d|. The way we nor-

malised our local Haar measures at the P -

adic places was such that if RP is the inte-

gers of kP then µ(RP ) = p−m/2, where pm

was the (absolute value of the) discriminant

of kP/Qp. But the global discriminant of k/Q

is just the product of the local discriminants,

and hence the measure of Df with respect

to our choices is |d|−1/2. Hence the measure

of D is the product of the measures of Df
and D∞, which is 1! �
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Proposition. Our fixed isomorphism Ak →
Âk (defined by x 7→ (y 7→ e2πiΛ(xy))) sends
the closed subgroup k isomorphically onto
the closed subgroup k∗ of characters of Âk
which are trivial on k.

Reminder. Our fixed map R → R̂ sends x
to y 7→ e−2πixy, so sends Z to the characters
y 7→ e−2πiny for n ∈ Z. The R/Z analogue
of this proposition is the statement that the
intersection of the kernels of all of these char-
acters is precisely Z again.

Proof of proposition. We need to check that
the set of characters y 7→ e2πiΛ(ry), for r ∈ k,
is precisely the set of characters that vanish
on k. So we need to check

(i) If α ∈ k then Λ(α) = 0

(ii) If y ∈ Ak and Λ(αy) = 0 for all α ∈ k then
y ∈ k.

Recall Λ((gv)) =
∑
v Λv(gv), a finite sum, and

the Λv are “trace down to Qp or R, and then
use q : Qp/Zp → Q/Z or x 7→ −x : R → R/Z”.

269



(i) is true because Λ is a sum of local traces,

and if α ∈ k then Trk/Q(α) ∈ Q, and this

reduces (i) to the case k = Q. It’s clearly

true that Λ(n) = 0 for n ∈ Z (because all the

Λp are zero), so by additivity it suffices to

check that Λ(1/pe) vanishes for all p prime

and e ≥ 1. Now finally I realise why Tate

inserted the minus sign in his definition of his

local Λ for the reals: we have Λq(1/pe) = 0

for all q 6= p, we have Λp(1/pe) = 1/pe and

we have Λ∞(1/pe) = −1/pe, and the sum in

R/Z is zero. So (i) is proved.

For (ii) we use a trick. We have proved Ak/k

is compact, so if k∗ denotes the annihilator of

k in Âk, and if we identify Âk with Ak via our

fixed isomorphism, then we know k ⊆ k∗ from

(i). Now k∗ is the annihilator of k and hence

the Pontrjagin dual of Ak/k which we’ve seen

is compact. Hence k∗ is discrete, and a closed

subgroup of Ak. So k∗/k is discrete in Ak/k,

and closed too, so it’s compact, so it’s finite.
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So for α ∈ k∗ there’s some positive integer
n such that nα = β ∈ k. But β/n ∈ k and
β/n−α is now a torsion element of Ak, which
contains no torsion other than zero. So α =
β/n ∈ k. �

So now we really see that the inclusion k ⊂
Ak is very formally similar to the inclusion Z ⊂
R. In particular we see that the Pontrjagin
dual of Ak/k is k∗ = k (with the discrete
topology), and hence the Pontrjagin dual of
k as Ak/k (analogous to the Pontrjagin dual
of Z being R/Z). But in some sense the
advantage of the adeles over the reals is that
the adeles “can be broken into local factors”,
and the arithmetic of k is easier than the
arithmetic of its integers.

Now we prove the analogue of the transfor-
mation property of the θ function. Instead
of working with (the analogue of) f(x) =
e−πt

2x2 we set things up, for the time being
at least, in more generality: we’ll use a gen-
eral function f for which we’ll just assume
everything converges.
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First we observe that we have a natural Haar

measure on the compact group Ak/k: a func-

tion on Ak/k can be thought of as a “peri-

odic” function on Ak (that is, one satisfying

f(x+ α) = f(x) for α ∈ k) and, for a contin-

uous function of this type, one checks easily

that defining µ(f) =
∫
D f(x)dµ(x) where µ

is our fixed Haar measure on the adeles but

the integral is only over our fundamental do-

main D, gives us a Haar measure on Ak/k.

On the other side, if we endow k with the

discrete topology then a natural Haar mea-

sure is just counting measure: a continuous

function with compact support is just a func-

tion f : k → C which vanishes away from a fi-

nite set, and we can define µ(f) =
∑
α∈k f(α).

With these choices of Haar measure on k and

Ak/k, what is the constant in the Fourier in-

version theorem? In other words, if we invert

F : k → C twice, we’ll get x 7→ cF (−x). What

is c?
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Lemma. c = 1.

Proof. We just need to check this for one

non-zero function. So let’s let F be the char-

acteristic function of {0}. Then F̂ is the

function on k̂ = Ak/k which sends a charac-

ter χ : k → S1 to
∑
α∈k F (α)χ(α) = χ(0) = 1.

Hence F̂ is the constant function on Ak/k,

sending everything to 1. Now we don’t have

to evaluate ˆ̂F everywhere, we only need to

evaluate it at 0, regarded as the trivial char-

acter of Ak/k. By the choice of our Haar

measure on Ak/k, we see

ˆ̂F (0) =
∫
D

1dµ(x)

and we computed the integral of D as be-

ing 1, so ˆ̂F (0) = F (0), and hence c = 1.
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(new lecture) Summary of where we are:

1) k a number field. We have fixed an iden-

tification of Ak with its Pontrjagin dual Âk.

We checked that this isomorphism sends the

closed (and discrete) subgroup k of Ak iso-

morphically onto its annihiliator k∗ (recall that

the annihilator of k is just by definition the el-

ements of Âk which vanish on k). We deduce

from this that the Pontrjagin dual of Ak/k is

isomorphic to k (because it’s canonically iso-

morphic to k∗). We checked that k was a

discrete subgroup of Ak and that the quo-

tient Ak/k was compact. I remarked (and in-

deed stressed) that this was very much anal-

ogous to Z ⊂ R being discrete and R/Z being

compact, the identification of R with its dual

sending Z to its own annihilator, and Z hence

being the dual of R/Z.
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2) We fixed a choice of Haar measure on

Ak/k, namely
∫
D, where D is our fundamental

domain for the action of k on Ak (analogous

to [0,1) in R). This choice has the nice prop-

erty that the integral of the constant function

is 1 (because µ(D) = 1). We fixed a choice

of Haar measure on k with the discrete topol-

ogy, namely the “counting measure”. We

computed enough of the Fourier transform

of the Fourier transform of the characteris-

tic function of {0} on k to deduce that the

Fourier inversion theorem holds in this situ-

ation with constant term equal to 1. I re-

marked that, much to my annoyance, I did

not know the full proof of the Fourier inver-

sion theorem in this generality (but that it

was certainly true, because it was true for all

locally compact abelian groups, it’s just that

the proof involves too much analysis for me.)
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Now a reminder of something from long ago.
The Fourier inversion theorem on R/Z, when
unravelled, just tells us the classical fact that
if F is a continuous function on R/Z, viewed
as a periodic function on R, and if am =∫
D F (x)e−2πimxdx is its mth Fourier coeffi-
cient, where m ∈ Z and D = [0,1), and if∑
m |am| converges, then F (x) =

∑
m∈Z ame

2πimx.
We applied this very early on to a function
F (x) of the form F (x) =

∑
n∈Z f(x+n) where

f was a function which was rapidly decreas-
ing, and we deduced∑

n∈Z

f(n) = F (0) =
∑
m∈Z

am.

And we computed am using this trick:

am =
∫ 1

0

∑
n
f(x+ n)e−2πimxdx

=
∫ 1

0

∑
n
f(x+ n)e−2πim(x+n)dx

=
∫
R
f(x)e−2πimxdx = f̂(m)

and so
∑
n∈Z f(n) =

∑
m∈Z f̂(m) as long as ev-

erything converges—this is the classical Pois-
son summation fomula.
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Let’s now do exactly the same thing, but on

Ak/k instead of R/Z.

If F ∈ L1(Ak/k) (that is, F is a function on

the adeles and F (x + α) = F (x) for α ∈ k,

and furthermore if
∫
D F (x)dµ(x) < ∞), then

let’s define F̂ : k → C by

F̂ (α) =
∫
D
F (x)e−2πiΛ(xα)dµ(x).

Lemma. With notation as above, if
∑
α∈k |F̂ (α)|

converges, then

F (x) =
∑
α∈k

F̂ (α)e2πiΛ(αx).

Proof. This is just the Fourier inversion the-

orem spelt out, together with the fact that

c = 1, which we proved last time. �

Corollary. F (0) =
∑
α∈k F̂ (α). �
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Remark. As I’ve mentioned already, I’m slightly

“bothered” by the fact that I’ve not actually

proved the Fourier inversion theorem. How-

ever the proof for R/Z is not hard, and the

proof for Qp can be done by hand, and it

looks to me like Ak/k is built up from things

that look like this, and so I wonder whether

one would be able to give a “hands-on” proof,

avoiding all the functional analysis which I

had to assume.
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One last explicit definition: if f ∈ L1(Ak)

then, surprise surprise, define f̂ : Ak → C

by f̂(y) =
∫
Ak
f(x)e−2πiΛ(xy)dµ(x), the usual

Fourier transform, once we have identified

Ak with its dual.

Theorem (Poisson summation, revisited.)

If f ∈ L1(Ak) is continuous, if
∑
α∈k f(x+ α)

converges absolutely and uniformly for x ∈
Ak, and if

∑
α∈k |f̂(α)| also converges, then

∑
β∈k

f(β) =
∑
α∈k

f̂(α).

Proof. (c.f. section 1.2.) Define F : Ak → C

by F (x) =
∑
β∈k f(x + β). Now by assump-

tion the sum converges uniformly on Ak, so

F is continuous and periodic. Hence F , con-

sidered as a function on Ak/k, is continu-

ous with compact support and is hence L1.

Moreover, for α ∈ k we have (c.f. formula for

am in 1.2)
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F̂ (α) =
∫
D
F (x)e−2πiΛ(αx)dµ(x)

=
∫
D

∑
β∈k

f(x+ β)e−2πiΛ(αx)dµ(x)

=
∑
β∈k

∫
D
f(x+ β)e−2πiΛ(αx)dµ(x)

=
∑
β∈k

∫
D
f(x+ β)e−2πiΛ(α(x+β))dµ(x)

=
∫
Ak

f(x)e−2πiΛ(αx)dµ(x)

= f̂(α)

[where the interchange of sum and integral
is OK because the sum converges uniformly
on D, which has finite measure, and I’ve also
used the fact (proved earlier) that k ⊂ ker(Λ),
which I proved when showing k = k∗.] Hence∑

β∈k
f(β) = F (0)

=
∑
α∈k

F̂ (α)

=
∑
α∈k

f̂(α)

�
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6.2 The multiplicative theory.

We just showed that k ⊆ Ak was discrete,

with compact quotient. We’ll now show that

k× ⊆ A×
k is discrete, but perhaps one doesn’t

expect the quotient to be compact, because

R×/Z× ∼= R>0 isn’t compact.

In fact here’s a proof that A×
k /k

× isn’t com-

pact. Recall that we have a norm function

|.| : A×
k → R>0, defined as a product of local

norms.

Lemma. If α ∈ k× then |α| = 1.

Proof. Lazy proof: Ak = AQ ⊗Q k and |.|
factors through the norm map Ak → AQ (if

you believe that the P -adic norms are the

only norms on k extending the p-adic norm on

Q, which is true and not hard and in Cassels,

but I didn’t prove it). This reduces us to the

case k = Q. In this case, by multiplicativity

of the norm, we need only check the cases

α = −1 and α = p prime.
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Now α = −1 is a global unit so has local norm

equal to 1 everywhere, and α = p also has

global norm 1 because |α|q = 1 for all q 6= p,

|α|p = p−1 and |α|∞ = p, so the product of

the local norms is 1. �

Remark. It’s not hard to give a direct com-

putational proof for general k. Tate also

notes that there’s a “pure thought” proof

which goes as follows: |α| is the factor by

which additive Haar measure on the adeles is

scaled, and because µ(D) = 1 we will have

|α| = µ(αD). But αD is a fundamental do-

main for αk = k and it’s not hard to check

now that µ(αD) must then be µ(D) [consider

αD = ∪β∈k(αD∩(D+β)) etc to see that fun-

damental domains have the same measure.]

Now it’s clear that |.| : A×
k → R>0 is surjective

(it’s even surjective when you restrict to one

infinite place), so certainly one can’t hope

that A×
k /k

× is compact (because it has R>0

as a homomorphic image).
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Definition. Let J be the kernel of |.|, with
the subspace topology coming from A×

k . We
have “dropped one factor of R>0” going from
A×
k to J. But it’s enough, because

Proposition. k× is a discrete subgroup of J
and J/k× is compact.

Proof. We follow the same strategy for show-
ing k is discrete in Ak, but we’ll need some
standard facts about class groups and unit
groups of number fields, which of course I’ll
assume. In fact the proposition is equivalent
to the union of the following statements: the
rank of the unit group of k is r+s−1 (with r
the number of real and s the number of com-
plex places), the regulator is non-zero (which
comes out of the standard proof of the unit
group rank statement), the number of roots
of unity in k is finite, and the class number
of k is finite.

Don’t take the following proof too seriously:
we don’t really need the precise volumes that
come out. Just believe that the proof is “the
same as in the additive case, but messier.”
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So here’s how the argument goes (c.f. the

construction of D). Define Ẽf =
∏
v<∞R×v ⊂

(Af
k)
×. (I’m putting tildes on because the

Ẽ I’m about to build won’t quite be a fun-

damental domain). Then k× ∩ Ẽf is the ele-

ments of k× that are units at all finite places,

and hence when written a/b have (a) = (b);

this is just the units R× of R ⊂ k. Our choices

of Haar measure imply that µ∗(Ẽf) = |d|−1/2.

At the infinite places we take logs: the prod-

uct of the maps log(|.|) : k×τ → R give us a

map R× → Rr+s whose image lands in the

hyperplane consisting of vectors the sum of

whose entries is zero. Now it’s a standard re-

sult that the image of R× is a lattice in this

hyperplane, and the kernel is the roots of

unity. Let L̃∞ be a fundamental domain for

this lattice, and we let Ẽ∞ be the pre-image

of L̃∞ in ker(|.|) : k×∞ → R>0; then Ẽ :=

Ẽf × Ẽ∞ has measure |d|−1/2.2r(2π)sRegk.
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Explanation: the discriminant factor comes
from the finite places, the 2r and (2π)s com-
ing from the units at the infinite places, which
were killed by the logs, and Regk is, by defini-
tion, the volume of the fundamental domain
of L̃∞, which is by definition the regulator of
the number field and is known to be non-zero
and finite. Moreover, Ẽ is almost a funda-
mental domain for k× ⊆ J. The problems are
firstly that we lost track of the roots of unity
(so Ẽ is too big by a factor of the number
of roots of unity) and secondly that we can-
not multiply any finite idele by some element
of k× to put us in Ẽf (the “multiplicative”
version of the CRT argument fails), so Ẽ is
too small by a factor of k×\(Af

k)
×/Ẽf , and

(Af
k)
×/Ẽf = ⊕v<∞Zv is the group of frac-

tional ideals, so its quotient by k× is the class
group of k, which is known to be finite. One
now checks that Ẽ can be modified “a finite
amount” to ensure that it becomes a fun-
damental domain E for k× in J, with mea-
sure |d|−1/2.2r(2π)sRegk h/w with h the class
number and w the number of roots of unity.
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As I say, don’t take all those delicate num-

bers too seriously, but do note that E has

compact closure and non-empty interior, and

that J = ∪α∈k×αE a disjoint union, so k× is

discrete in J with compact quotient. �

Here’s a nice consequence of compactness.

Note that just as in the local case we consider

quasicharacters of multiplicative groups, rather

than just characters.

Corollary. If c : k×\A×
k → R>0 is a continu-

ous group homomorphism, then c = |.|σ for

some real number σ.

Proof. c(k×\J) is a compact subgroup of

R>0 and is hence {1}. So c factors through

A×
k /J which, via the norm map, is R>0, and

now taking logs we’re done, because the only

continuous group homomorphisms R → R

are x 7→ σx.
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6.3: Statement and proof of the main
theorem.

Definitions. If c : k×\A×
k → C× is a con-

tinuous group homomorphism then we say
it’s a quasi-character of k×\A×

k . We’ve just
seen that |c| : k×\A×

k → R>0 is of the form
x 7→ |x|σ; define Re(c) = σ. We let the set of
quasi-characters of k×\A×

k be a Riemann sur-
face as in the local case, by letting the com-
ponent of c : k×\A×

k → C× be {c.|.|s : s ∈ C}.
Note that in this case the Riemann surface is
just an infinite union of copies of the complex
numbers, indexed by the group Ĵ of charac-
ters of J. If c is a quasi-character of k×\A×

k
then let ĉ be the character x 7→ |x|/c(x); note
that Re(ĉ) = 1−Re(c).

Remark. I know very little about Ĵ.

Recall that in the local setting we had a set Z
consisting of “functions for which everything
converged”, and defined ζ(f, c) for f ∈ Z and
c a quasi-character with positive real part, as
some sort of integral. Here’s the analogy of
this construction in the global setting.
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Let Z denote the set of functions f : Ak → C

satisfying the following “boundedness” con-

ditions:

Firstly, we demand f is continuous and in

L1(Ak), and also that f̂ : Ak → C is continu-

ous and in L1(Ak).

Secondly (a condition that wasn’t present in

the local setting), we demand that for ev-

ery y ∈ A×
k , the sums

∑
α∈k f(y(x+ α)) and∑

α∈k f̂(y(x+α)) converge absolutely, and more-

over the convergence is “locally uniform” in

the sense that it’s uniform for (x, y) ∈ D × C

for D our additive fundamental domain and

C an arbitrary compact subset of A×
k .

Thirdly, we demand that f(y).|y|σ : A×
k →

C× and f̂(y).|y|σ are in L1(A×
k ) for all σ > 1

(note: this was σ > 0 in the local setting).
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What are the reasons for these conditions?

The first two mean that we can apply Pois-

son summation to f and indeed to the map

x 7→ f(yx) for any y ∈ A×
k . The local uni-

form convergence in the second condition is

so that we can interchange a sum and an

integral at a crucial moment. The third con-

dition means that our global “multiplicative

zeta integral” will converge for Re(s) > 1.

Definition. If f ∈ Z and c : k×\A×
k → C× is

a quasi-character with Re(c) > 1, define

ζ(f, c) =
∫
A×
k

f(y)c(y)dµ∗(y)

(the Haar measure on A×
k being, of course,

the product of our fixed Haar measures µ∗v on

k×v ).

The last condition in the definition of Z en-

sures the integral converges. Our main goal

is:
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Theorem. If f ∈ Z then the function ζ(f, .)

is holomorphic on the Riemann surface of

quasi-characters c with Re(c) > 1, and has a

meromorphic continuation to all quasi-characters.

Assume furthermore that f(0) 6= 0 and f̂(0) 6=
0. Then ζ(f, .) has simple poles at the quasi-

characters c(x) = 1 and c(x) = |x|, and no

other poles (and $1,000,000 attached to its

zeros). Finally it satisfies the (very elegant!)

functional equation

ζ(f, c) = ζ(f̂ , ĉ).

We’ll now start the proof of this, which of

course is going to be a not-too-tough appli-

cation of everything we have. But what else

do we need to do in this course? Well the

only other thing to do is to check that the

theorem has some content—that is, that Z

contains some non-zero functions and that,

as special cases of the theorem, we are prov-

ing the meromorphic continuation of Dirich-

let L-functions, zeta functions of number fields,

zeta functions of Grössencharacters,. . . .
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[extra f̂ L1 condition.] Before we prove the
theorem let me make some definitions and
prove some lemmas. We have J ⊆ A×

k , the
kernel of the norm function. Just as in the
local case let’s split this by finding I ⊂ A×

k
isomorphic to R>0 such that A×

k = I × J.
We do this by just choosing an infinite place
[τ0] of k and letting I be the copy of the
positive reals in k×τ0. We identify I with R>0
so that the norm map induces the identity
R>0 → R>0, so if τ0 happens to be a com-
plex place then, because our complex norms
aren’t standard, what we’re doing here is let-
ting I be the positive reals in C× but letting
the map R>0 → I be t 7→

√
t.

For f ∈ Z and Re(c) > 1, we firstly break off
this factor of I in the definition of the zeta
integral: we write

ζ(f, c) =
∫
I×J

f(y)c(y)dµ∗(y)

=
∫ ∞
t=0

∫
b∈J

f(tb)c(tb)dµ∗(b)dt/t

=
∫ ∞
t=0

ζt(f, c)dt/t
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where our measure on J is the one such that

its product with dt/t on I gives us µ∗ on A×
k ,

and the last line is the definition of ζt(f, c) :=∫
J f(tb)c(tb)dµ

∗(b).

Let’s think a little about

ζt(f, c) =
∫
J
f(tb)c(tb)dµ∗(b).

We know that the integral defining ζ(f, c)

converges, by assumption, for Re(c) > 1, and

hence the integrals defining ζt(f, c) will con-

verge (at least for all t away from a set of

measure zero). But these integrals are very

docile: for b ∈ J we have |b| = 1 by definition,

so if Re(c) = σ then |c(tb)| = |tb|σ = tσ is con-

stant on J, and hence if the integral defining

ζt(f, c) converges for one quasi-character c

(which it almost always does) then it con-

verges for all of them.
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[ζt(f, c) =
∫
J f(tb)c(tb)dµ

∗(b).]

The problem, of course, is not in the conver-
gence of the individual ζt(f, c); it’s that as t
goes to zero then f(tb) will be approaching
f(0) and if this is non-zero, which it typically
will be, then the integral of this function over
the non-compact J might be getting very big,
so

∫ 1
t=0 ζt(f, c)dt/t will probably diverge if, say,

σ < 0 (because then tσ is also getting big).
This is the problem we have to solve.

Note also that we’ve written

ζ(f, c) =
∫ ∞
t=0

ζt(f, c)dt/t

and that this is one of the crucial tricks. If
f =

∏
v fv with fv on kv then we could com-

pute the global integral as a product of lo-
cal integrals—but in applications this would
just tell us that our global zeta function is
a product of local zeta functions, which will
not help with the meromorphic continuation.
The insight is to compute the integral in
this second way. Note that Iwasawa inde-
pendently had this insight in 1952.
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In case you’ve not realised, let me stress that

ζ(f, c) isn’t a generalisation of the zeta func-

tion, it’s a generalisation of ξ(s), that is, the

zeta function multiplied by the fudge factor

at infinity, and the t in the integral above is

precisely the t that we had at the beginning

of section 1.3 right at the beginning of the

course. The strategy is now clear: we break

the integral over t up into two parts, one of

which will converge for all c, and the other

of which we will manipulate and, by making

the substitution u = 1/t and applying Pois-

son summation, turn into a form which also

converges.
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Recall that the closure of the fundamental

domain E for k× in J is compact, so the

integrals below are finite (as the integrands

are continuous). Using J = k×.E we get

ζt(f, c) =
∑
α∈k×

∫
αE

f(tb)c(tb)dµ∗(b)

=
∑
α∈k×

∫
E
f(tαb)c(tb)dµ∗(b)

=
∫
E

 ∑
α∈k×

f(tαb)

 c(tb)dµ∗(b)
where the first equality is the definition, the

second uses the fact that µ∗ is a multiplica-

tive Haar measure on J and that c is trivial

on k×, and the third is an interchange of a

sum and an integral which is justified by our

rather strong uniform convergence assump-

tions on f ∈ Z and the observation that the

closure of E is a compact subset of A×
k .

Exactly the same argument (changing f to

f̂ ∈ Z, c to ĉ and t to 1/t) shows that blah

ζ1/t(f̂ , ĉ) =
∫
E

(∑
α∈k× f̂(αb/t)

)
ĉ(b/t)dµ∗(b).

295



[ζt(f, c) =
∫
E

(∑
α∈k× f(tαb)

)
c(tb)dµ∗(b)]

Now that sum over k× looks almost like a

sum over k, but firstly the term α = 0 is miss-

ing (so we’ll have to add it in) and secondly

we’re not summing f(α) but f(tαb). So we’ll

have to work out what the Fourier transform

of x 7→ f(txb) is. In other words, we need to

see how the additive Fourier transform scales

under multiplication. In the application of

the lemma below we’ll have ρ = tb.

Lemma. If f : Ak → C is continuous and in

L1(Ak), if ρ ∈ A×
k is fixed and if g(x) := f(xρ)

then ĝ(y) = 1
|ρ|f̂(y/ρ).

Proof. An elementary computation. We have

ĝ(y) =
∫
Ak

f(xρ)e−2πiΛ(xy)dµ(x)
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and setting x′ = xρ we have dµ(x′) = |ρ|dµ(x)
and hence

ĝ(y) =
∫
Ak

f(x′)e−2πiΛ(x′y/ρ)dµ(x′)/|ρ|

=
1

|ρ|
f̂(y/ρ)

as required. �

So now let’s add in the missing α = 0 term
to ζt(f, c), apply Poisson summation, and see
what happens. Recall we just showed that
ζt(f, c) =

∫
E

(∑
α∈k× f(tαb)

)
c(tb)dµ∗(b) and that

ζ1/t(f̂ , ĉ) =
∫
E

(∑
α∈k× f̂(αb/t)

)
ĉ(b/t)dµ∗(b).

Key Lemma. For an arbitrary t > 0 and c

we have

ζt(f, c) + f(0)
∫
E
c(tb)dµ∗(b)

= ζ1/t(f̂ , ĉ) + f̂(0)
∫
E
ĉ(b/t)dµ∗(b).

Proof. As we’ve already remarked, the for-
mulas we have just derived for ζt(f, c) and
ζt(f̂ , ĉ) involve sums of α ∈ k×.
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The LHS of the lemma is hence what you

get when you add the missing α = 0 term:

it’s ∫
E

∑
α∈k

f(tαb)

 c(tb)dµ∗(b) (1).

Similarly the RHS is∫
E

∑
α∈k

f̂(αb/t)

 ĉ(b/t)dµ∗(b) (2).

So we need to show (1) = (2). The internal

sum over k screams out for an application

of Poisson summation, which, when applied

to the function x 7→ f(txb) (we’re allowed

to apply Poisson summation because of our

assumptions on f) gives∑
α∈k

f(tαb) =
∑
α∈k

̂(x 7→ f(txb))(α) =
∑
α∈k

1

|tb|
f̂(α/tb).
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Hence formula (1) is equal to

∫
E

∑
α∈k

f̂(α/tb)

 c(tb)/|tb|dµ∗(b)
and now making the substitution b 7→ 1/b,

which doesn’t change Haar measure, this be-

comes∫
E

∑
α∈k

f̂(αb/t)

 c(t/b)|b|/|t|dµ∗(b)
=
∫
E

∑
α∈k

f̂(αb/t)

 ĉ(b/t)dµ∗(b)
which is (2)! This proves the lemma. �
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We’re finally ready to meromorphically con-
tinue our global zeta integrals. But before
we do, let’s try and figure out exactly what
that fudge factor was that we had to add to
ζt(f, c) to make that argument work in that
last lemma: we added f(0) times∫

E
c(tb)dµ∗(b).

What is this? Well if c(x) = |x|s is trivial on
J then c(tb) = ts is constant for b ∈ E (in-
deed, for b ∈ J), so the integral is just tsµ∗(E)
and we computed the measure of E earlier to
be 2r(2π)shR/(w

√
|d|)—it’s some finite non-

zero number, anyway. But if c is non-trivial
on J then, because it’s always trivial on k×,
it descends to a non-trivial character on the
compact group J/k×”=”E and the integral
will hence be zero (distinct characters are or-
thogonal). So in fact we have

Corollary. If c is non-trivial on J and f ∈ Z

and t > 0 then ζt(f, c) = ζ1/t(f̂ , ĉ).

We’re finally ready to prove the main theo-
rem! I’ll re-state it.
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Theorem. If f ∈ Z then the function ζ(f, .)

is holomorphic on the Riemann surface of

quasi-characters c with Re(c) > 1, and has a

meromorphic continuation to all quasi-characters.

Assume furthermore that f(0) 6= 0 and f̂(0) 6=
0. Then ζ(f, .) has simple poles at the quasi-

characters c(x) = 1 and c(x) = |x|, and no

other poles, (and $1,000,000 attached to its

zeros). Finally it satisfies the functional equa-

tion

ζ(f, c) = ζ(f̂ , ĉ).

Proof. For Re(c) > 1 the LHS zeta inte-

gral converges (by assumption on f) and is

holomorphic in the c variable (differentiate

under the integral). By definition, ζ(f, c) =∫∞
t=0 ζt(f, c)dt/t, which converges by assump-

tion for Re(c) > 1, and now we break the

integral up into two parts:

ζ(f, c) =
∫ ∞
t=1

ζt(f, c)dt/t+
∫ 1

t=0
ζt(f, c)dt/t.
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Now just as in the argument for the classical

zeta function, I claim that the integral for

t ≥ 1 converges for all c, because the ideles

tb showing up in the integral all have |tb| =

|t||b| = |t| ≥ 1 so if the integral converges for

e.g. Re(c) = 2 (which it does, by assumption,

as 2 > 1) then it converges for any c with

Re(c) < 2 (because the integrand is getting

smaller).

That term isn’t the problem. The problem

term is the integral from 0 to 1, which typ-

ically only converges for Re(c) > 1. So let’s

use the previous lemma, which has some con-

tent (Poisson summation) and see what hap-

pens. The simplest case is if c(x) 6= |x|s for

any s (that is, c is non-trivial on J). In this

case those extra fudge factors in the previous

lemma disappear, and we see∫ 1

t=0
ζt(f, c)dt/t =

∫ 1

t=0
ζ1/t(f̂ , ĉ)dt/t

=
∫ ∞
u=1

ζu(f̂ , ĉ)du/u
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and this last integral also converges for all

quasi-characters k×\A×
k → C× because u ≥ 1

so convergence again gets better as Re(c)

gets smaller. Moreover our new expression

for ζ(f, c), namely

ζ(f, c) =
∫ ∞
t=1

ζt(f, c)dt/t+
∫ ∞
u=1

ζu(f̂ , ĉ)du/u

converges for all c and makes it clear that

ζ(f, c) = ζ(f̂ , ĉ) (and that it’s holomorphic for

all c not in the component |.|s). The proof is

complete in this case!

We’re not quite finished though: we need to

deal with the component c(x) = |x|s, where

the argument is slightly messier because we

pick up factors of f(0)
∫
E c(tb)dµ

∗(b) = f(0)tsµ∗(E)

and f̂(0)
∫
E ĉ(

1
t b)dµ

∗(b). In this case (writing

c(x) = |x|s now), the extra factors we’ll see

in the calculation will be (for Re(s) > 1)

f(0)µ∗(E)
∫ 1

t=0
tsdt/t

= f(0)µ∗(E)[ts/s]10 = f(0)µ∗(E)/s
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and∫ 1

t=0
(f̂(0)

∫
E
|b/t|1−sdµ∗(b))dt/t

= f̂(0)µ∗(E)
∫ 1

t=0
ts−2

= f̂(0)µ∗(E)[ts−1/(s− 1)]10 = f̂(0)µ∗(E)/(s− 1).

These functions (cst /s and cst /(s−1)) clearly
have a meromorphic continuation to s ∈ C!
So we have, for c(x) = |x|s with Re(s) > 1,

ζ(f, c) =
∫ ∞
t=1

ζt(f, c)dt/t+
∫ 1

t=0
ζt(f, c)dt/t

=
∫ ∞
t=1

ζt(f, c)dt/t+
∫ ∞
u=1

ζu(f̂ , ĉ)du/u

+ µ∗(E)(−f(0)/s+ f̂(0)/(s− 1))

and now we really have proved the theorem
because this latter expression makes sense
as a meromorphic function for all s ∈ C, the
integrals are all holomorphic for all s ∈ C,
and the expression is invariant under (f, c) 7→
(f̂ , ĉ). �

We’ve even computed the residues of ζ(f, |.|s)
at s = 0 and s = 1; they’ve come out in the
wash.
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They are −f(0)µ∗(E) and f̂(0)µ∗(E) respec-

tively. Recall that we computed µ∗(E) =

2r(2π)sRegk h/w
√
|d|.

Short chapter 7: Applications!

We have left open the logical possibility that

Z = {0}, in which case our theory is empty.

Let’s check it isn’t!

Example of a non-zero f ∈ Z: let’s build

f : Ak → C as a product of fv. If v is finite

let’s just let fv be the characteristic function

of Rv. If v is infinite and real set fv(x) =

e−πx
2

and if v is complex set fv(x + iy) =

e−2π(x2+y2). At the infinite places we’ve rigged

it so f̂v = f̂ . At the finite places, f̂v is

p−m/2 times the characteristic function of the

inverse different of f , where pm generates

the discriminant ideal of kv, so f̂v = fv at

the unramified places but not at the ramified

places.
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We now have a problem in analysis: we need

to check f ∈ Z. First let’s check f and f̂ are

in L1(Ak). Well, locally they are integrable,

and at all but finitely many places the local

integral is 1, so the infinite product trivially

converges and gives the global integral.

Next let’s check the third condition; we need

to check that f(y).|y|σ is in L1(A×
f ) for σ > 1,

and similarly for f̂ . Well the local factors

are certainly in L1—indeed, they are in L1

for σ > 0, because we checked this when we

were doing our local zeta integrals. But this

isn’t enough to check that the product is L1:

we need to check that the infinite product of

the local integrals converges. We evaluated

the local integrals at the finite places, when

doing our local calculations, and they were

(1 − p−σ)−1 for k = Q (I did these in class)

and more generally p−m/2(1 − q−σ)−1 if k is

a finite extension of Q and we’re doing the

computation at a P -adic place,
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with residue field of size q and discriminant

ideal (pm) (I mentioned these on the exam-

ple sheet; the proof is no more difficult). So

we need to check that
∏
P (1 − N(P )−σ)−1

converges for σ > 1—and it does; this is pre-

cisely the statement that the zeta function

of a number field converges for Re(s) > 1,

which is proved by reducing to k = Q and

then using standard estimates. This argu-

ment applies to both f and f̂ , which are the

same away from a finite set of places.

Finally we have to check the second condi-

tion (the one that let us apply Poisson sum-

mation and interchange a sum and an inte-

gral). Let y be a fixed idele, let x be a fixed

adele, and let’s first consider∑
α∈k

f(y(x+ α)).

First I claim that this sum converges abso-

lutely. Because look at the support of f : at

the finite places it’s supported only on “inte-

gral ideles” Af
k ∩

∏
v<∞Rv, so,

307



whatever y and x are, f(y(x + α)) will ac-

tually equal zero if, at any place, the de-

nominator of αy beats the denominator of

xy. So this sum, ostensibly over all of k×,

is really only over a fractional ideal in k, and

now convergence is trivial because at the in-

finite places (and there is at least one in-

finite place) f is exponentially decreasing,

and there are only finitely many lattice points

with norm at most a given constant.

Now why is the convergence locally uniform?

It’s for the same reason. If y and x vary

in a compact then the fractional ideal above

might move but for compactness reasons the

lattice won’t get arbitrarily small (it’s not dif-

ficult to write down a formal proof) and it’s

hence easy to uniformly bound the sums in-

volved.

So the main theorem applies! What does it

say in this case?
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Well, ζ(f, |.|s) and ζ(f̂ , |.|1−s) are closely re-

lated to, but not quite, the zeta function of k.

Indeed if we write S∞ for the infinite places of

k and Sf for the finite places which are ram-

ified in k/Q then ζ(f, |.|s) =
∏
v ζ(fv, |.|s) (the

right hand integrals are local zeta integrals),

which expands to∏
v∈S∞

ζ(fv, |.|s)
∏
v∈Sf

(Nv)−mv/2
∏
P

(1−N(P )−s)−1

and
∏
v|∞ ζv(fv, |.|s) is a load of gamma factors—

exactly the fudge factors which you multiply

ζk(s) =
∏
P (1−N(P )−s)−1 by to get (defini-

tion) ξk(s). So ζ(f, |.|s) = ξk(s)|d|−1/2 with

d the discriminant of k. Now ζ(f̂ , |.|1−s) is

almost the same, except that f̂ 6= f at the

finite ramified places: the local integral of

fv at the finite place is easily checked to be

p−ms/(1−qs−1), so for Re(1−s) > 1 we have

ζ(f̂ , |.|1−s) = ξk(1− s)|d|−s and we deduce

ξk(1− s) = |d|s−1/2ξk(s).
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Slightly better: if we set

Zk(s) = ξk(s).|d|s/2 = ζk(s).
∏
v|∞

ζ(fv, s).|d|s/2

then we get

Zk(1− s) = Zk(s).

This is the functional equation for the “Dedekind

zeta function”, that is, the zeta function of

a number field.

Moreover, we know that the pole at s = 1 of

ζ(f, |.|s) is simple with residue f̂(0)µ∗(E) =

f̂(0)2r(2π)sRegk .h/(w
√
|d|), and f̂(0) = |d|−1/2,

so the pole at s = 1 of ξk(s) = ζ(f, |.|s)|d|1/2

has residue 2r(2π)sRegk .h/(w
√
|d|). More-

over the local zeta factors at the real infi-

nite places are π−s/2Γ(s/2) which equals 1

at s = 1, and at the complex infinite places

are (2π)1−sΓ(s) which is again 1 at s = 1, so

we deduce

lim
s→1

(s− 1)ζk(s) = 2r(2π)sRegk .h/(w
√
|d|)
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which is called the analytic class number for-

mula and which is used crucially in both ana-

lytic arguments about densities of primes and

in algebraic arguments in Iwasawa theory.

Remark. Iwasawa noted that applying the

theory to the function above, without assum-

ing the classical facts about class groups and

unit groups that we needed when analysing

J/k×, in fact showed that
∫
J/k× 1 < ∞, and

hence that one could deduce the finiteness of

the class group and finite-generation of the

unit group of a number field via this calcula-

tion.

Let’s do one more example, if we have time:

Dirichlet L-functions.
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Let N ≥ 1 be an integer, and χ : (Z/NZ)× →
C× be a character. By CRT we can write

χ =
∏
p|N χp with χp : (Z/peZ)× → C×, where

pe||N . Our calculations for a fundamental

domain of k× in J, when applied to k = Q,

show that A×
Q = Q××

∏
pZ×p ×R>0, with the

first factor embedded diagonally. Hence χ

naturally gives rise to a character of
∏
pZ×p

(use χp if p|N and 1 otherwise) and hence to

a character c : Q×\A×
Q → C× (make c trivial

on R>0). We write c =
∏
v cv. If p - N then

cp : Q×
p → C× is trivial on Z×p and cp(p) =

χ(p)−1.

Let’s now choose f so that ζ(f, c|.|s) is not

identically zero and let’s see what the result-

ing function of s is. If p - N then we just

let fp be the characteristic function of Zp. If

p|N then we let fp be the function we used on

the example sheet when computing ρ on the

component corresponding to χp. Note that

we don’t care what fp is!
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At infinity we let f∞(x) = e−πx
2

if χ(−1) = 1

and f∞(x) = xe−πx
2
if χ(−1) = −1; these are

the function we used in our local calculations

in the R case.

We set f =
∏
v fv. The same arguments as

above show f ∈ Z. We have

ζ(f, c.|.|s) = ζ(f∞, c∞.|.|s)
∏
p|N

ζ(fp, cp.|.|s).L(χ−1, s)

because if p - N then one easily computes

ζ(fp, cp.|.|s) = (1− χ(p)−1p−s)−1.

Similarly

ζ(f̂ , ̂c.|.|s) = ζ(f̂∞, ĉ∞.|.|s)
∏
p|N

ζ(f̂p, ĉp.|.|s)L(χ,1−s)

and the trick here is not to attempt to work

out ζ(fp, cp, |.|s) or ζ(f̂p, ĉp.|.|s) but to remem-

ber that these local zeta integrals both con-

verge for 0 < Re(s) < 1 and that we worked

out their ratio ρ(cp.|.|s) when doing the local

calculations!
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The ratio was just pe(s−1)∑pe−1
j=1 χ(j)ζjpe, the

Gauss sum. [Note in passing that in particu-

lar we never used the local meromorphic con-

tinuation results to prove the global ones, we

merely use the local ones to see the explicit

form of the functional equation.] If ξ(χ, s)

denotes L(χ, s) times the factor at infinity,

we deduce

ξ(χ−1, s)NsW = ξ(χ,1− s)

where W is an explicit algebraic number that

depends only on χ and N and is basically a

sum of roots of unity.
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Finally I’ll remark that there are more general

quasi-characters k×\A×
k → C× than those above.

The general such thing is usually called a

Hecke character or a Grössencharacter. If

ψ is such a gadget, then ψ is unramified at

all but finitely many finite places, and defin-

ing fv at these unramified places to be just

the characteristic function of Rv, and fv at

the other places to be the fv we used when

analysing the local ψv, the equation ζ(f, ψ.|.|s) =

ζ(f̂ , ψ̂.|.|s) unravels to become the meromor-

phic continuation and functional equation for

the L-function of the Grössencharacter that

Hecke discovered in his original tour de force!

THE END
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