
KMB, 09/12/08

L-functions, Problem Sheet 4

[note: sign error in Q3d now fixed.]
This sheet finishes the proof of the meromorphic continuation of the local

zeta functions, by checking the meromorphic continuation of the ρ(c) associated
to one explicit function f , in each of the many cases that we have to do. It also
does some other bits and bobs related to this sort of stuff.

1)
a) Prove that any continuous group homomorphism R → C× is of the form

x 7→ esx for some complex number s [hint: for an arbitrary continuous group
homomorphism, consider a tiny open neighbourhood of 1 in C× on which there
is a holomorphic branch of the logarithm sending 1 to 0; now consider Q ⊆ R
in a neighbourhood of zero, where linearity tells you a lot, and then extend to
R using continuity].

b) Prove from first principles that the Pontrjagin dual of R is R. The
“problem” with the proof given in the course was that, when showing that i(R)
was dense in R̂, I needed a duality between closed subgroups of R and closed
subgroups of its dual, which as far as I can see is a “deep statement”. Fix this
up by proving i(R) is dense in R̂ from first principles.

2) Give an example of a continuous injection i : X → Y from a complete
metric space into another complete metric space, such that i is a homeomor-
phism onto its image, and a sequence (xn)n≥1 in X with the property that (xn)
does not converge but i(xn) does. This is why I had to be very careful when
proving that the map i : K → K̂ in the course had closed image.

In the remaining questions we go through some of the ρ(c) calculations that
I skipped in the course. Everything is elementary but the calculations in full
generality are quite long, so I decided to skip them. I do all the cases here and
I have just copied it, hopefully correctly, from Tate, except that I’ve added the
K = Qp case as a hopefully easier special case of the general p-adic case. Note
also that Q5 and Q6 are relatively painless, but that Q4 is quite long.

3) Let’s do the part of K = Qp which I didn’t do in the lecture, that is, let’s
go through the details of the meromorphic continuation of ρ(c) in the ramified
component case. Notation: we write Q×

p = U × V with U the units and V the
infinite cyclic group generated by p. We fix a Dirichlet character χ of conductor
pn, n ≥ 1, and consider the component of Q = Hom(Q×

p ,C×) consisting of
characters of the form pju 7→ χ(u)p−js. We let f be the function sending x to
0 for |x| > pn and to e2πiq(x) for |x| ≤ pn. We checked that f̂ = pnχ1+pnZp

and
that f ∈ Z. Let’s finish the job from here.

a) We first need to compute ζ(f, c) for c in the component above and 0 <
Re(c) < 1. First check that if c(pju) = χ(u)p−js then (writing x = pju) we
have

ζ(f, c) =
∞∑

j=−n

p−js p

p− 1

∫
u∈Z×p

e2πiq(upj)χ(u)dµ(x).

b) Check that for j ≥ 0 this integral vanishes [hint: χ is non-trivial].



c) Check that in fact for −n < j < 0 the integral also vanishes. Hint: write
Z×p = ∪αα + p−jZp, where α runs through a set of coset representatives for
(Z/p−jZ), the point being that q(upj) is constant on these cosets, and check
that

∫
u∈α+p−jZp

χ(u)dµ(u) vanishes, using the fact that χ is primitive (this is
the only point in the calculation where it’s used).

d) Deduce that ζ(f, c) = pns−n+1

p−1

∑
α∈(Z/pnZ)× ζαχ(α) where ζ = e2πi/pn

.

e) [much easier!] Check that ζ(f̂ , ĉ) = p
p−1 .

f) Deduce that ρ(c) = ζ(f, c)/ζ(f̂ , ĉ) has meromorphic continuation to all
s ∈ C.

4) [only for the people who want to see everything]. Check that ρ(c) has a
meromorphic continuation for K a finite extension of Qp. Here’s which functions
to use. Let J denote the “inverse different” in K, that is, J = {x ∈ K :
TrK/Qp

(xy) ∈ Zp∀y ∈ Zp}. Let $ denote a fixed uniformiser and let V be the
subgroup of K× generated by $. Recall that J−1 = ($r) for some r ≥ 0 and
NK/Q($r) = pmu for some unit u, where pm is the discriminant of K/Qp.

a) Let’s start with the component corresponding to the trivial character of
U . Let f be the characteristic function of J . Check that this is in Z, and
that for 0 < Re(s) < 1 we have that ζ(f, |.|s) = pm(s− 1

2 )/(1 − q−s) and that
ζ(f̂ , |.|1−s) = 1/(1− qs−1). Deduce that ρ(|.|s) has a meromorphic continuation
in this case. Deduce also that, with our choice of identification of K with K̂ and
our choice of Haar measure on K, the constant in the Fourier inversion theorem
is 1, that is, ˆ̂g(x) = g(−x) for any g.

b) Now say χ : U → S1 is non-trivial. Choose n ≥ 1 minimal such that
1 + $nR ⊆ ker(χ) with R the integers of K. Let f be zero away from J.$−n

and be e2πiΛ(x) on J.$−n. Mimic the proof in the last question to deduce again
that ρ(c) has meromorphic continuation for c in the component corresponding
to χ. A crib is in Tate.

Let’s now prove the meromorphic continuation of ρ in the real and complex
cases. First let’s establish the basic integrals we need.

5)
a) Prove that

∫∞
−∞ e−πx2

dx = 1. [hint: if the integral is I then compute the
double integral I2 by switching to polar coordinates.]

b) Deduce that
∫∞
−∞ e−πx2+2πixydx = e−πy2

(hint: complete the square and
use Cauchy).

c) Deduce that
∫∞
−∞ xe−πx2+2πixydx = iye−πy2

. Hint: use (b) and differen-
tiate under the integral.

6) Now let’s nail the case K = R.
a) For the trivial component, set f(x) = e−πx2

. Check that f ∈ L1(R), that
f(x)|x|σ ∈ L1(R×) for σ > 0, and that f̂ = f . Deduce f ∈ Z, amd further-
more that the constant in the Fourier inversion theorem is 1 with our choice of
normalisations. Check that for 0 < Re(s) < 1 we have ζ(f, |.|s) = π−s/2Γ(s/2)
and ζ(f̂ , |.|1−s) = π(s−1)/2Γ((1 − s)/2). Deduce that ρ(|.|s) has meromorphic
continuation to s ∈ C. If you can remember Legendre’s Duplication For-
mula and Euler’s Reflection Formula (neither of which we proved), then show
ρ(|.|s) = 21−sπ−s cos(πs/2)Γ(s).



b) For the other component, set f(x) = xe−πx2
. Again check that f ∈ L1(R)

and f(x)|x|σ ∈ L1(R×) for σ > 0. Check that f̂ = if and deduce f ∈ Z. Show
that for 0 < Re(s) < 1 we have ζ(f, sgn(·).| · |s) = π(−s−1)/2Γ((s + 1)/2) and
ζ(f̂ , sgn(·).|·|1−s) = iπ(s−2)/2Γ((2−s)/2). Deduce that ρ(, sgn(·).|·|s) has mero-
morphic continuation to all s ∈ C and, assuming Legendre’s Duplication For-
mula and Euler’s Reflection Formula, that in fact it’s −i21−sπ−s sin(πs/2)Γ(s).

7) Finally let’s do K = C.
A character of U = S1 is of the form z 7→ zn for some n ∈ Z. If n ≥ 0

set fn(x + iy) = (x − iy)ne−2π(x2+y2) and if n ≤ 0 set fn(x + iy) = (x +
iy)−ne−2π(x2+y2). We’ll use fn on the component corresponding to the character
z 7→ zn.

First check that fn ∈ L1(C) and fn(z).|z|σ ∈ L1(C×).
Next, we want to prove that f̂n(z) = i|n|f−n(z) for all n ∈ Z. Prove this as

follows.
a) Check it for n = 0. Deduce that f0 ∈ Z and that the constant is 1 in the

Fourier Inversion Theorem while we’re at it.
b) By differentiating under the integral sign, prove it for all n ≥ 0 by induc-

tion.
c) Using Fourier inversion, deduce it for n < 0.
d) Deduce fn ∈ Z for all n ∈ Z.
e) Check that ζ(fn, reiθ 7→ r2seinθ) = (2π)1−s+

|n|
2 Γ(s+ |n|

2 ) if 0 < Re(s) < 1.

f) Check that ζ(f̂n, ĉ) (for c the character in part (e)) is i|n|(2π)s+
|n|
2 Γ(1−s+

|n|
2 ). Deduce that again ρ(c) has a meromorphic continuation to the component

containing c.


