KMB, 12/11/08

L-functions, Problem Sheet 2

Some of these exercises were already alluded to in the course. It’s all p-adic
stuff.

1) Use Hensel’s Lemma to check that —7 is a square in Qo and that 1 —p
is a square in Q, for p > 2. Deduce that Q isn’t complete with respect to any
p-adic norm.

2) Check the following assertion (used several times in the lectures): if k is a
normed field and L is a complete normed field and £ — L is a norm-preserving
injection and a field homomorphism, then the closure of k£ in L is the completion
of k.

3) If K is field with a non-arch norm |.|, then let’s define a function ||.|| on
the polynomial ring k[X] by || > a; X || = max; |a;|.

Now say g € K[X] is non-zero, and g = Y ;*a; X* with ||g|| = |a,| (that
is, no coefficient is bigger than the leading coefficient). Check that if f € K[X]
is arbitrary and we write f = gg + r (g for quotient, r for remainder) with
deg(r) < n, then we have [|g||.|[g]| < [|f]| and [|r[| <[]

4) Now say K is complete with respect to a non-arch norm. Say f =
S oa; Xt € K[X] has degree n > 2, and suppose there exists an integer
0 < m < n such that ||f|| = |am| (see Q3 for notation) and |a;| < |a,| for all
m < ¢ < n. In this question we’ll use a Hensel’s Lemma-like technique to prove
that f cannot be irreducible in K[X].

(a) Define g1 = > i~ a; X% and hy = 1. Define ¢ by ||f — gih1]| = §||f]|-
Check 0 < 4 < 1.

(b) Now say t > 1 and we have defined g, hy with deg(g;) = m, deg(h;) <
n—m, ||f — gill < SlLFI, llhe — 1]] < 6, and ||f — gehul| < 8[|l Apply Q3 to
the polynomial f’ := f — g;h; and ¢’ := g; (check that the assumptions apply).
We get we get f — gshy = qg¢ + r, and define g;11 = g: + 7 and hy11 = hy + q.
Check that g;4+1 and hyy; satisfy the assumptions we started with but with t+1
replacing t.

(c¢) Check that g; and h; tend coeflicientwise to polynomials g and h with
gh = f and deg(g) = m.

In the next couple of questions we’ll prove the lemma we used in the course
about unique extensions of norms for finite extensions of complete non-archimedean
fields.

5) Say |.|1 and |.|2 are two norms on a field k. Suppose that |.|; is non-trivial,
and that if |a|; < 1 then |a|2 < 1. In this question we’ll deduce that |.|; and |.|2
are equivalent norms.

a) Check that |a|; > 1 implies |als > 1.

b) Show that |a|; = 1 implies |a|]s = 1 (hint: |.|; is non-trivial; choose ¢ € k*
with |c[; # 1 and consider ca™ for appropriate n € Z).

c¢) Deduce that |a|y < 1 iff |a|s < 1 and similarly for =1 and > 1.

d) Now for ¢ € k* with |¢|; # 1, and for arbitrary b € k>, apply part (c)
to b"c™ for all integers m, n to deduce that if |c|? = |c|o then |b]? = |b|2, which
proves the result.



6) Show that if two norms on a field k induce the same topology, then they
are equivalent (hint: use the previous question and the observation that |z| < 1
iff (z™)p>1 — 0 in a normed field).

7) (norms on vector spaces) Let (k,|.|) be a normed field, and suppose that
the norm satisfies the triangle inequality. Let V be a vector space over k,
equipped with a function ||.|| : V' — Rsq. We say that V is a normed vector
space over k if

(i) ||| =0iff v=0

(i) [|v + wl| < [|v]] + [fuwl]

(i) 1Aol] = (AL ][]

Two norms ||.||; and ||.|]|]2 on V are equivalent if there exists positive con-
stants ¢ and C with c||v||1 < |[v]||2 < C|lv||1 for all v € V. In this question we’ll
prove that if k is complete and V is finite-dimensional, then any two norms on
V are equivalent, and furthermore that, in this situation, the distance function
d(v,w) = |J[v—w|| on V induced by any norm makes V' a complete metric space.

(a) We're assuming k is complete and V' finite-dimensional. Choose a basis
(€1,€2,...,€,) for V and define |[.||[o on V by || >, Aie;||o = max; [A;|. Show
that this is a norm, that V' is complete with respect to this norm, and hence that
to finish the job all we have to do is to show that any norm on V is equivalent
to [|.lo

(b) Say ||.|| is any norm on V. Show that if C'= 3 |[e;|| then [[v[| < C][v][o.

(c) We prove the other inequality by induction on n. Assume all norms on
an n — 1-dimensional space are equivalent, and make the space complete (this is
true for n = 1 and n = 2). We proceed by contradiction. Suppose there exists
no constant ¢ > 0 such that ¢||v|lo < ||v||. Deduce that for some 1 < i < n,
there exists a sequence wy, wo, ... of vectors in V;, the linear span of e;, j # 1,
with the property that ||w; + e;|| — 0 as t — oo. Show that w; converges in
V; (with respect to either induced norm on V;—the inductive hypothesis shows
they’re equivalent), to some w € V;. Check ||w + e;]| = 0 and observe that this
is a contradiction.

Now say L is a finite extension of the complete normed field k.

8) Use questions 6 and 7 to deduce that there is at most one extension of
the norm on k to L, and that it makes L complete.

9) Prove that if (k,|.|) is furthermore non-archimedean (this assumption is
unnecessary but makes life a bit easier) then there does exist an extension ||.||
of |.| to L, namely ||A|| = [Np,,(A)|'/", with n the degree of L/k and N the
norm map. Hint: The only tough part is to show ||a|| < 1 implies ||1 + a|| < 1.
Let F' be the characteristic polynomial of a (considered as an endomorphism of
the k-vector space L). General field theory shows that F = f¢ where f is the
minimal polynomial of a (and in particular f is irreducible). Then f is monic;
check its constant term is an integer in k. If all the coefficients of f are integers
then check we’re done; if a coefficient of f isn’t integral then use Q4 to get a
contradiction.



