
KMB, 12/11/08

L-functions, Problem Sheet 2

Some of these exercises were already alluded to in the course. It’s all p-adic
stuff.

1) Use Hensel’s Lemma to check that −7 is a square in Q2 and that 1 − p
is a square in Qp for p > 2. Deduce that Q isn’t complete with respect to any
p-adic norm.

2) Check the following assertion (used several times in the lectures): if k is a
normed field and L is a complete normed field and k → L is a norm-preserving
injection and a field homomorphism, then the closure of k in L is the completion
of k.

3) If K is field with a non-arch norm |.|, then let’s define a function ||.|| on
the polynomial ring k[X] by ||

∑n
i=0 aiX

i|| = maxi |ai|.
Now say g ∈ K[X] is non-zero, and g =

∑m
i=0 aiX

i with ||g|| = |am| (that
is, no coefficient is bigger than the leading coefficient). Check that if f ∈ K[X]
is arbitrary and we write f = qg + r (q for quotient, r for remainder) with
deg(r) < n, then we have ||q||.||g|| ≤ ||f || and ||r|| ≤ ||f ||.

4) Now say K is complete with respect to a non-arch norm. Say f =∑n
i=0 aiX

i ∈ K[X] has degree n ≥ 2, and suppose there exists an integer
0 < m < n such that ||f || = |am| (see Q3 for notation) and |ai| < |am| for all
m < i ≤ n. In this question we’ll use a Hensel’s Lemma-like technique to prove
that f cannot be irreducible in K[X].

(a) Define g1 =
∑m

i=0 aiX
i and h1 = 1. Define δ by ||f − g1h1|| = δ||f ||.

Check 0 < δ < 1.
(b) Now say t ≥ 1 and we have defined gt, ht with deg(gt) = m, deg(ht) ≤

n−m, ||f − gt|| ≤ δ||f ||, ||ht − 1|| ≤ δ, and ||f − gtht|| ≤ δt||f ||. Apply Q3 to
the polynomial f ′ := f − gtht and g′ := gt (check that the assumptions apply).
We get we get f − gtht = qgt + r, and define gt+1 = gt + r and ht+1 = ht + q.
Check that gt+1 and ht+1 satisfy the assumptions we started with but with t+1
replacing t.

(c) Check that gt and ht tend coefficientwise to polynomials g and h with
gh = f and deg(g) = m.

In the next couple of questions we’ll prove the lemma we used in the course
about unique extensions of norms for finite extensions of complete non-archimedean
fields.

5) Say |.|1 and |.|2 are two norms on a field k. Suppose that |.|1 is non-trivial,
and that if |a|1 < 1 then |a|2 < 1. In this question we’ll deduce that |.|1 and |.|2
are equivalent norms.

a) Check that |a|1 > 1 implies |a|2 > 1.
b) Show that |a|1 = 1 implies |a|2 = 1 (hint: |.|1 is non-trivial; choose c ∈ k×

with |c|1 6= 1 and consider can for appropriate n ∈ Z).
c) Deduce that |a|1 < 1 iff |a|2 < 1 and similarly for = 1 and > 1.
d) Now for c ∈ k× with |c|1 6= 1, and for arbitrary b ∈ k×, apply part (c)

to bncm for all integers m,n to deduce that if |c|λ1 = |c|2 then |b|λ1 = |b|2, which
proves the result.



6) Show that if two norms on a field k induce the same topology, then they
are equivalent (hint: use the previous question and the observation that |x| < 1
iff (xn)n≥1 → 0 in a normed field).

7) (norms on vector spaces) Let (k, |.|) be a normed field, and suppose that
the norm satisfies the triangle inequality. Let V be a vector space over k,
equipped with a function ||.|| : V → R≥0. We say that V is a normed vector
space over k if

(i) ||v|| = 0 iff v = 0
(ii) ||v + w|| ≤ ||v||+ ||w||
(iii) ||λv|| = |λ|.||v||.
Two norms ||.||1 and ||.||2 on V are equivalent if there exists positive con-

stants c and C with c||v||1 ≤ ||v||2 ≤ C||v||1 for all v ∈ V . In this question we’ll
prove that if k is complete and V is finite-dimensional, then any two norms on
V are equivalent, and furthermore that, in this situation, the distance function
d(v, w) = ||v−w|| on V induced by any norm makes V a complete metric space.

(a) We’re assuming k is complete and V finite-dimensional. Choose a basis
(e1, e2, . . . , en) for V and define ||.||0 on V by ||

∑
i λiei||0 = maxi |λi|. Show

that this is a norm, that V is complete with respect to this norm, and hence that
to finish the job all we have to do is to show that any norm on V is equivalent
to ||.||0.

(b) Say ||.|| is any norm on V . Show that if C =
∑

j ||ej || then ||v|| ≤ C||v||0.
(c) We prove the other inequality by induction on n. Assume all norms on

an n−1-dimensional space are equivalent, and make the space complete (this is
true for n = 1 and n = 2). We proceed by contradiction. Suppose there exists
no constant c > 0 such that c||v||0 ≤ ||v||. Deduce that for some 1 ≤ i ≤ n,
there exists a sequence w1, w2, . . . of vectors in Vi, the linear span of ej , j 6= i,
with the property that ||wt + ei|| → 0 as t → ∞. Show that wt converges in
Vi (with respect to either induced norm on Vi—the inductive hypothesis shows
they’re equivalent), to some w ∈ Vi. Check ||w + ei|| = 0 and observe that this
is a contradiction.

Now say L is a finite extension of the complete normed field k.

8) Use questions 6 and 7 to deduce that there is at most one extension of
the norm on k to L, and that it makes L complete.

9) Prove that if (k, |.|) is furthermore non-archimedean (this assumption is
unnecessary but makes life a bit easier) then there does exist an extension ||.||
of |.| to L, namely ||λ|| = |NL/k(λ)|1/n, with n the degree of L/k and N the
norm map. Hint: The only tough part is to show ||a|| ≤ 1 implies ||1 + a|| ≤ 1.
Let F be the characteristic polynomial of a (considered as an endomorphism of
the k-vector space L). General field theory shows that F = fd where f is the
minimal polynomial of a (and in particular f is irreducible). Then f is monic;
check its constant term is an integer in k. If all the coefficients of f are integers
then check we’re done; if a coefficient of f isn’t integral then use Q4 to get a
contradiction.


