
KMB, 24/10/08

L-functions, Problem Sheet 1

Some of these exercises were already alluded to in the course. The sheet has
14 questions.

Analytic bits and bobs.

1) Check that the two versions of the functional equation for the Riemann
zeta function are indeed equivalent, assuming Euler’s reflection formula and
Legendre’s duplication formula.

2) Locate where Γ(z) has poles, check they’re all simple, and compute the
residue at each pole.

3) Check from the definition that Γ(1/2) =
√

π.

Normed fields.

4) Fill in the details of the sketch-proof in the lectures that if we can take
C = 2 in part (iii) of the definition of a norm, then the norm does indeed satisfy
the triangle inequality.

5) (a) Check directly that the p-adic norm on Q satisfies |x+y| = max{|x|, |y|}
if |x| 6= |y|.

(b) Check from the axioms that if |.| is a non-arch norm on an arbitrary field
then |x + y| = max{|x|, |y|} if |x| 6= |y|.

6) Check that the P -adic norm on a number field is a norm. Hint: you might
need to use standard facts about factorisation of fractional ideals into primes.

Good exercises for getting a concrete understanding of Qp.

7) Let |.|p denote the p-adic norm on Q. For each of the sets of p, m, r
below, either find an x ∈ Z such that |r − x|p ≤ p−m, or show that no such x
exists.

(i) p = 257, r = 1/2, m = 1
(ii) p = 3, r = 7/8, m = 2
(iii) p = 3, r = 7/8, m = 7
(iv) p = 3, r = 5/6, m = 9
(v) p = 5, r = 1/4, m = 4
(vi) and invent some more until you feel you’ve got the hang of it.

8) For each of the sets of p, m, r below, either find an x ∈ Z such that
|r − x2|p ≤ p−m, or show that no such x exists.

(i) p = 3, r = −2, m = 4
(ii) p = 5, r = 10, m = 3
(iii) p = 13, r = −4, m = 3
(iv) p = 2, r = −7, m = 6
(v) p = 7, r = −14, m = 4
vi) p = 5, r = −25, m = 4
(vii) p = 5, r = 2/3, m = 3
(viii) and so on.



9) In the lectures we shows that there exists x ∈ Q3 such that x2 = 7. Prove,
using the same technique, that there is x ∈ Z7 with x3 = 6 (here Zp denotes
the integers of Qp).

10)
(a) Convince yourself that the same technique as in Q9 and the lectures

shows that if p > 2 is prime and n ∈ Z is coprime to p and a square mod p,
then

√
n ∈ Zp.

(b) Check that in fact this fails for p = 2 by showing that there is no ` ∈ Q2

such that `2 = 3. Can you see why the method fails??
(c) When you’ve done Q14, explain why Hensel’s Lemma makes part (a) of

this problem a triviality, but does not apply to part (b).

11) We showed/will show in lectures that any p-adic integer ` can be written
as

∑
n≥0 anpn with an ∈ {0, 1, 2, . . . , p − 1}. Now set p = 3. For each of the

following 3-adic integers, compute an for all n ≥ 0: ` = 10,−10,−1/2, 1/4, 1/5.

12) Recall that a real number is rational if and only if its decimal expansion
is ultimately periodic. Prove the same thing for the p-adic numbers, that is,
prove that if ` ∈ Qp and we write ` =

∑
n≥M anpn then the an are ultimately

periodic iff ` ∈ Q. Hint: if you can prove this for the reals then the same proof
works for Qp.

13) If you’re computer-savvy then compute lots of terms an in the 3-adic
number ` =

∑
n≥0 an3n such that a1 = 1 and `2 = 7. Can you see a pattern to

the an? Do you expect to see a pattern?

14) Here’s the correct generalisation of questions 9 and 10a. This is a funda-
mental and important result! Surprisingly, I don’t think I’ll actually need it in
the course (famous last words. . . ) so I’ll relegate the proof to an exercise. Any
book on local fields will contain a crib.

Theorem. (Hensel’s Lemma). Let k be a complete non-arch normed field,
let R denote its integers, say f ∈ R[X] is a polynomial and assume that there
exists a0 ∈ R with |f(a0)| < |f ′(a0)|2. Then there exists a ∈ R with f(a) = 0.
If we furthermore demand that |a− a0| < |f(a0)|/|f ′(a0)| then a is unique.

The existence of a follows from the standard Newton-Raphson argument
from numerical analysis, and the non-archimedean-ness of the norm guarantees
that the algorithm converges. Fill in the details of the following sketch-proof!

(i) Check that one can write f(X +Y ) = f(X)+Y f1(X)+Y 2f2(X)+ . . . (a
finite sum) with fn(X) ∈ R[X] (hint: n!fn(X) is the nth derivative of f ; check
that no denominators are introduced) and f1(X) = f ′(X).

(ii) As is usual in Newton-Raphson, choose b0 with f(a0)+ b0f
′(a0) = 0 and

set a1 = a0 + b0. Check that |f(a1)| < |f(a0)| and that |f ′(a1)| = |f ′(a0)|.
(iii) Repeat the process! Given an, choose bn with f(an) + bnf ′(an) = 0

(checking on the way that f ′(an) 6= 0) and set an+1 = an + bn. Check that (an)
is Cauchy (hint: check that |bn| → 0) and that f(an) → 0.

(iv) Check that f is continuous and hence that f(a) = 0 if a is the limit of
the an.

(v) Check that the a constructed above satisfies |a− a0| < |f(a0)|/|f ′(a0)|.
(vi) Finally, check that if a′ satisfies f(a′) = 0 and |a′−a0| < |f(a0)|/|f ′(a0)|

then a′ = a + b and f(a) = f(a + b) = 0; expand out using the expansion of
f(X + Y ) above and check that we get a contradiction unless b = 0.


