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Abstract

We axiomatise and generalise the “Hecke algebra”
construction of the Coleman-Mazur Eigencurve. In par-
ticular we extend the construction to general primes and
levels. Furthermore we show how to use these ideas
to construct “eigenvarieties” parametrising automorphic
forms on totally definite quaternion algebras over totally
real fields.

1 Introduction

In a series of papers in the 1980s, Hida showed that classical or-
dinary eigenforms form p-adic families as the weight of the form
varies. In the non-ordinary finite slope case, the same turns out
to be true, as was established by Coleman in 1995. Extending
this work, Coleman and Mazur construct a geometric object, the
eigencurve, parametrising such modular forms (at least for forms
of level 1 and in the case p > 2). On the other hand, Hida has
gone on to extend his work in the ordinary case to automorphic
forms on a wide class of reductive groups. One might optimisti-
cally expect the existence of non-ordinary families, and even an
“eigenvariety”, in some of these more general cases.

Anticipating this, we present in Part I of this paper (sections
2–5) an axiomatisation and generalisation of the Coleman-Mazur
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construction. In his original work on families of modular forms,
Coleman in [10] developed Riesz theory for orthonormalizable
Banach modules over a large class of base rings, and, in the case
where the base ring was 1-dimensional, constructed the local
pieces of a parameter space for normalised eigenforms. There
are two places where we have extended Coleman’s work. Firstly,
we set up Coleman’s Fredholm theory and Riesz theory (in sec-
tions 2 and 3 respectively) in a slightly more general situation,
so that they can be applied to spaces such as direct summands
of orthonormalizable Banach modules; the motivation for this
is that at times in the theory we meet Banach modules which
are invariants of orthonormalizable Banach modules under the
action of a finite group; such modules are not necessarily or-
thonormalizable, but we want to use Fredholm theory anyway.
And secondly we show in sections 4–5 that given a projective
Banach module and a collection of commuting operators, one of
which is compact, one can glue the local pieces constructed by
Coleman to form an eigenvariety, in the case where the base ring
is an arbitrary reduced affinoid. At one stage we are forced to
use Raynaud’s theory of formal models; in particular this gener-
alisation is not an elementary extension of Coleman’s ideas.

The resulting machine can be viewed as a construction of a
geometric object from a family of Banach spaces equipped with
certain commuting linear maps. Once one has this machine, one
can attempt to feed in Banach spaces of “overconvergent auto-
morphic forms” into the machine, and get “eigenvarieties” out.
We extend the results of [9] in Part II of this paper (sections 6
and 7), constructing an eigencurve using families of overconver-
gent modular forms, and hence removing some of the assump-
tions on p and N in the main theorems of [9]. Note that here
we do not need the results of section 4, as weight space is 1-
dimensional and Coleman’s constructions are enough.

There are still technical geometric problems to be resolved
before one can give a definition of an overconvergent automorphic
form on a general reductive group, but one could certainly hope
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for an elementary definition if the group in question is compact
mod centre at infinity, as the geometry then becomes essentially
non-existent. As a concrete example of this, we propose in Part
III (sections 8–13) a definition of an overconvergent automorphic
form in the case when the reductive group is a compact form
of GL2 over a totally real field, and apply our theory to this
situation to construct higher-dimensional eigenvarieties.

Chenevier has constructed Banach spaces of overconvergent
automorphic forms for compact forms of GLn over Q and one
can feed his spaces into the machine also to get eigenvarieties for
these unitary groups.

This work began in 2001 during a visit to Paris-Nord, and the
author would like to thank Jacques Tilouine for the invitation
and Ahmed Abbes for several useful conversations. In fact the
author believes that he was the first to coin the phrase “eigenva-
rieties”, in 2001. Part I of this paper was written at that time, as
well as some of Part III. The paper then remained in this state
for three years, and the author most sincerely thanks Gaetan Ch-
enevier for encouraging him to finish it off. In fact Theorem 4.6
of this paper is assumed both by Chenevier in [8], and Yam-
agami in [17], who independently announced results very similar
to those in Part III of this paper, the main difference being that
Yamagami works with the U operator at only one prime above p
and fixes weights at the other places, hence his eigenvarieties
can have smaller dimension than ours, but they see more forms
(they are only assumed to have finite slope at one place above p).
My apologies to both Chenevier and Yamagami for the delay in
writing up this construction; I would also like to thank both of
them for several helpful comments.

A lot has happened in this subject since 2001. Matthew
Emerton has recently developed a general theory of eigenvari-
eties which in many cases produces cohomological eigenvarieties
associated to a large class of reductive algebraic groups. As well
as Coleman and Mazur, many other people (including Emer-
ton, Ash and Stevens, Skinner and Urban, Mazur and Calegari,
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Kassaei, Kisin and Lai, Chenevier, and Yamagami), have made
contributions to the area, all developing constructions of eigen-
varieties in other situations. We finish this introduction with
an explanation of the relationship between Emerton’s work and
ours. Emerton’s approach to eigenvarieties is more automorphic
and more conceptual than ours. His machine currently needs a
certain spectral sequence to degenerate, but this degeneration
occurs in the case of the Coleman-Mazur eigencurve and hence
Emerton has independently given a construction of this eigen-
curve for arbitrary N and p as in Part II of this paper. However,
Emerton’s construction is less “concrete” and in particular the
results in [6] and [7] rely on the construction of the 2-adic eigen-
curve presented in this paper. On the other hand Emerton’s
ideas give essentially the same construction of the eigenvariety
associated to a totally definite quaternion algebra over a totally
real field, in the sense that one can check that his more concep-
tual approach, when translated down, actually becomes equiva-
lent to ours.

We would like to thank Peter Schneider for pointing out an er-
ror in an earlier version of Lemma 5.6, Elmar Grosse-Kloenne for
pointing out a simplification in the definition of our admissible
cover, and the referee for several helpful remarks, in particular
for pointing out that flatness was necessary in Lemma 5.5.

PART I: The eigenvariety machine.

2 Compact operators onK-Banach mod-

ules

In this section we collect together the results we need from
the theory of commutative Banach algebras. A comprehensive
source for the terminology we use is [1]. Throughout this sec-
tion, K will be a field complete with respect to a non-trivial
non-archimedean valuation |.|K , and A will be a commutative
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Noetherian K-Banach algebra. That is, A is a commutative
Noetherian K-algebra equipped with a function |.| : A → R≥0,
and satisfying

• |1| ≤ 1, and |a| = 0 iff a = 0,

• |a+ b| ≤ max{|a|, |b|},

• |ab| ≤ |a||b|,

• |λa| = |λ|K |a| for λ ∈ K,

and such that A is complete with respect to the metric induced
by |.|. For elementary properties of such algebras we refer the
reader to [1], §3.7 and thereafter. Such algebras are Banach
algebras in the sense of Coleman [10]. Later on we shall assume
(mostly for simplicity) that A is a reduced K-affinoid algebra
with its supremum norm, but this stronger assumption does not
make the arguments of this section or the next any easier.

From the axioms one sees that either |1| = 0 and hence A = 0,
or |1| = 1, in which case the map K → A is injective and the
norm on A extends the norm on K. Fix once and for all ρ ∈ K×

with |ρ|K < 1. Such ρ exists as we are assuming the valuation
on K is non-trivial. We use ρ to “normalise” vectors in several
proofs. If A0 denotes the subring {a ∈ A : |a| ≤ 1} then one
easily checks that the ideals of A0 generated by ρn, n = 1, 2, . . .,
form a basis of open neighbourhoods of zero in A. Note that A0

may not be Noetherian (for example if A = K = Cp).
Let A be a commutative Noetherian K-Banach algebra. A

Banach A-module is an A-module M equipped with |.| : M →
R≥0 satisfying

• |m| = 0 iff m = 0,

• |m+ n| ≤ max{|m|, |n|},

• |am| ≤ |a||m| for a ∈ A and m ∈M ,
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and such that M is complete with respect to the metric induced
by |.|. Note that A itself is naturally a Banach A-module, as
is any closed ideal of A. In fact all ideals of A are closed, by
Proposition 3.7.2/2 of [1].

If M and N are Banach A-modules, then we define a norm
on M⊕N by |m⊕n| = Max{|m|, |n|}. This way M⊕N becomes
a Banach A-module. In particular we can give Ar the structure
of a Banach A-module in a natural way.

By a finite Banach A-module we mean a Banach A-module
which is finitely-generated as an abstract A-module. We use the
following facts several times in what follows:

Proposition 2.1. (a) (Open Mapping Theorem) A continuous
surjective K-linear map between Banach K-modules is open.

(b) The category of finite Banach A-modules, with continuous
A-linear maps as morphisms, is equivalent to the category of
finite A-modules. In particular, any A-module homomorphism
between finite Banach A-modules is automatically continuous,
and if M is any finite A-module then there is a unique (up to
equivalence) complete norm on M making it into a Banach A-
module.

Proof. (a) is Théorème 1 in Chapter I, §3.3 of [3] (but note that
“homomorphisme” here has the meaning assigned to it in §2.7
of Chapter III of [2], and in particular is translated as “strict
morphism” rather than “homomorphism”).

(b) is proved in Propositions 3.7.3/2 and 3.7.3/3 of [1].

Note that by (b), a finite A-module M has a canonical topol-
ogy, induced by any norm that makes M into a Banach A-
module. We call this topology the Banach topology on M .

As an application of these results, we prove the following
useful lemma:

Lemma 2.2. If M is a Banach A-module, and P is a finite
Banach A-module, then any abstract A-module homomorphism
φ : P →M is continuous.
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Proof. Let π : Ar → P be a surjection of A-modules, and give Ar

its usual Banach A-module norm. Then π is open by the Open
Mapping Theorem, and φπ is bounded and hence continuous. So
φ is also continuous.

If I is a set, and for every i ∈ I we have ai, an element of
A, then by the statement limi→∞ ai = 0, we simply mean that
for all ε > 0 there are only finitely many i ∈ I with |ai| > ε.
This is no condition if I is finite, and is the usual condition if
I = Z≥0. For general I, if limi→∞ ai = 0 then only countably
many of the ai can be non-zero. We also mention here a useful
convention: occasionally we will take a max or a supremum over
a set (typically a set of norms) which can be empty in degenerate
cases (e.g., if a certain module or ring is zero). In these cases we
will define the max or the supremum to be zero. In other words,
throughout the paper we are implicitly taking suprema in the
set of non-negative reals rather than the set of all reals.

Let A be a non-zero commutative Noetherian K-Banach al-
gebra, let M be a Banach A-module, and consider a subset
{ei : i ∈ I} of M such that |ei| = 1 for all i ∈ I. Then for
any sequence (ai)i∈I of elements of A with limi→∞ ai = 0, the
sum

∑
i aiei converges. We say that a Banach A-module M is

orthonormalizable, or ONable for short, if there exists such a
subset {ei : i ∈ I} of M with the following two properties:

• Every elementm ofM can be written uniquely as
∑

i∈I aiei

with limi→∞ ai = 0, and

• If m =
∑

i aiei then |m| = maxi∈I |ai|.

Such a set of elements {ei} is called an orthonormal basis, or an
ON basis, for M . Note that the second condition implies that
|ei| = 1 for all i ∈ I.

Again assume A 6= 0. If I is a set, we define cA(I) to be
A-module of functions f : I → A such that limi→∞ f(i) = 0.
Addition and theA-action are defined pointwise. We define |f | to
be Max{|ai| : i ∈ I}. With respect to this norm, cA(I) becomes
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a Banach A-module. If i ∈ I and we define ei to be the function
sending j ∈ I to 0 if i 6= j, and to 1 if i = j, and if furthermore
A 6= 0, then it is easily checked that the ei are an ON basis
for cA(I), and we call {ei : i ∈ I} the canonical ON basis for
cA(I). IfM is any ONable Banach A-module, then to give an ON
basis {ei : i ∈ I} for M is to give an isometric (that is, metric-
preserving) isomorphism M ∼= cA(I). Note also that cA(I) has
the following universal property: if M is any Banach A-module
then there is a natural bijection between HomA(cA(I),M) and
the set of bounded maps I → M , given by sending φ : cA(I) →
M to the map i 7→ φ(ei).

If A = 0 then the only A-module is M = 0, and we regard
this module as being ONable of arbitrary rank. We have chosen
to ignore this case in the definitions above because if we had
included it then we should have to define an ONable Banach
module as being a collection of ei as above but with |ei| = |1|
and so on; however this just clutters notation. There is no other
problem with the zero ring in this situation. We will occasionally
assume A 6= 0 in proofs, and leave the interested reader to fill in
the trivial details in the case A = 0.

We recall some basic results on “matrices” associated to endo-
morphisms of Banach A-modules. The proofs are elementary ex-
ercises in analysis. Let M and N be Banach A-modules, and let
φ : M → N be an A-module homomorphism. Then a standard
argument (see Corollary 2.1.8/3 of [1]) using the fact that one can
use ρ to renormalise elements of M , shows that φ is continuous
iff it is bounded, and in this case we define |φ| = sup0 6=m∈M

|φ(m)|
|m|

(this set of reals is bounded above if φ is continuous). Now as-
sume that M is ONable, with ON basis {ei : i ∈ I}. One easily
checks that if φ is continuous and φ(ei) = ni, then the ni are a
bounded collection of elements of N which uniquely determine
φ. Furthermore, if ni are an arbitrary bounded collection of ele-
ments of N there is a unique continuous map φ : M → N such
that φ(ei) = ni for all i, and |φ| = supi∈I |ni|.
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Now assume that N is also ONable, with basis {fj : j ∈ J}.
If φ : M → N is a continuous A-module homomorphism, we can
define its associated matrix coefficients (ai,j)i∈I,j∈J by1

φ(ei) =
∑
j∈J

ai,jfj.

One checks easily from the arguments above that the collection
(ai,j) has the following two properties:

• For all i, limj→∞ ai,j = 0.

• There exists a constant C ∈ R such that |ai,j| ≤ C for all
i, j.

In fact C can be taken to be |φ|, and furthermore we have |φ| =
supi,j |ai,j|.

Conversely, given a collection (ai,j)i∈I,j∈J of elements of A,
satisfying the two conditions above, there is a unique continuous
φ : M → N with norm supi,j |ai,j| whose associated matrix is
(ai,j). As a useful consequence of this, we see that if φ and
ψ : M → N are continuous, with associated matrices (ai,j) and
(bi,j), then |φ− ψ| ≤ ε iff |ai,j − bi,j| ≤ ε for all i and j.

Let A be a commutative Noetherian K-Banach algebra and
let M , N be Banach A-modules. The A-module Hom(M,N)
of continuous A-linear homomorphisms from M to N is then
also a Banach A-module: completeness follows because if φn is
a Cauchy sequence in Hom(M,N) then for all m ∈M , φn(m) is
a Cauchy sequence in N , and one can define φ(m) as its limit;
then φ is the limit of the φn.

A continuous A-module homomorphism M → N is said to be
of finite rank if its image is contained in a finitely-generated A-
submodule of N . The closure in Hom(M,N) of the finite rank
homomorphisms is the set of compact homomorphisms (many

1Here we follow Serre’s conventions in [15], rather than writing aj,i for
ai,j .
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authors use the term “completely continuous”). Let M and N
be ONable Banach modules, and let φ : M → N be a continuous
homomorphism, with associated matrix (ai,j). We wish to give a
simple condition which is expressible only in terms of the ai,j, and
which is equivalent to compactness. Such a result is announced
in Lemma A1.6 of [10] for a more general class of rings A, but
the proof seems to be incomplete. This is not a problem with
the theory however, as the proof can be completed in all cases of
interest without too much trouble. We complete the proof here
in the case of commutative Noetherian K-Banach algebras. We
start with some preliminary results. As ever, A is a Noetherian
K-Banach algebra. If M is an ONable Banach A-module, with
ON basis {ei : i ∈ I}, and if S ⊆ I is a finite subset, then
we define AS to be the submodule ⊕i∈SAei, and we define the
projection πS : M → AS to be the map sending

∑
i∈I aiei to∑

i∈S aiei. Note that this projection is norm-decreasing onto a
closed subspace of M .

Lemma 2.3. Let M be an ONable Banach A-module, with basis
{ei : i ∈ I}, and let P a finite submodule of M .

(a) There is a finite set S ⊆ I such that πS : M → AS is
injective on P .

(b) P is a closed subset of M , and hence is complete.
(c) For all ε > 0, there is a finite set T ⊆ I such that for all

p ∈ P we have |πT (p)− p| ≤ ε|p|.

Proof. Say P is generated by m1, . . . ,mr and for 1 ≤ α ≤ r we
have mα =

∑
i aα,iei.

(a) For i ∈ I let vi be the element (aα,i)1≤α≤r of Ar. The
A-submodule of Ar generated by the vi is finitely-generated, as
A is Noetherian, and hence there is a finite set S ⊆ I such that
this module is generated by {vi : i ∈ S}. It is now an easy
exercise to check that this S works, because if πS(

∑
α bαmα) is

zero, then
∑

α bαaα,i is zero for all i ∈ S and hence for all i ∈ I.
(b) P is a finite A-module, and hence there is, up to equiv-

alence, a unique complete A-module norm on P . Let Q denote
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P equipped with this norm. The algebraic isomorphism Q→ P
induces a map Q→ M which is continuous by Lemma 2.2, and
hence the algebraic isomorphism Q → P is continuous. On
the other hand, if S is chosen as in part (a), then the injection
P → AS induces a continuous injection from P onto a submodule
of AS which is closed by Proposition 3.7.3/1 of [1], and this sub-
module is algebraically isomorphic to Q, and hence isomorphic
to Q as a Banach A-module. We hence have continuous maps
Q → P → Q, which are algebraic isomorphisms, and hence the
norms on P and Q are equivalent. So the maps are also homeo-
morphisms, and P is complete with respect to the metric induced
from M , and is hence a closed submodule of M .

(c) By (b), P is complete and hence a K-Banach space. The
map Ar → P sending (aα) to

∑
α aαmα is thus a continuous

surjection between K-Banach spaces, and hence by the open
mapping theorem there exists δ > 0 such that if p ∈ P with
|p| ≤ δ then p =

∑r
α=1 aαmα with |aα| ≤ 1 for all α. Choose

T such that for all mα we have |πT (mα) −mα| ≤ εδ|ρ|. This T
works: if p ∈ P is arbitrary, then either p = 0 and hence the
condition we are checking is automatic, or p 6= 0. In this case,
there exists some n ∈ Z such that |ρ|δ < |ρ|n|p| ≤ δ, and then
ρnp =

∑
α aαmα with |aα| ≤ 1 for all α. Then

|πT (p)− p| =

∣∣∣∣∣∑
α

ρ−naα(πT (mα)−mα)

∣∣∣∣∣
≤ |ρ|−nεδ|ρ|
≤ ε|p|

and we are done.

Proposition 2.4. Let M,N be ONable Banach A-modules, with
ON bases {ei : i ∈ I} and {fj : j ∈ J}. Let φ : M → N be a
continuous A-module homomorphism, with basis (ai,j). Then φ
is compact if and only if limj→∞ supi∈I |ai,j| = 0.
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Proof. If the matrix of φ satisfies limj→∞ supi∈I |ai,j| = 0, then
φ is easily seen to be compact: for any ε > 0 there is a finite
subset S ⊆ J such that |φ− πSφ| ≤ ε.

The other implication is somewhat more delicate. It suffices
to prove the result when φ has finite rank. If φ = 0 then the
result is trivial, so assume 0 6= φ and φ(M) ⊆ P , where P ⊆ N is
finite. By part (c) of Lemma 2.3, for any ε > 0 we may choose T
such that |πT (p)− p| ≤ ε|p|/|φ|, and hence |πTφ−φ| ≤ ε. Hence
|ai,j| ≤ ε if j 6∈ T , and we are home because ε was arbitrary.

Remark. If we allow A to be non-Noetherian then we do not
know whether the preceding proposition remains true.

From this result, it easily follows that a compact operator
φ : M → M , where M is an ONable Banach A-module, has a
characteristic power series det(1−Xφ) =

∑
n≥0 cnX

n ∈ A[[X]],
defined in terms of the matrix coefficients of φ using the usual
formulae, which we recall from §5 of [15] for convenience: firstly
choose an ON basis {ei : i ∈ I} for M , and say φ has ma-
trix (ai,j) with respect to this basis. If S is any finite subset
of I, then define cS =

∑
σ:S→S sgn(σ)

∏
i∈S ai,σ(i), where the

sum ranges over all permutations of S, and for n ≥ 0 define
cn = (−1)n

∑
S cS, where the sum is over all finite subsets of I of

size n. One easily checks that this sum converges, using Proposi-
tion 2.4. Furthermore, again using Proposition 2.4 and following
Proposition 7 of [15], one sees that the resulting power series
det(1 − Xφ) =

∑
n cnX

n converges for all X ∈ A. However,
from our definition it is not clear to what extent the power series
depends on the choice of ON basis for M . We now investigate to
what extent this is the case. We begin with some observations
in the finite-dimensional case.

If P is any finite free ONable Banach A-module, with ON
basis (ei), and φ : P → P is any A-module homomorphism, then
det(1−Xφ), defined as above with respect to the ei, is the usual
algebraically-defined det(1 −Xφ), because the definition above
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coincides with the usual classical definition, which is independent
of choice of basis. Next we recall the well-known fact that if P
and Q are both free A-modules of finite rank, and u : P → Q and
v : Q→ P are A-module homomorphisms, then det(1−Xuv) =
det(1−Xvu). Now let M be an ONable Banach A-module, with
ON basis {ei : i ∈ I}. We use this fixed basis for computing
characteristic power series in the lemma below.

Lemma 2.5. (a) If φn : M → M , n = 1, 2, . . . are a sequence
of compact operators that tend to a compact operator φ, then
limn det(1−Xφn) = det(1−Xφ), uniformly in the coefficients.

(b) If φ : M → M is compact, and furthermore if the image
of φ is contained in P := ⊕i∈SAei, for S a finite subset of I,
then det(1−Xφ) = det(1−Xφ|P ), the right hand determinant
being the usual algebraically-defined one.

(c) (strengthening of (b)) If φ : M → M is compact, and
if the image of φ is contained within an arbitrary submodule Q
of M which is free of finite rank, then det(1 − Xφ) = det(1 −
Xφ|Q), where again the right hand side is the usual algebraically-
defined determinant.

Proof. (a) This follows mutatis mutandis from [15], Proposi-
tion 8.

(b) If (ai,j) is the matrix of φ then ai,j = 0 for j 6∈ S and the
result follows immediately from the definition of the character-
istic power series.

(c) Choose ε > 0. By Lemma 2.3(c), there is a finite set
T ⊆ I such that πT : Q → P := AT has the property that
|πT − i| ≤ ε, where i : Q → M is the inclusion. Define φT =
πTφ : M → P ⊆M . By (b) we see that det(1−XφT ) equals the
algebraically-defined polynomial det(1−XφT |P ). Furthermore,
by consideration of the maps φ : P → Q and πT : Q → P ,
we see that this polynomial also equals the algebraically-defined
det(1 − XφT ), where φT = φπT : Q → Q. One can compute
this latter determinant with respect to an arbitrary algebraic A-
basis of Q. By Lemma 2.3(b), Q with its subspace topology is
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complete, and hence the topology on Q is the Banach topology.
Now as ε tends to zero, φT : Q → Q tends to φ : Q → Q and
φT : M → M tends to φ : M → M , and the result follows by
part (a).

Corollary 2.6. Let M be an A-module, and let |.|1 and |.|2 be
norms on M both making M into an ONable Banach A-module,
and both inducing the same topology on M . Then an A-linear
map φ : M → M is compact with respect to |.|1 iff it is compact
with respect to |.|2, and furthermore if {ei : i ∈ I} and {fj : j ∈
J} are ON bases for (M, |.|1) and (M, |.|2) respectively, then the
definitions of det(1−Xφ) with respect to these bases coincide.

Proof. All one has to do is to check that φ can be written as the
limit as maps φn which have image contained in free modules of
finite rank, and then the result follows from parts (a) and (c) of
the Lemma. To do this, one can simply use Lemma 2.3 to con-
struct φ as a limit of πTnφ, for Tn running through appropriate
finite subsets of I. Note that φn will then tend to φ with respect
to both norms (recall that two norms on M are equivalent iff
they induce the same topology, because the valuation on K is
non-trivial) and the result follows.

The corollary enables us to conclude that the notion of a
characteristic power series only depends on the topology on M ,
when A is a commutative Noetherian K-Banach algebra. In
particular it does not depend on the choice of an orthonormal
basis for M . Coleman proves in corollary A2.6.1 of [10] that the
definition of the characteristic power series only depends on the
topology on M when A is semi-simple; on the other hand neither
of these conditions on A implies the other.

Next we show that the analogue of Corollaire 2 to Proposi-
tion 7 of [15] is true in this setting. Coleman announces such an
analogue in Proposition A2.3 of [10] but again we have not been
able to complete the proof in the generality in which Coleman is
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working. We write down a complete proof when A is a commuta-
tive Noetherian K-Banach algebra and remark that it is actually
slightly delicate. We remark also that in the case where A is a
reduced affinoid, which will be true in the applications, one can
give an easier proof by using Corollary 2.10 to reduce to the case
treated by Serre.

Lemma 2.7. If M and N are ONable Banach A-modules, if
u : M → N is compact and v : N → M is continuous, then uv
and vu are compact, and det(1−Xuv) = det(1−Xvu).

Proof. If there exist finite free sub-A-modules F of M and G
of N such that u(M) is contained in G and v(G) is contained
in F , then u : F → G and v : G → F , and by Lemma 2.5(c)
it suffices to check that the algebraically-defined characteristic
polynomials of uv : G→ G and vu : F → F are the same, which
is a standard result. We reduce the general case to this case
by several applications of Lemma 2.3, the catch being that it is
not clear (to the author at least) whether any finite submodule
of an ONable Banach module is contained within a finite free
submodule.

We return to the general case. Write u as a limit of finite rank
operators un. Then unv and vun are finite rank, so uv and vu are
both the limit of finite rank operators and are hence compact.
By Lemma 2.5(a), it suffices to prove that det(1 − Xunv) =
det(1 − Xvun) for all n, and hence we may assume that u is
finite rank. Let Q ⊆ N denote a finite A-module containing the
image of u.

Choose ON bases {ei : i ∈ I} for M and {fj : j ∈ J}
for N . Now for any positive integer n we may, by Lemma 2.3(c),
choose a finite subset Tn ⊆ J such that |πTnq − q| ≤ 1

n
|q| for

all q ∈ Q. It follows easily that |πTnu − u| ≤ |u|/n and hence
limn→∞ πTnu = u. Hence vπTnu → vu and πTnuv → uv and
again by Lemma 2.5(a) we may replace u by πTnu and in partic-
ular we may assume that the image of u is contained in a finite
free A-submodule of N . Let G denote this submodule. Now
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P = v(G) is a finite submodule of M , and for any positive inte-
ger n we may, as above, choose a finite subset Sn ⊆ I such that
|πSnp− p| ≤ 1

n
|p| for all p ∈ P .

It is unfortunately not the case that πSnv → v as n→∞, as v
is not in general compact. However we do have πSnvu→ vu and
hence the characteristic power series of πSnvu tends (uniformly
in the coefficients) to the characteristic power series of vu. Also,
the image of uv : N → N and uπSnv are both contained within G
and hence the characteristic power series of uv (resp. uπSnv) is
equal to the algebraically-defined characteristic power series of
uv : G → G (resp. uπSnv : G → G). Once one has restricted
to G, one does have uπSnv → uv, and hence the characteristic
power series of uπSnv tends to the characteristic power series
of uv. We may hence replace v by πSnv and in particular may
assume that the image of v is contained within a finite free A-
submodule F of M . We have now reduced to the algebraic case
dealt with at the beginning of the proof.

Corollary 2.6 also enables us to slightly extend the domain of
definition of a characteristic power series: if M is a Banach A-
module, then we say thatM is potentially ONable if there exists a
norm on M equivalent to the given norm, for which M becomes
an ONable Banach A-module. Equivalently, M is potentially
ONable if there is a bounded collection {ei : i ∈ I} of elements
of M with the following two properties: firstly, every element
m of M can be uniquely written as

∑
i aiei with limi→∞ ai = 0,

and secondly there exist positive constants c1 and c2 such that
for all m =

∑
i aiei in M , we have c1 supi |ai| ≤ |m| ≤ c2 supi |ai|.

We call the collection {ei : i ∈ I} a potentially ON basis for M .
Being potentially ONable is probably a more natural notion than
being ONable, because it is useful to be able to work with norms
only up to equivalence, whereas ONability of a module really
depends on the precise norm on the module. Note that to say
a module is ONable is equivalent to saying that it is isometric
to some cA(I), and to say that it is potentially ONable is just
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to say that it is isomorphic to some cA(I) (in the category of
Banach modules, with continuous maps as morphisms).

If M is potentially ONable then one still has the notion of the
characteristic power series of a compact operator on M , defined
by choosing an equivalent ONable norm and using this norm
to define the characteristic power series. By Corollary 2.6, this
is independent of all choices. We note that certainly there can
exist Banach A-modules which are potentially ONable but not
ONable, for example if A = K = Qp and M = Qp(

√
p) with

its usual norm, then |M | 6= |A| and so M is not ONable, but is
potentially ONable.

A useful result is

Lemma 2.8. If h : A→ B is a continuous morphism of Noethe-
rian K-Banach algebras, and M is a potentially ONable Ba-
nach A-module, then M⊗̂AB is a potentially ONable Banach
B-module, and furthermore if {ei : i ∈ I} is a potentially ON
basis for M , then {ei ⊗ 1 : i ∈ I} is a potentially ON basis for
M⊗̂AB.

Proof. Set N = cB(I), and let {fi : i ∈ I} be its canonical ON
basis. Then there is a natural A-bilinear bounded map M×B →
N sending (

∑
i aiei, b) to

∑
i bh(ai)fi, which induces a continuous

map M⊗̂AB → N . On the other hand, if n ∈ N , one can write
n as a limit of elements of the form

∑
i∈S bifi, where S is a finite

subset of I. The element
∑

i∈S ei ⊗ bi of M ⊗A B has norm
bounded above by a constant multiple of maxi∈S |bi| and hence
as S increases, the resulting sequence

∑
i∈S ei ⊗ bi is Cauchy

and so its image in M⊗̂AB tends to a limit. This construction
gives a well-defined continuous A-module homomorphism N →
M⊗̂AB which is easily checked to be an inverse to the natural
map M⊗̂AB → N , and now everything follows.

Note that because we are only working in the “potential”
world, we do not need to assume the map A→ B is contractive,
although in the applications we have in mind it usually will be.
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Corollary 2.9. If h : A → B is a continuous morphism of
commutative Noetherian K-Banach algebras, M and N are po-
tentially ONable Banach A-modules with potentially ON bases
(ei) and (fj), and φ : M → N is compact, with matrix (ai,j),
then φ ⊗ 1 : M⊗̂AB → N⊗̂AB is also compact and if (bi,j) is
the matrix of φ⊗ 1 with respect to the bases (ei⊗ 1) and (fj ⊗ 1)
then bi,j = h(ai,j).

Proof. Compactness of φ ⊗ 1 follows from Proposition 2.4 and
the rest is easy.

Corollary 2.10. With notation as above, if det(1 − Xφ) =∑
n cnX

n then det(1−X(φ⊗ 1)) =
∑

n h(cn)Xn.

Proof. Immediate.

In practice we need to extend the notion of the characteristic
power series of a compact operator still further, to the natural
analogue of projective modules in this setting. Let us say that a
Banach A-module P satisfies property (Pr) if there is a Banach
A-module Q such that P ⊕ Q, equipped with its usual norm,
is potentially ONable. I am grateful to the referee for pointing
out the following universal property for such modules: P has
property (Pr) if and only if for every surjection f : M → N of
Banach A-modules and for every continuous map α : P → N ,
α lifts to a map β : P → M such that fβ = α. The proof
is an elementary application of the Open Mapping Theorem;
the key point is that if P = cA(I) for some set I, then to give
α : P → N is to give a bounded map I → N , and such a map
lifts to a bounded map I →M by the Open Mapping Theorem.
Note however that it would be perhaps slightly disingenuous to
call such modules “projective”, as there are epimorphisms in the
category of Banach A-modules whose underlying module map is
not surjective.

One can easily check that if P is a finite Banach A-module
which is projective as an A-module, then P has property (Pr).
The converse is also true:
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Lemma 2.11. If P is a finite Banach A-module with property
(Pr) then P is projective as an A-module.

Proof. Choose a surjection An → P for some n and then use the
universal property above.

Note that potentially ONable Banach A-modules have prop-
erty (Pr), but in general the converse is false—for example if
there are finite A-modules which are projective but not free then
such modules, equipped with any complete Banach A-module
norm, will satisfy (Pr) but will not be potentially ONable.

Say P satisfies property (Pr) and φ : P → P is a compact
morphism. Define det(1−Xφ) thus: firstly choose Q such that
P ⊕Q is potentially ONable, and define det(1−Xφ) = det(1−
X(φ ⊕ 0)); note that φ ⊕ 0 : P ⊕ Q → P ⊕ Q is easily seen to
be compact. This definition may a priori depend on the choice
of Q, but if R is another Banach A-module such that P ⊕ R is
also potentially ONable, then so is P ⊕Q⊕P ⊕R, and the maps
φ ⊕ 0 ⊕ 0 ⊕ 0 and 0 ⊕ 0 ⊕ φ ⊕ 0 are conjugate via an isometric
A-module isomorphism, and hence have the same characteristic
power series. Now the fact that det(1 − Xφ) is well-defined
independent of choice of Q follows easily from the fact that if M
and N are ONable A-modules, and φ : M →M is compact, then
the characteristic power series of φ and φ⊕0 : M ⊕N →M ⊕N
coincide.

Many results that we have already proved for potentially ON-
able Banach A-modules are also true for modules with property
(Pr), and the proofs are typically easy, because one can reduce to
the potentially ONable case without too much difficulty. Indeed
the trick used in the example above is typically the only idea one
needs. One sometimes has to also use the following standard in-
gredients: Firstly, if R is any commutative ring, P is a finite
projective R-module, and φ : P → P is an R-module homomor-
phism, then there is an algebraically-defined det(1−Xφ), defined
either by localising and reducing to the free case, or by choosing
a finite projective R-module Q such that P⊕Q is free, and defin-
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ing det(1−Xφ) to be det(1−X(φ⊕0)). And secondly, if M and
N both have property (Pr) and φ : M →M and ψ : N → N are
compact, then det(1−X(φ⊕ψ)) = det(1−Xφ) det(1−Xψ). Fi-
nally, we leave it as an exercise for the reader to check the follow-
ing generalisations of Lemma 2.7 and Lemma 2.8–Corollary 2.10.

Lemma 2.12. If M and N are Banach A-modules with property
(Pr), if u : M → N is compact and v : N → M is continuous,
then uv and vu are compact, and det(1−Xuv) = det(1−Xvu).

Lemma 2.13. If M is a Banach A-module with property (Pr),
φ : M → M is compact, and h : A → B is a continuous
morphism of commutative Noetherian K-Banach algebras, then
M⊗̂AB has property (Pr) as a B-module, φ⊗ 1 is compact, and
det(1−X(φ⊗ 1)) is the image of det(1−Xφ) under h.

3 Resultants and Riesz theory

We wish now to mildly extend the results in sections A3 and A4
of [10] to the case where A is a NoetherianK-Banach algebra and
M is a Banach A-module satisfying property (Pr). Fortunately
much of what Coleman proves already applies to our situation,
or can easily be modified to do so. We make what are hopefully
some helpful comments in case the reader wants to check the
details. This section is not self-contained, and anyone wishing
to check the details should read it in conjunction with §A3 and
§A4 of [10].

Section A3 of [10] applies to commutative Noetherian K-
Banach algebras already (apart from the comments relating to
semi-simple algebras, because in general a commutative Noethe-
rian K-Banach algebra may contain nilpotents). We give some
hints for following the proofs in this section of [10]. We define
the ring A{{T}} to be the subring of A[[T ]] consisting of power
series

∑
n≥0 cnT

n with the property that for all R ∈ R>0, we
have |cn|Rn → 0 as n→∞. One could put a norm on A{{T}},
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for example |
∑

n cnT
n| = Maxn |cn|, but A{{T}} is not in gen-

eral complete with respect to this norm. One very useful result
about this ring is that if H(T ) ∈ A{{T}} and D(T ) is a monic
polynomial of degree d ≥ 0 then H(T ) = Q(T )D(T )+R(T ) with
Q(T ) ∈ A{{T}} and R(T ) a polynomial of degree less than d.
Furthermore, Q(T ) and R(T ) are uniquely determined. A word
on the proof: uniqueness uses the kind of trick in Lemma A3.1
of [10]. For existence one reduces to the case where all the co-
efficients of D have norm at most 1 and proves the result for
polynomials first, and then takes a limit.

If Q ∈ A[T ] is a monic polynomial, and P ∈ A{{T}}, then
Coleman defines the resultant Res(Q,P ) on the top of p434
of [10]. Many of the formulae that Coleman needs are classical
when P is a polynomial, and can be extended to the power series
case using the following trick: straight from the definition it fol-
lows that if u ∈ A× then Res(Q,P ) = Res(u−nQ(uT ), P (uT )).
This normalisation can be used to renormalise either Q or P into
A0〈T 〉, where A0 := {a ∈ A : |a| ≤ 1}. If Sn denotes the sym-
metric group acting naturally on A0〈T1, . . . , Tn〉 then the subring
left invariant by the action is A0〈e1, . . . , en〉, where the ei are the
elementary symmetric functions of the Ti. Hence if P,Q ∈ A0〈T 〉
then Res(Q,P ) ∈ A0. If Q ∈ A0[T ] is monic then one can check
that the definition of a resultant makes sense for P ∈ A〈T 〉, and
furthermore that Res(Q,−) is locally uniformly continuous in
the second variable (in the sense that for all M ∈ R, Res(Q,−)
is a uniformly continuous function from {P ∈ A〈T 〉 : |P | ≤ M}
to A).

Coleman defines a function D sending a pair B,P ∈ A[X]
to an element D(B,P ) ∈ A[T ]. In fact if P has degree n and
we define P ∗(X) = XnP (X−1), then D(B,P ) = Res(P ∗(X), 1−
TB(X)) where the resultant is computed in A〈T 〉{{X}}. One
can check that D(B(uX), P (u−1X)) = D(B,P ) if u ∈ A×, and
that D is locally uniformly continuous in the B variable. It
is also locally uniformly continuous in the P variable, because
Res(X,C(X)) = 1 if C(0) = 1. This is enough to check that
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Coleman’s definition of D(B,P ) makes sense when B and P are
in A{{T}}. In fact we shall only need it when B is a polynomial.
Another useful formula is that D(uB, P )(T ) = D(B,P )(uT ) for
u ∈ A×.

In §A4 of [10] Coleman assumes his hypothesis (M), which
tends not to be true for affinoids over K if K is not algebraically
closed. Coleman also assumes that he is working with an ON-
able Banach A-module. We work in our more general situation.
Hence let A denote a commutative Noetherian K-Banach al-
gebra, let M be a Banach A-module satisfying property (Pr)
and let φ : M → M be a compact morphism, with character-
istic power series P (X) = det(1 − Xφ). We define the Fred-
holm resolvant of φ to be P (X)/(1 − Xφ) ∈ A[φ][[X]]. Ex-
actly as in Proposition 10 of [15], one can prove that if F (X) =∑

n≥0 vmX
m then for all R ∈ R>0 the sequence |vm|Rm tends to

zero, where vm is thought of as being an element of Hom(M,M).
Lemma A4.1 of [10] goes through unchanged, and we recall it
here (Notation: if Q(X) is a polynomial of degree n then Q∗(X)
denotes XnQ(X−1)):

Lemma 3.1. With A, M , φ and P as above, if Q(X) ∈ A[X] is
monic then Q and P generate the unit ideal in A{{X}} if and
only if Q∗(φ) is an invertible operator on M .

Before we continue, let us make some remarks on zeroes of
power series. If f =

∑
n≥0 anT

n is in A[[T ]] and s ∈ Z≥0 then we

define ∆sf =
∑

n≥0

(
n+s

s

)
an+sT

n ∈ A[[T ]]. If f, g ∈ A[[T ]] then
it is possible to check that ∆s(fg) =

∑s
i=0 ∆i(f)∆s−i(g). One

also easily checks that if A is a Noetherian K-Banach algebra
then ∆s sends A{{T}} to itself. We say that a ∈ A is a zero of
order h of H ∈ A{{T}} if (∆sH)(a) = 0 for s < h and (∆hH)(a)
is a unit. If h ≥ 1 and H = 1 + a1T + . . . then this implies that
−1 = a(a1 + a2a + . . .) and hence that a is a unit. One now
checks by induction on h that H(T ) = (1− a−1T )hG(T ), where
G ∈ A{{T}}, and then that G(a) is a unit.
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Again let M be a Banach A-module with property (Pr) and
let φ : M → M be a compact morphism, with characteristic
power series P (T ). Say a ∈ A is a zero of P (T ) of order h.

Proposition 3.2. There is a unique decomposition M = N ⊕F
into closed φ-stable submodules such that 1−aφ is invertible on F
and (1−aφ)h = 0 on N . The submodules N and F are defined as
the kernel and the image of a projector which is in the closure in
Hom(M,M) of A[φ]. Moreover, N is projective of rank h, and
assuming h > 0 then a is a unit and the characteristic power
series of φ on N is (1− a−1T )h.

Proof. We start by following Proposition 12 of [15], much of
which goes through unchanged in our setting. We find that there
are maps p, q ∈ Hom(M,M), both in the closure of A[φ], such
that p2 = p, q2 = q and p + q = 1, and if we consider the
decomposition M = N ⊕ F corresponding to these projections,
N = ker(p), then (1− aφ)h = 0 on N , and (1− aφ) is invertible
on F . The decomposition is visibly unique, as if ψ = (1 −
aφ)h then N = ker(ψ) and F = Im(ψ). We now diverge from
Proposition 12 of [15].

It is clear that N satisfies (Pr), but furthermore we have
(1 − aφ)h = 0 on N which implies that the identity is compact
on N . An elementary argument (change the metric on N to
an equivalent one if necessary and reduce to a computation of
matrices) shows that if β ∈ Hom(N,N) has sufficiently small
norm, then |βn| → 0 and hence 1 − β is invertible. Because 1
is compact, we can choose α : N → N of finite rank such that
1− α is sufficiently small, and hence α is invertible and so N is
finitely-generated. By Lemma 2.11, N is projective.

If h = 0 then N = 0 and F = M , as can be seen from
Lemma 3.1, and we are home. So assume for the rest of the proof
that h > 0. Then P (a) = 0 and this implies that a must be a
unit. If PN and PF denote the characteristic power series of φ on
N and F respectively, then P = PNPF and by Lemma 3.1 we see
that (T − a)h and PF generate the unit ideal in A{{T}}. Hence
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(1−a−1T )h divides PN in A{{T}}. Moreover, PN is a polynomial
becauseN is finitely-generated, and hence (1−a−1T )h divides PN

in A[T ]. Moreover, (1−a−1T )h has constant term 1 and is hence
not a zero-divisor in A{{T}}, hence if PN(T ) = D(T )(1−a−1T )h

and P (T ) = (1−a−1T )hG(T ) thenD(T ) dividesG(T ) inA{{T}}
and so D(a) is a unit.

We know that D(T ) is a polynomial. Furthermore, because
(1−aφ)h = 0 on N we see that φ has an inverse on N and hence
that the determinant of φ is in A×. Hence the leading term of D
is a unit. Reducing the situation modulo a maximal ideal of A
we see that the reduction of PN must be a power of the reduction
of (1− a−1T ) and this is enough to conclude that D = 1. Hence
the characteristic power series of φ on N is (1−a−1T )h. Finally,
the fact that φ is invertible on N means that the rank of N
at any maximal ideal must equal the degree of PN modulo this
ideal, and hence the rank is h everywhere.

Keep the notation: M has (Pr) and φ : M →M is compact,
with characteristic power series P (T ).

Theorem 3.3. Suppose P (T ) = Q(T )S(T ), where S = 1+ . . . ∈
A{{T}} and Q = 1+. . . is a polynomial of degree n whose leading
coefficient is a unit, and which is relatively prime to S. Then
there is a unique direct sum decomposition M = N ⊕ F of M
into closed φ-invariant submodules such that Q∗(φ) is zero on
N and invertible on F . The projectors M → N and M → F
are elements of Hom(M,M) which are in the closure of A[φ].
Furthermore, N is projective of rank n and the characteristic
power series of φ on N is Q(T ).

Proof. We follow Theorem A4.3 of [10]. The operator v =
1 − Q∗(φ)/Q∗(0) has a characteristic power series which has a
zero at T = 1 of order n. Applying the previous proposition to
v, we see M = N ⊕ F , where N and F are defined as the kernel
and the image of a projector in the closure of A[v] and hence in
the closure of A[φ]. Hence both N and F are φ-stable. Unfor-
tunately, by the end of the proof of Theorem A4.3 of [10] one
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can only deduce that Q∗(φ)n is zero on N and invertible on F ,
so we are not quite home yet. However, by Proposition 3.2, N
is projective of rank n. Moreover, the characteristic power series
of φ on F is coprime to Q, by Lemma 3.1. Hence if G(T ) is the
characteristic power series of φ on N , we see that Q divides G.
But G and Q have degree n and the same constant term, and
furthermore the leading coefficient of Q is a unit. This is enough
to prove that G = Q.

4 An admissible covering

The key aim in this section is to generalise some of the results of
section A5 of [10] (especially Proposition A5.8) to the case where
the base is an arbitrary reduced affinoid. In fact almost all of
Coleman’s results go through unchanged, but there are some
differences, which we summarise here. Firstly it is not true in
general that the image of an affinoid under a quasi-finite map is
still affinoid. However if one works with finite unions of affinoids
then one can deal with the problems that this causes. Secondly
Coleman uses the notion of a strict neighbourhood of a subspace
of the unit disc. We slightly modify this notion to one which suits
our purpose. Lastly we need some kind of criterion for when a
quasi-finite map of rigid spaces of constant degree is finite. We
use a theorem of Conrad whose proof invokes Raynaud’s theory
of admissible formal models of rigid spaces.

We set up some notation. Let K be a field with a complete
non-trivial non-Archimedean valuation. Let R denote a reduced
K-affinoid algebra, and let B = Max(R) be the associated affi-
noid variety. We equip R with its supremum semi-norm, which
is a norm in this case. Let R{{T}} denote the ring of power se-
ries

∑
n≥0 anT

n with an ∈ R such that for all real r > 0 we have
|an|rn → 0 as n→∞. Then R{{T}} is just the ring of functions
on B ×K A1,an, where here A1,an denotes the analytification of
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affine 1-space over K.
Let P (T ) =

∑
n≥0 rnT

n ∈ R{{T}} be a function with r0 = 1.
Our main object of study is the rigid space cut out by P (T ), that
is, the space Z ⊆ B ×K A1,an defined by the zero locus of P (T ).
In practice, P (T ) will be the characteristic power series of a
compact endomorphism of a Banach R-module.

Certainly Z is a rigid analytic variety, equipped with pro-
jection maps f : Z → B and g : Z → A1,an. We frequently
make use of the following cover of Z: If r ∈

√
|K×| (that is,

some power of r is the norm of a non-zero element of K) then
let B[0, r] denote the closed affinoid disc over K of radius r, con-
sidered as an admissible open subspace of A1,an. Let Zr denote
the zero locus of P (T ) on the space B×K B[0, r]. Then Zr is an
affinoid, and the Zr admissibly cover Z. Let fr : Zr → B denote
the canonical projection. Note that any affinoid subdomain of Z
will be admissibly covered by its intersections with the Zr, which
are affinoids, and hence will be contained within some Zr.

Now let C denote the set of affinoid subdomains Y of Z with
the following property: there is an affinoid subdomain X of B
(depending on Y ) with the property that Y ⊆ ZX := f−1(X),
the induced map f : Y → X is finite and surjective, and Y
is disconnected from its complement2 in ZX , that is, there is a
function e ∈ O(ZX) such that e2 = e and Y is the locus of ZX

defined by e = 1.
Our goal is (c.f. Proposition A5.8 of [10])

Theorem. C is an admissible cover of Z.

The reason we want this result is that in later applications
Z will be a “spectral variety”, and the Y ∈ C are exactly the
affinoid subdomains of Z over which one can construct a Hecke
algebra, and hence an eigenvariety, without any technical diffi-
culties.

2Elmar Grosse-Kloenne has pointed out that this condition in fact follows
from the others; one can use 9.6.3/3 and 9.5.3/5 of [1] to check that Y → ZX

is both an open and a closed immersion.

26



We prove the theorem after establishing some preliminary
results.

Lemma 4.1. fr : Zr → B is quasi-finite and flat.

Proof. By increasing r if necessary, we may assume r ∈ |K×|
and hence, by rescaling, that r = 1. The situation we are now
in is as follows: R is an affinoid and P (T ) =

∑
n≥0 rnT

n ∈
R〈T 〉 with r0 = 1, and we must show that R → R〈T 〉/(P (T ))
is quasi-finite and flat. Quasi-finiteness is immediate from the
Weierstrass preparation theorem. For flatness observe that R〈T 〉
is flat3 over R and that if P is any maximal ideal of R〈T 〉 then
P := P ∩ R is a maximal ideal of R. Hence R〈T 〉/(PR〈T 〉) =
(R/PR)〈T 〉 is an integral domain and the image of P (T ) in
(R/PR)〈T 〉 is non-zero, as its constant term is non-zero. Hence
the image of P (T ) is not a zero-divisor and flatness now follows
from Theorem 22.6 of [14].

Corollary 4.2. If Y ⊆ Z is an affinoid then f : Y → B is
quasi-finite and flat.

Proof. Y is affinoid and hence Y ⊆ Zr for some r ∈
√
|K×|, so

the result follows from the previous lemma.

Corollary 4.3. If Y ⊆ Z is an affinoid, and X ⊆ B is an
admissible open such that Y ⊆ f−1(X), and if there is an integer
d ≥ 0 such that all fibres of the induced map f : Y → X have
degree d, then f : Y → X is finite and flat.

Proof. f : Y → X is flat by Corollary 4.2. It is also quasi-
compact and separated, so finiteness follows from Theorem A.1.2
of [11].

Note that this latter result uses the full force of Raynaud’s
theory of formal models.

3One can prove flatness by using the Open Mapping Theorem and mim-
icking the proof of the result stated in Exercise 7.4 of [14], noting that the
solution to the exercise is on p289 of loc. cit.
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Lemma 4.4. If r ∈
√
|K×| and fr : Zr → B, then for i ≥ 0

define Ui := {x ∈ B : deg(f−1
r (x)) ≥ i}. Then each Ui is a

finite union of affinoid subdomains of B, and Ui is empty for i
sufficiently large.

Proof. The sequence |rn|rn tends to zero as n → ∞, and hence
for any x ∈ B, the set {|rn(x)|rn : n ≥ 0} has a maximum,
denoted Mx, which is attained. Note that |r0(x)| = 1 and hence
Mx ≥ 1, and in particular if N is an integer such that |rn|rn < 1
for all n ≥ N then Mx = Max{|rn(x)|rn : 0 ≤ n < N} and
Mx > |rn(x)|rn for all n ≥ N . For i ≥ 0 let Si denote the affinoid
subdomain of B defined by {x ∈ B : |ri(x)|ri = Mx}. Then Si

is empty for i ≥ N . A calculation on the Newton polygon shows
that

Ui = ∪j≥iSj

and the result follows.

Definition. If S and T are admissible open subsets of the affi-
noid B, such that both S and T are finite unions of affinoid
subdomains of B, then we say that T is a strict neighbourhood
of S (in B) if S ⊆ T and there is an admissible open subset U
of B with the following properties:

• U is a finite union of affinoid subdomains of B,

• U ∩ S is empty,

• U ∪ T = B.

The intersection of two affinoid subdomains of B is an affi-
noid subdomain of B. Hence if U and V are admissible open
subsets of B which are both the union of finitely many affinoid
subdomains, then so is U ∩ V . As a consequence, we see that if
Tα is a strict neighbourhood of Sα for 1 ≤ α ≤ n then ∪αTα is a
strict neighbourhood of ∪αSα. We now prove the key technical
lemma that we need.
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Lemma 4.5. Suppose r ∈
√
|K×| and V ⊆ B is an affinoid

subdomain with the property that fr : f−1
r (V ) → V is finite of

constant degree d > 0. Then there is an affinoid subdomain X
of B which is a strict neighbourhood of V in B, and s ∈

√
|K×|

with s > r such that the affinoid Y = f−1
s (X) contains f−1

r (V ),
lies in C, and is finite flat of degree d over X.

Proof. (c.f. Lemma A5.9 of [10]). If x ∈ V then let Px(T ) =∑
n≥0 rn(x)T n denote the specialisation of P (T ) to K(x){{T}}.

The statement that the degree of f−1
r (x) is d translates by the

theory of the Newton polygon to the statement that for all
x ∈ V we have |rd(x)| 6= 0 (so rd is a unit in Oan(V )) and
furthermore that for all integers n ≥ 0 we have − log(|rn(x)|) ≥
(n − d) log(r) − log(|rd(x)|), with strict inequality when n > d.
Here log is the usual logarithm, with the usual convention that
− log(0) = +∞. Because P (T ) is entire, there exists an in-
teger N > d such that for n ≥ N we have − log |rn(x)| >
n log(r + 1) for all x ∈ B and hence − log(|rn(x)|) ≥ (n −
d) log(r + 1) − log(|rd(x)|) for all n ≥ N . For d < n < N
we have − log(|rn(x)|) > (n − d) log(r)− log(|rd(x)|) and hence
|rn(x)/rd(x)| < rd−n for all x ∈ V . Because functions on affinoids
attain their bounds, there is some t ∈

√
|K×| with r < t < r+1

and |rn(x)/rd(x)| < td−n for d < n < N , and hence for all
x ∈ V we have − log(|rn(x)|) ≥ (n − d) log(t) − log(|rd(x)|)
for all n ≥ 0, with equality iff n = d. Now choose γ1, γ2, δ1,

δ2 ∈ log
(√

|K×|
)

such that δ2 > − log |rd(x)| > δ1 for all x ∈ V
and log(r) < γ1 < γ2 < log(t). Let X be the affinoid subdomain
of B defined by the N equations

δ1 ≤ − log |rd(x)| ≤ δ2,

− log |rn(x)|+ log |rd(x)| ≥ (n− d)γ1 for 0 < n < d,

and

− log |rn(x)|+ log |rd(x)| ≥ (n− d)t for d < n < N.
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These equations define X as a Laurent subdomain of B, and
if x ∈ V then not only are these equations satisfied, but strict
inequality holds in every case. Hence V ⊂ X and moreover if we
consider the N affinoids, each defined by one of the N equations

δ1 ≥ − log |rd(x)|,

− log |rd(x)| ≥ δ2,

− log |rn(x)|+ log |rd(x)| ≤ (n− d)γ1, 0 < n < d,

− log |rn(x)|+ log |rd(x)| ≤ (n− d)t, d < n < N,

and let W be the union of these N affinoids, then X ∩ W is
empty and X ∪ V = B. Hence X is a strict neighbourhood of V
in B, in the sense we defined above. Let s = exp(γ2) and set
Y = f−1

s (X). Then Y is an affinoid in Z and by the previous
corollary and the way we have arranged the Newton polygons,
f : Y → X is finite of degree d (note that by our choice of t we
have

− log |rn(x)|+ log |rd(x)| ≥ (n− d)t for all n ≥ N,

with strict inequality for x ∈ V ). Furthermore if x ∈ X then no
slope of the Newton polygon of Px(T ) can equal s, and hence the
projection from f−1(X) to A1,an contains no elements of norm s.
Hence Y is disconnected from its complement in f−1(X), and in
particular is an affinoid subdomain of Z, so Y ∈ C.

We are now ready to prove the theorem.

Theorem 4.6. C is an admissible cover of Z.

Proof. Again we follow Coleman. We know that Z is admissibly
covered by the Zr, r ∈

√
|K×|, and hence it suffices to prove that

for every Zr, there is a finite collection of affinoids in C whose
union contains Zr. Recall that for i ≥ 0, Ui is the subset of points
in B such that deg(f−1

r (a)) ≥ i, and that Ui is a finite union of
affinoids. Furthermore, clearly Ui+1 ⊆ Ui. If U1 is empty there
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is nothing to prove, so let us assume that it is not. Let d denote
the largest i such that Ui is non-empty. For 1 ≤ i ≤ d let H(i)
denote the following statement:

H(i): “There is a finite set Y1, Y2 . . . Yn(i) of affinoid subdo-
mains of Z, and a finite set X1, X2 . . . Xn(i) of affinoid subdo-
mains of B, such that for 1 ≤ α ≤ n(i) we have f : Yα → Xα is

finite flat and surjective, Yα ∈ C, f−1
r (Ui) ⊆ ∪n(i)

α=1Yα, and ∪n(i)
α=1Xα

is a strict neighbourhood of Ui in B.”
If we can establish H(1) then we are home because f−1

r (U1) =
Zr. We firstly establish H(d), and then show that H(i) im-
plies H(i − 1) for i ≥ 2, and this will be enough. For H(d)
we cover Ud by finitely many affinoid subdomains V1, V2,. . .Vn(1)

of B (in fact it is not difficult to show that Ud is itself an affi-
noid, but we shall not need this). By Corollary 4.3 we know
that f−1

r (Vα) → Vα is finite and flat. Now applying Lemma 4.5
to Vα we get a strict affinoid neighbourhood Xα of Vα, and
if Yα = f−1

s (Xα) (s as in the Lemma) then H(d) follows im-
mediately.

Now let us assume H(i), i ≥ 2. Then choose a finite union
of affinoid subdomains W ⊂ B such that W ∩ Ui is empty and
W ∪

⋃n(i)
α=1Xα = B. Then W ∩ Ui−1 is a finite union Vn(i)+1,

Vn(i)+2 . . . Vn(i)+m of affinoid subdomains. Set n(i−1) = n(i)+m.
Note that fr : f−1

r (Vα) → Vα is finite of degree i − 1 for n(i) <
α ≤ n(i−1), hence one is in a position to apply Lemma 4.5 to get
Yα → Xα finite flat of degree i−1, Yα ∈ C, f−1

r (Vα) ⊆ Yα, andXα

a strict neighbourhood of Vα, for n(i) < α ≤ n(i − 1). We now

show that
⋃n(i−1)

α=1 Xα is a strict neighbourhood of Ui−1. We know

that
⋃n(i−1)

α=n(i)+1Xα is a strict neighbourhood of
⋃n(i−1)

α=n(i)+1 Vα, so

choose a finite union of affinoid subdomains W ′ such that W ′ ∩
(
⋃n(i−1)

α=n(i)+1 Vα) is empty and W ′ ∪ (
⋃n(i−1)

α=n(i)+1Xα) = B. Now

set W ′′ = W ∩ W ′. Then W ′′ is a finite union of affinoids,
W ′′∩Ui−1 = W ′∩W ∩Ui−1 = W ′∩ (

⋃n(i−1)
α=n(i)+1 Vα) is empty, and

W ′′ ∪ (
⋃n(i−1)

α=1 Xα) = B, and we are done.
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5 Spectral varieties and eigenvarieties

Let R be a reduced affinoid K-algebra equipped with its supre-
mum norm, let M be a Banach R-module satisfying (Pr), and
let T be a commutative R-algebra equipped with an R-algebra
homomorphism to EndR(M), the continuous R-module endo-
morphisms of M . In practice T will be a polynomial R-algebra
generated by (typically infinitely many) Hecke operators. We
frequently identify t ∈ T with the endomorphism of M associ-
ated to it. Fix once and for all an element φ ∈ T, and assume
that the induced endomorphism φ : M → M is compact. Let
F (T ) = 1 +

∑
n≥1 cnT

n be the characteristic power series of φ.
We define the spectral variety Zφ associated to φ to be the closed
subspace of the rigid space Max(R)×A1 cut out by F . The spec-
tral variety is a geometric object parametrising, in some sense,
the reciprocals of the non-zero eigenvalues of φ. Its formulation
is compatible with base change, by Lemma 2.13. Our main goal
in this section is to write down a finite cover of this spectral vari-
ety, the eigenvariety associated to the data (R,M,T, φ). Points
on the eigenvariety will correspond to systems of eigenvalues for
all the operators in T, such that the eigenvalue for φ is non-zero.
The construction is just an axiomatisation of Chapter 7 of [9]
and is really not deep (in fact by far the deepest part of the
entire construction is the fact that the cover C of Section 4 is
admissible, as this appealed to the theory of formal models at
one point). Unfortunately the construction does involve a lot of
bookkeeping.

We begin with a finite-dimensional example, where φ is in-
vertible and hence where we may avoid the technicalities of §4.
Let R be a reduced affinoid K-algebra, and let M denote a
finitely-generated projective R-module of rank d. Let T be an
arbitrary R-algebra equipped with an R-algebra homomorphism
to EndR(M), and let φ be an element of T. Assume further-
more that φ : M → M has an inverse, that is, there is an
R-linear φ−1 : M → M such that φ ◦ φ−1 = φ−1 ◦ φ is the

32



identity on M . Define P (T ) = det(1 − Tφ) = 1 + . . . ∈ R[T ];
then the leading term of P , that is, the coefficient of T d, is
a unit. Let Zφ denote the zero locus of P (T ) regarded as a
function on Max(R) × A1. Then R[T ]/(P (T )) is a finite R-
algebra and hence an affinoid algebra, and Zφ is the affinoid
rigid space associated to this affinoid algebra. Let T(Zφ) denote
the image of T in EndR(M); then T(Zφ) is a finite R-algebra
and hence an affinoid algebra. By the Cayley-Hamilton theorem
we have φ−1 ∈ T(Zφ), and furthermore there is a natural map
R[T ]/P (T ) → T(Zφ) sending T to φ−1. Set Dφ = Max(T(Zφ)).
Then the maps R→ R[T ]/P (T ) → T(Zφ) of affinoids give maps
Dφ → Zφ → Max(R). We call Zφ the spectral variety and Dφ

the eigenvariety associated to this data. As a concrete example,
consider the case where R = K〈X, Y 〉, M = R2, T = R[φ, t],
where φ acts on M as the matrix

(
1 X
0 1

)
, and t acts as

(
0 Y
0 0

)
.

Then det(1 − Tφ) = (1 − T )2 so Zφ is non-reduced, and T(Zφ)
is the ring R⊕ Iε, with I = (X, Y ) and ε2 = 0. Note that in this
case the maps Dφ → Zφ and Dφ → Max(R) are not flat, and Dφ

is not reduced either.
It would not be unreasonable to say that what follows in this

section is just a natural generalisation of this set-up, the main
complication being that M is not necessarily finitely-generated,
the purpose of the admissible cover C being to remedy this. See
also Chenevier’s thesis, where he develops essentially the same
theory in essentially the same way (assuming Theorem 4.6 of this
paper). The example above shows that in this generality one
cannot expect Dφ and Zφ to have too many “good” geometric
properties; however one can hope that the examples of spectral
and eigenvarieties arising “in nature” are better behaved.

Let us now go back to our more general situation, where
M is a Banach R-module satisfying property (Pr) and T is a
commutative R-algebra equipped with an R-algebra map T →
EndR(M), such that the endomorphism of M induced by φ ∈ T
is compact. Let Zφ be the closed subspace of Max(R) × A1

defined by the zero locus of the characteristic power series of φ.
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Let C be the admissible cover of Zφ constructed in section 4.
Let Y be an element of this admissible cover, with image X ⊆
Max(R). By definition, X is an affinoid subdomain of Max(R),
so set A = O(X). Then A is reduced by Corollary 7.3.2/10
of [1]. Define MA := M⊗̂RA and, for t ∈ T, let tA denote the A-
linear continuous endomorphism of MA induced by t : M →M .
Note that φA : MA →MA is still compact, by Lemma 2.13. Let
FA(T ) be the characteristic power series of φA on MA. Again by
Lemma 2.13, FA is just the image of F in A{{T}}.

Let us assume first that X is connected. Then we wish to
associate to Y a factor of FA(T ) so that we are in a position
to apply Theorem 3.3. We do this as follows. We know that
O(Y ) is a finite flat A-module, and hence it is projective of some
rank d. The element T of O(Y ) is a root of its characteristic
polynomial Q′, which is monic of degree d, and hence gives us a
map A[T ]/(Q′(T )) → O(Y ). In fact, Y is a closed subspace of
X × B[0, r] for some r, and hence if S is some appropriate K-
multiple of T then the natural map A〈S〉 → O(Y ) is surjective.
By Proposition 3.7.4/1 of [1] and its proof, any residue norm
on O(Y ) will be equivalent to any of the Banach norms that
O(Y ) inherits from being a finite complete A-module. One can
deduce from this that the map A[T ]/(Q′(T )) → O(Y ) is surjec-
tive. Hence A[T ]/(Q′(T )) → O(Y ) is an isomorphism, because
both sides are locally free A-modules of rank d. This means that
the image of FA(T ) in A{{T}}/(Q′(T )) is zero, and hence that
Q′ divides FA in A{{T}}. Comparing constant terms, we see
that Q′ = a0 + a1T + . . . with a0 a unit, and hence we can de-
fine Q = a−1

0 Q′ and we are in a position to invoke Theorem 3.3
to give a decomposition MA = N ⊕ F where N is projective of
rank d over A. Note that in general N will not be free. Because
the projector MA → N is in the closure of A[φ], it commutes
with all the endomorphisms of MA induced by elements of T,
and hence N is t-invariant for all t ∈ T. Define T(Y ) to be the
A-sub-algebra of EndA(N) generated by all the elements of T.
Now EndA(N) is a finite A-module, and hence T(Y ) is a finite
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A-algebra and hence an affinoid. Let D(Y ) denote the associ-
ated affinoid variety. We know that Q∗(φ) is zero on N , and
hence T(Y ) is naturally a finite A[S]/(Q∗(S))-algebra, via the
map sending S to φ. Because the constant term of Q∗ is a unit,
there is a canonical isomorphism A[S]/(Q∗(S)) = O(Y ) sending
S to T−1. Hence T(Y ) is a finite O(Y )-algebra, and thus there
is a natural finite map D(Y ) → Y .

For general Y ∈ C, the image of Y in Max(R) may not be
connected, but Y can be written as a finite disjoint union Y =
∪Yi corresponding to the connected components of the image
of Y in Max(R). We define D(Y ) as the disjoint union of the
D(Yi). This construction gives us, for each Y ∈ C, a finite cover
D(Y ) of Y . We wish to glue together the D(Y ), as Y ranges
through all elements of C, and the resulting curve D, which will
be a finite cover of Zφ, will be the eigenvariety associated to the
data (R,M,T, φ). We firstly establish a few lemmas.

Lemma 5.1. If Y ∈ C with image X ⊆ Max(R), and X ′ is
an affinoid subdomain of X then Y ′, the pre-image of X ′ under
the map Y → X, is in C, and is an affinoid subdomain of Y .
Furthermore, D(Y ′) is canonically isomorphic to the pre-image
of Y ′ under the map D(Y ) → Y .

Proof. Y ′ is the pre-image of X ′ under the map Y → X and is
hence an affinoid subdomain of Y by Proposition 7.2.2/4 of [1].
The map Y ′ → X ′ is finite and surjective, and if e is the idem-
potent in O(ZX) showing that Y is disconnected from its com-
plement (that is, e|Y = 1 and e|ZX\Y = 0), then the restriction
of e to O(ZX′) will do the same for Y ′. Hence Y ′ ∈ C. It is now
elementary to check that T(Y ′) = T(Y )⊗̂O(X)O(X ′) and hence
D(Y ′) is the pre-image of Y ′ under the map D(Y ) → Y .

Lemma 5.2. If Y1, Y2 ∈ C then Y := Y1 ∩ Y2 ∈ C. Furthermore
for 1 ≤ i ≤ 2, Y is an affinoid subdomain of Yi, and D(Y )
is canonically isomorphic to the pre-image of Y under the map
D(Yi) → Yi.
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Proof. Let Xi denote the image of Yi in Max(R). Then the
Xi are affinoid subdomains of Max(R), and hence so is their
intersection. Let X denote a component of X1 ∩X2. It suffices
to prove the assertions of the lemma with Y replaced by Y ∩ZX ,
so let us re-define Y to be Y ∩ ZX .

Let Y ′
i denote the pre-image of X under the map Yi → Xi.

Then Y ′
i is an affinoid subdomain of Yi containing Y and by

Lemma 5.1 we have Y ′
i ∈ C with D(Y ′

i ) the pre-image of Y ′
i

under the map D(Yi) → Yi. Now Y = Y ′
1 ∩ Y ′

2 is finite and flat
over Y ′

1 and hence finite and flat over X. Let ei ∈ O(ZX) be
the idempotent associated to Y ′

i , and set e = e1e2. Then Y is
the subset of ZX defined by e = 1, and hence Y is locally free
of finite rank over X. One easily checks that Y is a union of
components of Y ′

i for 1 ≤ i ≤ 2, in fact. If Y is empty then
the rest of the lemma is clear. If not then the map Y → X is
surjective, and Y ∈ C. Finally, for 1 ≤ i ≤ 2, the idempotents e
and ei(1 − e3−i) sum to 1 on Y ′

i showing that D(Y ) is actually
a union of connected components of D(Y ′

i ), pulling back the
inclusion Y ⊆ Y ′

i .

Now by Proposition 9.3.2/1 of [1] we can glue the D(Y ) for
Y ∈ C to get a rigid space Dφ (the cocycle conditions are sat-
isfied because they are satisfied for the cover C of Zφ), and by
Proposition 9.3.3/1 of [1] we can glue the maps D(Y ) → Y to get
a map Dφ → Zφ. We say that the rigid space Dφ is the eigenva-
riety associated to the data (R,M,T, φ). We have already seen
in the finite-dimensional case that the map Dφ → Zφ might not
be flat, and that Zφ and Dφ may be non-reduced. We summarise
the obvious positive results about Zφ and Dφ that come out of
their construction:

Lemma 5.3. Dφ and Zφ are separated, and the map Dφ → Zφ

is finite.

Proof. Zφ is separated by, for example, Proposition 9.6/7 of [1]
(applied to the admissible covering {Zr} of Zφ defined in the
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previous section). The construction of Dφ over Zφ shows that
Dφ → Zφ is finite; hence Dφ → Zφ is separated, which implies
that Dφ is separated.

We need to establish further functorial properties of this con-
struction. As before, let R be a reduced K-affinoid algebra
equipped with its supremum norm, let M be a Banach R-module
satisfying (Pr), and let T be a commutative R-algebra equipped
with a distinguished element φ and an R-algebra homomorphism
T → HomR(M,M), such that the image of φ is a compact endo-
morphism. We now consider what happens when we change R.
More specifically, let R′ denote another reduced K-affinoid alge-
bra equipped with a map R→ R′, and let M ′,T′, φ′ denote the
obvious base extensions. The constructions above give us maps
Dφ → Zφ → Max(R) and Dφ′ → Zφ′ → Max(R′). The map
R→ R′ gives us a map Max(R′) → Max(R).

Lemma 5.4. Zφ′ → Max(R′) is canonically isomorphic to the
pullback of Zφ → Max(R) to Max(R′).

Proof. This is an immediate consequence of Lemma 2.13.

In particular there is a natural map Zφ′ → Zφ.

Lemma 5.5. If R → R′ is flat then Dφ′ → Zφ′ is canonically
isomorphic to the pullback of Dφ → Zφ under the map Zφ′ → Zφ.

Proof. Let C and C ′ denote usual the admissible covers of Zφ

and Zφ′ . If Y ∈ C and Y ′ is the pullback of Y to Zφ′ then
one checks without too much difficulty that Y ′ ∈ C ′. It is not
immediately clear whether every element of C ′ arises in this way
(although this is the case if Max(R′) ⊆ Max(R) is an affinoid
subdomain, which will be the only case we are interested in in
practice). However, this does not matter because the elements of
C ′ which arise in this way still form an admissible covering of Zφ′ ,
as they cover the separated space Zφ′ , and all the elements of C ′
are affinoids so one can use Proposition 9.1.4/2 of [1]. Hence we
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may construct Dφ′ by gluing the D(Y ′) for all Y ′ which arise in
this way. One checks that D(Y ′) is the pullback of D(Y ) under
the map Y ′ → Y (this is where we use flatness, the point being
that without flatness one cannot deduce that the natural map
from D(Y ′) to the pullback of D(Y ) is an isomorphism) and that
everything is compatible with gluing, and after this somewhat
tedious procedure one deduces that the maps D(Y ′) → D(Y )
identify Dφ′ with the pullback of Dφ as indicated.

We will only be applying the above lemma in the case where
Max(R′) is an affinoid subdomain of Max(R) and in particular
R → R′ is flat in this case. I am grateful to the referee for
pointing out that flatness is necessary for this lemma to be true.
Indeed, one checks that in the example at the beginning of this
section (with R = K〈X, Y 〉), if R′ = K and the map R → R′

sends X and Y to zero, then the pullback of the eigenvariety is
not isomorphic to the eigenvariety associated to the pullback. On
the other hand, one can use the q-expansion principle to check
that the construction of the cuspidal Coleman-Mazur eigencurve
(see part II of this paper) will commute with any base change
of reduced affinoids. Had we set up the theory for non-reduced
bases one could no doubt even check that the construction com-
mutes with arbitrary base change. The same arguments do not
work for the eigenvarieties associated to totally definite quater-
nion algebras over totally real fields (see part III of this paper)
and for Chenevier’s unitary group eigenvarieties [8]. One does
not have a q-expansion principle in these cases, and whether con-
struction of these eigenvarieties commutes with all base changes
(even those coming from the inclusion of a point into weight
space) seems to be an open question, related to multiplicity one
issues for overconvergent automorphic eigenforms in these set-
tings. See Lemma 5.9 for a partial result. Another way of set-
ting up the foundations of the theory of eigenvarieties might be
to construct the eigenvariety as a limit of spectral varieties such
as those in sublemma 6.2.3 of [9]; such a construction might well
commute with all base changes, but would not see subtleties such
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as non-semisimplicity of eigenspaces at a fixed weight.
We now analyse how eigenvarieties change under a specific

type of change of module. As always, let R be a reduced affinoid,
let M and M ′ denote Banach modules satisfying property (Pr),
let T be a commutative R-algebra equipped with maps T →
EndR(M) and T → EndR(M ′), such that our chosen element
φ ∈ T acts compactly on both M and M ′.

In practice we are interested only in modules M and M ′

which are related in a specific way, which we now axiomatise. We
say that a continuous R-module and T-module homomorphism
α : M ′ → M is a “primitive link” if there is a compact R-linear
and T-linear map c : M → M ′ such that φ : M → M is α ◦ c
and φ : M ′ → M ′ is c ◦ α. Note that these assumptions force
the characteristic power series of φ on M and M ′ to coincide,
by Lemma 2.12. Note also that the identity map M → M is a
primitive link (take c = φ). We say that a continuous R-module
and T-module homomorphism α : M ′ →M is a “link” if one can
find a sequence M ′ = M0,M1,M2, . . . ,Mn = M of Banach R-
modules satisfying property (Pr) with T-actions, and continuous
R-module and T-module maps αi : Mi → Mi+1 such that each
αi is a primitive link, and α is the compositum of the αi. We
apologise for this terrible notation but the underlying notion
is what occurs in applications; our motivation is the study of
r-overconvergent modular forms as r changes. More precisely,
with notation as in Part II of this manuscript, if 0 < r ≤ r′ <
p/(p+ 1) and α is the inclusion from r′-overconvergent forms to
r-overconvergent forms, then α will be a primitive link if r′ ≤ pr,
but if r′ > pr then α may only be a link. Perhaps all of this can
be avoided if one sets up the theory with a slightly more general
class of topological modules.

Lemma 5.6. Let R, M , M ′, T, φ be as above, and assume
that we are given a link α : M ′ → M in the sense above. Let
Dφ denote the eigenvariety associated to (R,M,T, φ) and let D′

φ

denote the eigenvariety associated to (R,M ′,T, φ). Then Dφ and
D′

φ are isomorphic.
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Proof. This is clear if α is an isomorphism, so we may assume
that α is a primitive link, and thus that there is a compact
c : M →M ′ such that αc and cα are equal to the endomorphisms
of M and M ′ induced by φ. We use a dash to indicate the
analogue of one of our standard constructions, applied to M ′

(for example Z ′φ, C ′ and so on). By Lemma 2.13, Zφ and Z ′φ are
equal, as are C and C ′ (as their construction does not depend on
the underlying Banach module). Choose Y ∈ C with connected
image X ⊆ Max(R). It will suffice to prove that α induces an
isomorphism D′(Y ) = D(Y ) that commutes with all the glueing
data on both sides, and this will follow if we can show that,
after base extension to A = O(X), α induces an isomorphism
between the finite flat sub-R-modules N ′ and N of M ′ and M
corresponding to Y , and hence that α (which recall is T-linear)
induces an isomorphism T(Y ) = T′(Y ).

Recall that there is a polynomial Q = 1+ . . . associated to Y
as in the definition of D(Y ), such that the leading term of Q is
a unit, and such that N ′ and N are the kernels of Q∗(φ) on M ′

and M respectively. From this one can conclude that α maps N ′

to N , that c maps N to N ′, and that there is an element ψ of
R[φ] ⊆ T, such that ψ is an inverse to φ on both N and N ′. We
now see that α : N ′ → N must be an R-module isomorphism,
because it is elementary to check that ψ ◦c is a two-sided inverse
(recall that ψ is a polynomial in φ and hence commutes with c).
Now everything else follows without too much trouble.

I thank Peter Schneider for pointing out a problem with the
proof of the above lemma in the initial version of this manuscript.

We now have enough for our eigenvariety machine. The
data we are given is the following: we have a reduced rigid
space W , a commutative R-algebra T, and an element φ ∈ T.
For any admissible affinoid open X ⊆ W, with O(X) = RX

(equipped with its supremum norm), we have a Banach RX-
module MX satisfying (Pr), and an R-module homomorphism
T → HomRX

(MX ,MX), denoted t 7→ tX , such that φX is com-
pact. Finally, if Y ⊆ X ⊆ W are two admissible affinoid
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opens, then we have a continuous O(Y )-module homomorphism
α : MY → MX⊗̂RX

RY which is a “link” in the above sense,
and such that if X1 ⊆ X2 ⊆ X3 ⊆ W are all affinoid subdo-
mains then α13 = α23α12 where αij denotes the map MXi

→
MXi

⊗̂O(Xi)O(Xj).

Construction 5.7 (eigenvariety machine). To the above data
we may canonically associate the eigenvariety Dφ, a rigid space
equipped with a map to W, with the property that for any affinoid
open X ⊆ W, the pullback of Dφ to X is canonically isomorphic
to the eigenvariety associated to the data (RX ,MX ,T, φX).

There is very little left to check in this construction. If Y ⊆ X
are affinoid subdomains of W then by Lemma 5.6 the eigenvari-
eties associated to (RY ,MY ,T, φY ) and (RY ,MX⊗̂RX

RY ,T, φX)
are isomorphic. By Lemma 5.5 the eigenvariety associated to
(RY ,MX⊗̂RX

RY ,T, φX) is isomorphic to the pullback to Y of
the eigenvariety associated to (RX ,MX ,T, φX). The assumption
on compatibility of the α ensures that the cocycle condition is
satisfied, and hence the Dφi

glue together to give an eigenvariety
Dφ over W whose restriction to Xi is Dφi

.
As we have seen earlier, one cannot expect Dφ to be reduced

or flat over W in this generality. However, here are some positive
results.

Lemma 5.8. Assume W is equidimensional of dimension n.
Then Dφ is also equidimensional of dimension n. The finite map
Dφ → Zφ has the property that each irreducible component of Dφ

maps surjectively to an irreducible component of Zφ. Moreover,
the image in W of each irreducible component of Dφ is Zariski-
dense in a component of W.

Proof. This is Proposition 6.4.2 of [8].

We now explain how the points of Dφ are in bijection with
systems of eigenvalues of T. For L a complete extension of K,
say that a map λ : T → L is an L-valued system of eigenvalues if
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there is an affinoid X = Max(RX) ⊆ W, a point in X(L) (giving
a map RX → L) and 0 6= m ∈ MX⊗̂RX

L such that tm = λ(t)m
for all t ∈ T. Say that an L-valued system of eigenvalues is
φ-finite if λ(φ) 6= 0.

Lemma 5.9. There is a natural bijection between φ-finite sys-
tems of eigenvalues and L-points of Dφ.

Proof. Because Dφ is separated, no pathologies occur when base
extending to L and hence we may assume L = K. Recall that
Dφ is covered by the D(Y ) for Y ∈ C; choose Y ∈ C and let
X ⊆ W be its image in W . Choose a K-point P of X. This K-
point corresponds to a map RX → K and it suffices to construct
a bijection between the K-points of D(Y ) lying above P and
the φ-finite systems of eigenvalues coming from eigenvectors in
N ⊗RX

K, where N ⊆ MX is the subspace corresponding to
Y . The result then follows from the following purely algebraic
lemma.

Lemma 5.10. Let R be a commutative Noetherian ring and let
N be a projective module of finite rank over R. Let T be a com-
mutative subring of EndR(N). Let m denote a maximal ideal
of R, and let S denote the image of the natural map T/mT →
EndR/m(N/mN). Then the natural map T/mT → S induces a
bijection between the prime ideals of T/mT and the prime ideals
of S.

Proof. It suffices to show that the kernel of the map T/mT → S
is nilpotent. After localising at m we may assume that N is free;
choose a basis for N . Let t be an element of T whose image
in EndR/m(N/mN) is zero. Then all the matrix coefficients of t
with respect to this basis are in m. Thinking of t as a matrix
with coefficients in R, we see that t is a root of its characteristic
polynomial, which is monic and all of whose coefficients other
than its leading term are in mR. Hence t is nilpotent in T/mT
and we are home.
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Part II: The Coleman-Mazur eigen-
curve.

6 Overconvergent modular forms.

One can say much more about the eigenvariety Dφ in the spe-
cific case for which all this machinery was originally invented,
namely the Coleman-Mazur eigencurve. Again we shall not give
a complete treatment of this topic, but will refer to [9] for many
of the basic definitions and results we need. The paper [9] gives
constructions of two objects, called C and D, both in the case
of level 1 and p > 2. The results in sections 2–3 of this paper
are enough for us to be able to extend the construction of D to
the case of an arbitrary level and an arbitrary prime p, and we
shall give details of the construction here. Note that we do not
need the results in sections 4–5 of this paper here, because the
eigenvarieties constructed are over a 1-dimensional base, and the
rigid analytic results that Coleman develops in section A5 of [10]
are sufficient.

Fix a prime p, set K = Qp, and let W be weight space, that
is the rigid space whose Cp-points are naturally the continuous
group homomorphisms Z×p → C×

p (see section 2 of [5] for more
details on representability of such functors). Then W is the dis-
joint union of finitely many open discs, and there is a natural
affinoid covering of W which on each component is a cover of the
open disc by countably many closed discs. Coleman and Mazur
restrict to the case p > 2, and for an affinoid Y in weight space
define define MY to be the space of r-overconvergent modular
forms of level 1, for some appropriate real number r. As Y gets
bigger one has to consider forms which overconverge less and
less; this is why we must include cases where (in the notation of
section 5) the “links” α are not the identity. Finally the map φ
is chosen to be the Hecke operator Up, which is compact. See [9]
for rigorous definitions of the above objects, and verification that
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they satisfy the necessary criteria for the machine to work. In [9]
it is proved that (for N = 1 and p > 2) the resulting eigencurve
Dφ is reduced, and flat over Zφ (see [9], Proposition 7.4.5 and
the remarks before Theorem 7.1.1 respectively). Our Lemma 5.9
is just the statement that points on the eigencurve are overcon-
vergent systems of finite slope eigenvalues, and the existence of
q-expansions assures us that, at least in the cuspidal case, points
on the eigencurve correspond bijectively with normalised over-
convergent eigenforms.

In fact much more is proved in [9], where two rigid spaces
are constructed for each odd prime p: a curve C, constructed
via deformation theory and the theory of pseudorepresentations,
and a curve D constructed via glueing Hecke algebras as above.
In Theorem 7.5.1 of [9] it is proven that D is isomorphic to the
space Cred. Since the paper [9] appeared, various authors have
assumed that the constructions in it would generalise to the cases
N > 1 and p = 2. In fact, it seems to us that the following are the
main reasons that N = 1 and p > 2 are assumed in [9]. Firstly,
the theory of pseudorepresentations does not work quite so well
in the case p = 2. Secondly, there are some issues to be resolved
when writing down the local conditions at primes dividing N on
the deformation theory side (we remark that Kisin tells us that
both of these issues can be resolved without too much trouble).
And thirdly one sometimes has to deal with eigenspaces for the
action of (Z/4Z)× on a 2-adic Banach module when p = 2 on the
Hecke algebra side, causing problems when looking for orthonor-
mal bases. The first two issues will not concern us in this paper,
as we do not talk about the construction of C, and the results in
sections 2 and 3 of this paper are enough to deal with the third
issue. In fact Chenevier has pointed out to us that one can also
avoid the troubles caused by the third issue when constructing
eigencurves for p = 2 by appealing to the corollary of lemma 1
in [15]. We do not construct a generalisation of C here, but we
do show how to construct an eigencurve D for a general prime p
and level N prime to p.
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We first establish some generalities and notation. All our
rigid spaces will be over K = Qp in this section. Recall that W
is the rigid space over Qp representing maps Z×p → Gm. Define
q = p if p > 2, and q = 4 if p = 2. Define D = (Z/qZ)×,

regarded as a quotient of Z×p in the natural way. Define D̂ to be
the set of group homomorphisms D → C×

p . Set γ = 1 + q ∈ Z×p .
The natural surjection Z×p → D has kernel 1 + qZp, which is
topologically isomorphic to Zp, and is topologically generated
by γ. The map Z×p → D induces an isomorphism between D
and the roots of unity in Z×p , and hence the surjection splits and
we have an isomorphism Z×p

∼= D × Zp; we shall thus identify

Z×p with D × Zp. If χ ∈ D̂ then the composite of χ with the
natural projection Z×p → D is an element of W , and one easily

checks that distinct elements of D̂ are in different components
of W . Hence this construction establishes a bijection between
the components of W and the group D̂. Let Wχ denote the

component of W corresponding to the character χ ∈ D̂. Let 1
denote the trivial character of D (sending everything to 1) and

let B denote the component W1 of W . Note that if χ ∈ D̂ then
multiplication by χ gives an isomorphism W1 →Wχ.

For n ≥ 1 let Xn denote the affinoid subdomain of W cor-
responding to group homomorphisms ψ : Z×p → C×

p such that

|ψ(1 + q)pn−1 − 1| ≤ |q|. It is easily checked that for any χ ∈ D̂,
Xn ∩ Wχ is an affinoid disc, that X1 ⊆ X2 ⊆ . . ., and that
the Xi give an admissible cover of W . The inclusion Xi ⊂ W
induces a bijection of the connected components of Xi with
the connected components of W ; if χ ∈ D̂ then write Xi,χ for
the closed disc Xi ∩ Wχ. We remark here that if k ∈ Z and
χ : (Z/qpn−1Z)× → C×

p then χ(1 + q)pn−1
= 1 and hence the

map ψ ∈ W defined by ψ(x) = xkχ(x) is in Xn(Cp).
Define Ri = O(Xi). Then Ri is an affinoid for each i, and

Ri = ⊕χRi,χ, where χ runs through D̂ and Ri,χ = O(Xi,χ).
In preparation for the application of our eigenvariety ma-

chine, we have to choose a family of radii of overconvergence.
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Fortunately Coleman and Mazur have done enough for us here,
even if p = 2. We give a brief description of the modular curves
and affinoids that we shall use. Let Af denote the finite adeles.
For a compact open subgroup Γ ⊂ GL2(Af ) that contains the
principal congruence subgroup ΓN for some N prime to p, we de-
fine the compact modular curve X(Γ) over Qp in the usual way.
Let us firstly assume that Γ is sufficiently small to ensure that
the associated moduli problem on generalised elliptic curves has
no non-trivial automorphisms (we will remove this assumption
below). Now recall from section 3 of [4], for example, that for
an elliptic curve E over a finite extension of Qp, there is a mea-
sure v(E) of its supersingularity, and that v(E) < p2−m/(p+ 1)
implies that E possesses a canonical subgroup of order pm. So
for r ∈ Q with 0 ≤ r < p/(p + 1) we define X(Γ)≥p−r to be the
affinoid subdomain of the rigid space over Qp associated to X(Γ)
whose non-cuspidal points parametrise elliptic curves E with a
level Γ structure and such that v(E) ≤ r. For example if r = 0
then X(Γ)≥p−r is the ordinary locus of X(Γ).

For m ≥ 1 there is a fine moduli space X(Γ,Γ1(p
m)) (resp.

X(Γ,Γ0(p
m))) over Qp whose non-cuspidal points parametrise

elliptic curves equipped with a level Γ structure and a point
(resp. cyclic subgroup) of order pm over Qp-schemes. There are
natural forgetful functors

X(Γ,Γ1(p
m)) → X(Γ,Γ0(p

m)) → X(Γ).

If 0 ≤ r < p2−m/(p + 1) and E is an elliptic curve over a fi-
nite extension of Qp with v(E) ≤ r then, as mentioned above,
E has a canonical subgroup of order pm. For r in this range
we define X(Γ,Γ0(p

m))≥p−r to be the components of the pre-
image of X(Γ)≥p−r in X(Γ,Γ0(p

m)) whose non-cuspidal points
parametrise elliptic curves with the property that their given
cyclic subgroup of order pm equals their canonical subgroup, and
we define the rigid space X(Γ,Γ1(p

m))≥p−r to be the pre-image
of X(Γ,Γ0(p

m))≥p−r in X(Γ,Γ1(p
m)).

All these spaces are affinoids; this follows from the fact that
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X(Γ)≥p−r is an affinoid, being the complement of a non-zero
finite number of open discs in a complete curve. There is a
natural action of the finite group (Z/pmZ)× on X(Γ,Γ1(p

m))
and on X(Γ,Γ1(p

m))≥p−r via the (weight 0) Diamond operators.
Finally if Γ is a compact open subgroup of GL2(Af ) con-

taining ΓN for some N prime to p, but which is not “suffi-
ciently small”, then choose some prime l - 2Np and define Γ′ :=
Γ ∩ Γl; then Γ′ is a normal subgroup of Γ and Γ′ is sufficiently
small. Hence one may apply all the constructions above to
Γ′ and then define X(Γ)≥p−r , X(Γ,Γ1(p

m))≥p−r and so on by
taking Γ/Γ′-invariants. The resulting objects are only coarse
moduli spaces but this will not trouble us. A standard argu-
ment shows that this construction is independent of l. We de-
fine X1(p

m)≥p−r := X(GL2(Ẑ),Γ1(p
m))≥p−r and X0(p

m)≥p−r :=

X(GL2(Ẑ),Γ0(p
m))≥p−r . Similarly if N ≥ 1 is prime to p then

we define X0(Np
m)≥p−r := X(Γ0(N),Γ0(p

m))≥p−r , where Γ0(N)

is as usual the matrices in GL2(Ẑ) which are upper triangular
mod N . Note that X1(q)≥1 is the curve that Coleman and Mazur
refer to as Z1(q), and that the quotient of X1(p

m)≥p−r by the ac-
tion of (Z/pmZ)× is X0(p

m)≥p−r . Note also that X0(p
m)≥p−r is

“independent of m”, in the sense that the natural (forgetful)
map X0(p

m)≥p−r → X0(p)≥p−r is an isomorphism (as both rigid
spaces represent the same functor).

We now come to the definition of the radii of overconvergence
ri. Note that these numbers depend only on p and not on any
level structure. We let Ep denote the function on X1(q)≥1 × B
defined in Proposition 2.2.7 of [9] (briefly, Ep is the function
which, when restricted to a classical even weight k ≥ 4 in B,
corresponds to the function Ek(q)/Ek(q

p), where Ek(q) is the p-
deprived ordinary old Eisenstein series of weight k and level p).
In Proposition 2.2.7 of [9] it is proved that Ep is overconvergent
over B. The specialisations to a classical weight of Ep are fixed
by the weight 0 Diamond operators, and hence Ep descends to
an overconvergent function on X0(q)≥1×B = X0(p)≥1×B. Fur-
thermore, the assertions about the q-expansion coefficients of Ep
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made in Proposition 2.2.7 of [9], and the q-expansion principle,
are enough to ensure that Ep has no zeroes on X0(p)≥1 ×W1.
Hence the inverse of Ep is a function on X0(p)≥1 × B and it is
elementary to check that it is also overconvergent over B. In par-
ticular, for any i ≥ 1 there exists a rational 0 < ri < 1/(p + 1)
such that the restrictions of both Ep and E−1

p to X0(p)≥1 ×Xi,1

extend to functions on X0(p)≥p−ri ×Xi,1. We choose a sequence
of rationals r1 ≥ r2 ≥ r3 ≥ . . . ≥ 0 such that each ri has the
aforementioned property. We may furthermore assume (for tech-
nical convenience) that ri < p2−i/q(p+1) (although this may be
implied by the other assumptions).

Remark. It is not important for us to establish concrete values for
the ri, so we do not. However for other applications where one
wants to have explicit knowledge about how far one can extend
overconvergent modular forms, it may in future be important to
understand exactly how the ri behave. For example, machine
computations for p ∈ {3, 5, 7, 13} and i = 1 show that it is
not the case that r1 can be taken to be an arbitrary rational
number less than 1/(p+1), because there are classical Eisenstein
eigenforms of level p which have zeroes in ∪r<1/(p+1)X1(p)≥p−r .
Can one take r1 to be any positive rational less than (p−1)/p(p+
1)? There are other interesting questions here, which we shall
not attempt to answer here.4

We are now ready to begin our definitions of the Banach
modules of overconvergent forms. These modules depend on an
auxiliary level structure, which we now choose. Fix a compact
open subgroup Γ ⊆ GL2(Af ) that contains the principal congru-
ence subgroup ΓN for someN prime to p. For each n ≥ 1 we wish
now to define a Banach module Mn = MΓ,n over Rn := O(Xn).

Recall that Rn = ⊕χ∈ bDRn,χ. If χ ∈ D̂ then we define the Banach
module Bn,χ to be

Bn,χ := Rn,χ⊗̂QpO(X(Γ,Γ1(q))≥p−rn )

4See however [7] for explicit calculations in the case p = 2, and note that
these calculations may well generalise to odd primes p.

48



where rn is the radius of convergence defined previously. Note
that Bn,χ is naturally a potentially ONable Banach Rn,χ-module,
because the ringO(X(Γ,Γ1(q))) can be viewed as a Banach space
over a discretely-valued field and is hence potentially ONable by
Proposition 1 of [15] and the remarks before it.

We give the module Bn,χ an Rn,χ-linear action of the group
(Z/qZ)× by letting it act trivially on Rn,χ and via the (weight 0)
Diamond operators on O(X(Γ,Γ1(q))). We define Mn,χ to be the
direct summand of Bn,χ where (Z/qZ)× acts via χ. Note that
by definition Mn,χ satisfies property (Pr) (one can check that it
is even potentially ONable, but we shall not need this because
of our extension of Coleman’s theory). We remark in passing

that if Γ = GL2(Ẑ) then Mn,χ = 0 if χ(−1) 6= 1. Finally we
define Mn = MΓ,n to be the module over Rn = ⊕χ∈ bDRn,χ whose
Rn,χ-part is Mn,χ. We give Mn an Rn-linear action of (Z/qZ)×

by letting it act via χ on Mn,χ. We will shortly see that the fibre
of Mn at a point κ ∈ Xn can be naturally identified with the
rn-overconvergent forms of weight κ (although there are caveats
regarding compatibility of this map with Diamond operators; see
below).

The modulesMn we have described have the following functo-
rial property: if Γ1 and Γ2 both satisfy the conditions imposed on
Γ above (that is, they are of level prime to p), if γ ∈ GL2(Af ) has
determinant which is a unit at p, and if γΓ1γ

−1 ⊆ Γ2, then there
is a natural induced finite flat map X(Γ1) → X(Γ2) and the as-
sumption on the determinant of γ means that if 0 ≤ r ≤ r1 then
X(Γ1,Γ1(q))≥p−r is the pre-image of X(Γ2,Γ1(q))≥p−r . Hence
there is a natural inclusion MΓ2,n → MΓ1,n. If furthermore
γΓ1γ

−1 = Γ2 then this inclusion has an inverse and is hence
an isomorphism. One can check using these ideas that if Γ1

is a normal subgroup of Γ2 then MΓ2,n is the Γ2/Γ1-invariants
of MΓ1,n. Note also that for n ≥ 1 there is a natural map
Mn → Mn+1⊗̂Rn+1Rn, induced by restriction, which we shall
later see is a link, in the sense of Part I.

We now make explicit the relation between these spaces and
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Katz’ spaces of overconvergent modular forms. Firstly we recall
the definitions (in the form due to Coleman). If Γ ⊂ GL2(Af ) is
a sufficiently small compact open subgroup then there is a sheaf
commonly denoted ω on X(Γ) which, on non-cuspidal points,
is the pushforward of the differentials on the universal elliptic
curve. A weight k modular form of level Γ, defined over Qp,
is a global section of ω⊗k. If L is a field extension of Qp then
a weight k modular form of level Γ defined over L is a global
section of ω⊗k on the base change of X(Γ) to L. If Γ contains
ΓN for some positive integer N prime to p and 0 ≤ r < p/(p+1)
then a p−r-overconvergent modular form of level Γ and weight k
defined over Qp is a section of (the analytic sheaf associated to)
ω⊗k on the rigid space X(Γ)≥p−r , and similarly for L a complete
extension of Qp. If Γ is not sufficiently small then one can still
make sense of these definitions by replacing Γ by a sufficiently
small normal subgroup Γ′ and then taking Γ/Γ′-invariants, as
Γ/Γ′ will act on everything. Finally, if 0 ≤ r < p2−n/(p+1) then
one can define p−r-overconvergent modular forms of weight k and
level Γ ∩ Γ1(p

n) as sections of ω⊗k on X(Γ,Γ1(p
n))≥p−r (again

using the standard tricks if Γ is not sufficiently small). There is
a natural action of (Z/pnZ)× on these spaces via the (weight k)
Diamond operators.

Fix n ≥ 1 and let L be the field Qp(ζpn−1) generated by a
primitive pn−1th root of unity ζpn−1 . Fix k ∈ Z, and a character
ε : (Z/qpn−1Z)× → L×. Define ψ : Z×p → L× by ψ(x) = xkε(x).
Then ψ is an L-valued point of weight space and in fact ψ ∈
Xn(L). Choose χ ∈ D̂ such that ψ ∈ Wχ. Define κ = ψ/χ ∈ W1

and let Eκ = 1 + · · · be the associated Eisenstein series (see p39
of [9] and note that κ ∈ W1 = B so there are no problems with
zeros of p-adic L-functions).

Proposition 6.1. The q-expansion Eκ is the q-expansion of a
p−rn-overconvergent weight k modular form of level Γ1(qp

n−1)
defined over L, which is non-vanishing on X1(qp

n−1)≥p−rn . Fur-
thermore Eκ is in the ε/χ-eigenspace for the Diamond operators.
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Proof. The fact that the q-expansion Eκ is the q-expansion of
a section of ω⊗k on X1(qp

n−1)≥p−r for some r > 0 is Corol-
lary 2.2.6 of [9]. Now the fact that Eκ is an eigenvector for
Up, which increases overconvergence, implies that Eκ extends to
a section of ω⊗k on of X1(qp

n−1)≥p−r for any rational r with
0 ≤ r < p3−n/q(p + 1). For r in this range, there is a map
Frob : X1(qp

n−1)≥p−r/p → X1(qp
n−1)≥p−r which is finite and flat

of degree p and which induces, by pullback, the map F (q) 7→
F (qp) on modular forms (on non-cuspidal points the map sends
(E,P ) to (E/C,Q) where C is the canonical subgroup of or-
der p of E and Q is the image in E/C of any generator Q of
the canonical subgroup of order qpn of E such that pQ = P ).
By the q-expansion principle, Eκ has no zeroes on the ordinary
locus X1(qp

n−1)≥1. Let S denote the set of zeroes of Eκ on the
non-ordinary locus of X1(qp

n−1)≥p−rn . It suffices to show that
S is empty. We know that S is finite, because X1(qp

n−1)≥p−rn

is a connected affinoid curve and Eκ 6= 0 (as its q-expansion is
non-zero). We also know that Eκ(q)/Eκ(q

p) has no zeroes on
X1(qp

n−1)≥p−rn , by definition of rn, and that rn < p2−n/q(p+1).
Hence any zero of Eκ is also a zero of Eκ(q

p) = Frob∗Eκ. But if
S is non-empty then let P denote a point of S which is “near-
est to the ordinary locus” (that is, such that v′(P ) is minimal,
where v′ is the composite of the natural projection X1(qp

n−1) →
X0(p) and the function denoted v′ in section 4 of [4]). Then
P is also a zero of Eκ(q

p) and hence if P = Frob(Q) for some
point Q ∈ X1(qp

n−1)≥p−rn/p then Q is also a zero of Eκ(q), and
furthermore Q is closer to the ordinary locus than P (in fact
v′(Q) = 1

p
v′(P ) < v′(P ) by Theorem 3.3(ii) of [4]), a contradic-

tion.
The assertion about the Diamond operators is classical if k ≥

2 (see for example Proposition 7.1.1 of [13]). For general k it can
be deduced as follows: by Theorem B4.1 of [10] applied with i =
0, the function onX1(q)≥1×B×B denoted Eα(q)Eβ(q)/Eαβ(q) in
Theorem 2.2.2 of [9], when restricted to X1(q)≥1×B∗×B∗ (in the
notation of the proof of Theorem 2.2.2 of [9]) is invariant under
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the natural action of (Z/qZ)× (acting trivially on B× and via
Diamond operators on X1(q)). But this action is continuous, so
(Z/qZ)× acts trivially on Eα(q)Eβ(q)/Eαβ(q). In particular, the
function Eα(q)Eβ(q)/Eαβ(q) descends to a function onX0(q)≥1×
B×B = X0(qp

n−1)≥1×B×B. The result for general k now follows
from the result for k ≥ 2.

Corollary 6.2. Let k, ε, ψ, χ, κ be as above, and let ψ : Rn →
L also denote the homomorphism corresponding to the L-point
of Xn induced by ψ. Then multiplication by Eκ induces an
isomorphism between MΓ,n ⊗Rn L (the tensor product formed
via the homomorphism ψ : Rn → L) and the space of p−rn-
overconvergent modular forms of level Γ, weight k and character
ε defined over L.

Proof. Say ψ ∈ Wχ. Then unravelling the definitions gives
that MΓ,n ⊗Rn L = Mn,χ ⊗Rn,χ L is equal to the χ-eigenspace
of O(X(Γ,Γ1(q))≥p−rn ) ⊗Qp L, and hence the χ-eigenspace of
O(X(Γ,Γ1(qp

n−1))≥p−rn ) ⊗Qp L, where χ here is regarded as a
character of (Z/qpn−1Z)× (note that the forgetful functor

X(Γ,Γ1(qp
n−1))≥p−rn → X(Γ,Γ1(q))≥p−rn

is the map induced by quotienting X(Γ,Γ1(qp
n−1))≥p−rn out by

the group (1 + qZp/1 + qpn−1Zp)). The result now follows from
the fact that Eκ has weight k, character ε/χ and is non-vanishing
on X(Γ,Γ1(qp

n−1))≥p−rn .

Motivated by this Corollary, we define the q-expansion of an
element of Mn to be the following element of Rn[[q]], as follows:
it suffices to attach a q-expansion in Rn,χ[[q]] to an element of
Mn,χ, and hence it suffices to attach a q-expansion in Rn,χ[[q]]
to an element of Bn,χ. Now an element of O(X(Γ,Γ1(q))≥p−rn )
has a q-expansion in Qp[[q]] in the usual way, and hence an el-
ement of Bn,χ has a q-expansion in Rn,χ[[q]]. This is not the
q-expansion that we are interested in however—this q-expansion
corresponds to a family of weight 0 overconvergent forms. we
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twist this q-expansion by multiplying it by E, the q-expansion
of the restricted Eisenstein family defined in Section 2.2 of [9].
Note that the restricted Eisenstein family is a family over B and
so we have to explain how to regard it as a family over Xn,χ;
we do this by pulling back via the composite of the natural in-
clusion Xn,χ → Wχ and the natural isomorphism Wχ → W1.
The resulting power series is defined to be the q-expansion of m,
and with this normalisation, the isomorphism of the previous
corollary preserves q-expansions.

As we shall see in the next section, we will be defining Hecke
operators on MΓ,n (at least for certain choices of Γ) so that they
agree with the standard Hecke operators on overconvergent mod-
ular forms, via the isomorphism of the previous Corollary. We
finish this section by remarking that the isomorphism of the
previous corollary is however not compatible with Diamond op-
erators in general, for two reasons—firstly, overconvergent forms
of classical weight-character ψ naturally have an action of the
group (Z/qpn−1Z)×, but the full space Mn only has an action of
(Z/qZ)×, and secondly even the actions of (Z/qZ)× do not in
general coincide, as one is defined in weight 0 and the other in
weight k so the two actions differ (at least for p > 2) by the kth
power of the Teichmüller character.

7 Hecke operators and classical eigen-

curves

We now restrict to the case where Γ is either the congruence
subgroup Γ0(N) (the subgroup of GL2(Ẑ) consisting of matri-
ces which are upper triangular mod N) or Γ1(N) (the subgroup
of Γ0(N) consisting of matrices of the form

( ∗ ∗
0 1

)
mod N) of

GL2(Af ), for some N prime to p. The associated moduli prob-
lems are then just the usual problems of representing cyclic sub-
groups or points of order N . We now define Hecke operators
Tm for m prime to p, and a compact operator Up, on the spaces
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MΓ,n for n ≥ 1. Almost all of the work has been done for us, in
section B5 of [10] (where Hecke operators are defined on over-
convergent forms over B∗) and in section 3.4 of [9] (where this
work is extended to B). Note that the arguments in these ref-
erences do not assume p > 2 or N = 1. We do not reproduce
the arguments here, we just mention that the key point is that
because the argument is not a geometric one, the construction
of Tm is done at the level of q-expansions and the resulting defi-
nitions initially go from forms of level N to forms of level Nm.
However one can prove that the resulting maps do in fact send
forms of level N to forms of level N by noting that the result is
true for forms of classical weight, where the Hecke operator can
be defined via a correspondence, and deducing the general case
by considering a trace map and noting that a family of forms
that vanishes at infinitely many places must be zero.

The one lacuna in the arguments in the references above is
that in both cases the operators are defined as endomorphisms
of overconvergent forms, rather than r-overconvergent forms for
some fixed r. What we need to do is to prove that the Hecke
operators defined by Coleman and Mazur send r-overconvergent
forms to r-overconvergent forms, for some appropriate choice
of r. Let E denote the restricted Eisenstein family (that is, the
usual family of Eisenstein series over B), and for ` 6= p a prime
number, let E`(q) denote the ratio E(q)/E(q`) as in Proposi-
tion 2.2.7 of [9], thought of as an overconvergent function on
X0(`p)≥1 × B (note that Coleman and Mazur only assert that
this function lives on X1(q, `)≥1 × B but it is easily checked to
be invariant under the Diamond operators at p).

Lemma 7.1. The restriction of E`(q) to X0(`p)≥1×Xn,1 extends
to a non-vanishing function on X0(`p)≥p−rn ×Xn,1.

Proof. For simplicity in this proof, we say that a function on
X0(p)≥1 × Xn,1 is r-overconvergent if it extends to a function
on X0(p)≥p−r ×Xn,1, and similarly we say that such a function
is r-overconvergent and non-vanishing if it extends to a non-
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vanishing function on X0(p)≥p−r ×Xn,1.
We first prove that E`(q) is rn-overconvergent. Observe that

Proposition 2.2.7 of [9] tells us that E`(q) is r-overconvergent
for some r > 0. Let us assume r < rn and explain how to ana-
lytically continue E`(q) a little further. By definition of rn, we
know that Ep(q) is rn-overconvergent and non-vanishing. Fur-
thermore the non-trivial degeneracy map X0(`p) → X0(p) which
on q-expansions sends F (q) to F (q`) induces a morphism of rigid
spaces X0(`p)≥p−rn → X0(p)≥p−rn and hence Ep(q

`) is also an
rn-overconvergent non-vanishing function. We deduce that the
ratio Ep(q

`)/Ep(q) is also an rn-overconvergent non-vanishing
function. But

Ep(q
`)/Ep(q) = E`(q

p)/E`(q)

and E`(q) is r-overconvergent, and hence we see that E`(q
p) is

also r-overconvergent. Let r′ = min{pr, rn}. We claim that
E`(q) is r′-overconvergent and this clearly is enough because re-
peated applications of this idea will analytically continue E`(q)
until it is rn-overconvergent, which is what we want. But it is
a standard fact that the U operator increases overconvergence
by a factor of p, and hence if E`(q

p) is r-overconvergent, then
E`(q) = U(E`(q

p)) is r′-overconvergent.
Finally we show that E`(q) is non-vanishing on X0(`p)≥p−rn×

Xn,1 and this follows from an argument similar to the non-
vanishing statement proved in Proposition 6.1—if E`(q) had a
zero then choose a zero (x, κ) and then specialise to weight κ;
we may assume that x is a zero closest to the ordinary locus in
weight κ, and then E`(q

p) has a zero closer to the ordinary locus
in weight κ and hence E`(q)/E`(q

p) would have a pole in weight
κ, contradicting the fact that E`(q)/E`(q

p) = Ep(q)/Ep(q
`) is

rn-overconvergent.

We now have essentially everything we need to apply our
eigenvariety machine. The preceding lemma and the arguments
in section 3.4 of [9] can be used to define Hecke operators Tm
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(m prime to p) and Up on rn-overconvergent forms over Xn. If
X is any admissible affinoid open subdomain of W then there
exists some n ≥ 1 such that X ⊆ Xn; we choose the smallest
such n and define the Banach module MX to be the pullback to
O(X) of the O(Xn)-module Mn. We let T denote the abstract
polynomial algebra over R generated by the Hecke operators Tm

for m prime to p, the operator φ = Up, and the Diamond opera-
tors at N if Γ = Γ1(N). These Hecke operators are well-known
to commute, as can be seen by checking on classical points. We
need to check that the natural restriction maps α between spaces
of overconvergent forms of different radii are all links, but this
follows easily from the technique used in the standard proof that
the characteristic power series of Up on r-overconvergent forms
is independent of the choices of r > 0. The key point is that
the endomorphism Up of r-overconvergent forms can be checked
to factor as a continuous map from r-overconvergent forms to s-
overconvergent forms, for some s > r, followed by the (compact)
restriction map from s-overconvergent forms to r-overconvergent
forms. In fact one can take s to be anything less than both pr and
p/(p+ 1). One deduces that for any 0 < r < r′ < p/(p+ 1), the
natural map from r′-overconvergent forms to r-overconvergent
forms is a “link”. Our conclusion is that the construction of the
“D” eigencurve in [9] can be generalised to all p and N ≥ 1
prime to p.

PART III: Eigenvarieties for Hilbert
modular forms.

8 Thickenings of K-points and weight

spaces

Let K be a non-archimedean local field (that is, a field either
isomorphic to a finite extension of Qp or to the field of fractions
of k[[T ]] with k finite). Let O denote the integers of K, and let
V denote the closed affinoid unit disc over K. As an example
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of a construction which will be used many times in the sequel,
we firstly show that is not difficult to construct a sequence U1 ⊃
U2 ⊃ . . . of affinoid subdomains of V , defined over K, with the
property that ⋂

t≥1

(
Ut(L)

)
= V (K) = O (∗)

for all complete extensions L of K. Note that (∗) implies that
Ut(K) = V (K) for all t (set L = K), but also that no non-empty
K-affinoid subdomain of V can be contained in all of the Ut. The
Ut should be thought of as a system of affinoid neighbourhoods
of V (K) = O in V . The construction of the Ut is simple: Let
π ∈ K be a uniformiser and define Ut =

⋃
α∈Xt

B(α, |π|t), where
Xt is a set of representatives in O for O/(π)t, and B(α, |π|t) is
the closed affinoid disc with centre α and radius |π|t. Note that
Xt is finite because K is a local field, and hence Ut is an affinoid
subdomain of V : it is a finite union of affinoid subdiscs of V of
radius |π|t. It is easy to check moreover that the Ut satisfy (∗)
(use the fact that O is compact to get the harder inclusion).

We in fact need a “twisted” n-dimensional version of this
construction, which is more technical to state but which requires
essentially no new ideas. Before we explain this generalisation,
we make an observation about the possible radii of discs defined
over non-archimedean fields. Let K be an arbitrary field com-
plete with respect to a non-trivial non-archimedean norm. If L is
a finite extension of K then there is a unique way to extend the
norm on K to a norm on L, and hence there is a unique way to
extend the norm on K to a norm on an algebraic closure K of K.

Let
∣∣∣K×

∣∣∣ denote the set
{
|x| : x ∈ K×

}
. It is easily checked that

this set is just {|y|1/d : y ∈ K×, d ∈ Z≥1}. Note that for r ∈
∣∣∣K×

∣∣∣
the closed disc B(0, r) with centre zero and radius r is a rigid
space defined over K: if r ≤ 1 then r = |y|1/d for some y ∈ K×

and d ∈ Z≥1, and one can construct B(0, r) as the space associ-
ated to the affinoid algebra K〈T, S〉/(T d− yS); the general case
can be reduced to this by scaling. By using products of these
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discs, one sees that one can construct polydiscs with “fractional”
radii over K.

Let M/M0 be a fixed finite extension of non-archimedean
local fields, and assume that the restriction of the norm on M is
the norm on M0. Let K denote any complete extension of M0,
again with the norm on K assumed to extend the norm on M0.
Assume moreover that K has the property that the image of
any M0-algebra homomorphism M → K (an algebraic closure
of K) lands in K. The Ut above will correspond to the case
M0 = M = K of the construction below. Later on M0 will be Qp

but we do not need to assume that we are in mixed characteristic
yet.

Let I denote the set of M0-algebra homomorphisms M → K.
We will use |.| to denote the norms on both M and K, and
there is of course no ambiguity here because any M0-algebra
map i : M → K will be norm-preserving. Let O now denote
the integers of M (in particular O is no longer the integers
of K), and let π be a uniformiser of M . Let V be the unit
polydisc over K of dimension |I|, the number of elements of I,
and think of the coordinates of V as being indexed by elements

of I. Let NK denote the set {|x| : x ∈ K×
, |x| ≤ 1} and let N×

K

denote NK\{1} = {|x| : x ∈ K×
, |x| < 1}.

If α = (α1, α2, . . . , ) ∈ KI and r ∈ NK then we define B(α, r)
to be the K-polydisc whose L-points, for L any complete exten-
sion of K, are

B(α, r)(L) = {(x1, x2, . . .) ∈ LI : |xi − αi| ≤ r for all i}.

For example we have V = B(0, 1). Note that B(α, r) is defined
over K by the comments above.

There is a natural map M → KI which on the ith com-
ponent sends m to i(m), and we frequently write mi for i(m).
Furthermore, we implicitly identify m ∈ M with its natural im-
age (mi)i∈I in KI . In particular, if α ∈ O then α can be thought
of as a K-point of V .
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Definition. If r ∈ NK then define Br :=
⋃

α∈O B(α, r), and if
furthermore r ∈ N×

K then define B×
r :=

⋃
α∈O× B(α, r).

We see that Br and B×
r are finite unions of polydiscs, because

B(α, r) = B(β, r) if |α−β| ≤ r, and O is compact. In particular
Br and B×

r areK-affinoid subdomains of V . The space Br should
be thought of as a thickening of O in V ; similarly B×

r should be
thought of as a thickening of O×. One can check that for all
complete extensions L of K, we have⋂

r∈NK

Br(L) = O

and ⋂
r∈N×

K

B×
r (L) = O×.

The proof follows without too much difficulty from the fact that
O and O× are compact subsets of the metric space KI . One
can also check that for any r ∈ NK , the space Br is an affinoid
subgroup of (A1)I , the product of I copies of the additive group,
and that if r ∈ N×

K then B×
r is an affinoid subgroup of GI

m, the
product of I copies of the multiplicative group. An example of
the idea continually used in the argument is that if (yi) ∈ B×

r (L)
for L some complete extension of K, then (yi) is close to some
element α of O×, and hence (y−1

i ) is close to α−1. See the lemma
below for other examples of this type of argument.

We record some elementary properties of Br and B×
r that

we shall use later. Let γ =
(

a b
c d

)
be an element of M2(O) with

|c| < 1, |d| = 1 and det(γ) 6= 0. Definem ∈ NK by | det(γ)| = m.
Choose r ∈ NK , and t ∈ Z>0 such that |c| ≤ |πt|.

Lemma 8.1. (a) There is a map of rigid spaces Br → B×
r|πt|

which on points sends (zi) to (cizi + di) (where here as usual ci
denotes the image of c ∈M in K via the map i and so on).

(b) There is a map of rigid spaces Br → Brm which on points

sends (zi) to
(

aizi+bi

cizi+di

)
.
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Proof. (a) Clearly there is a map V → V sending (zi) to (cizi +
di); we must check that the image of Br is contained within
B×

r|πt|. Because all the rigid spaces in question are finite unions
of affinoid polydiscs, it suffices to check this on L-points, for L
any complete extension of K. So let (zi) be an L-point of Br.
Then there exists α ∈ O such that |zi − αi| ≤ r ≤ 1 for all i ∈
I. In particular |zi| ≤ 1 so |cizi + di| = 1, and so cizi + di is
invertible. Note now that β := cα + d ∈ O× and for i ∈ I we
have |(cizi + di)−βi| = |ci(zi−αi)| ≤ |c|r ≤ |πt|r, which is what
we wanted.

(b) A similar argument works, the key point being that if
(zi) ∈ Br(L) and α ∈ O is chosen such that |zi − αi| ≤ r for

all i, then defining β = aα+b
cα+d

∈ O, we see that
∣∣∣aizi+bi

cizi+di
− βi

∣∣∣ =

| det(γ)i(zi −αi)| ≤ | det(γ)|r = mr (as |cizi + di| = 1 = |cα+ d|
as in (a)) and this is enough.

Now let M0, M , K be as before, and let p > 0 denote the
residue characteristic of K. Let Γ be a profinite abelian group
containing an open subgroup topologically isomorphic to Zd

p for
some d. If U is a rigid space over K, let O(U) denote the ring
of rigid functions on U . Note that O is still the integer ring
of M but this should not cause confusion. We say that a group
homomorphism Γ → O(U) (resp. Γ → O(U)×) is continuous if,
for all affinoid subdomains X of U , the induced map Γ → O(X)
(resp. Γ → O(X)×) is continuous. We recall some results on
representability of certain group functors. By a K-group we
mean a group object in the category of rigid spaces over K.

Lemma 8.2. (a) The functor from K-rigid spaces to groups,
sending a space X to the group O(X) under addition (resp.
the group O(X)× under multiplication) is represented by the K-
group A1 (resp. Gm), the analytification of the affine line (resp.
the affine line with zero removed).

(b) If Γ is as above, then there is a separated K-group XΓ

representing the functor which sends a K-rigid space U to the
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group of continuous group homomorphisms Γ → O(U)×. More-
over XΓ is isomorphic to the product of an open unit polydisc
and a finite rigid space over K.

(c) If L is a complete extension of K then the base change
of XΓ to L represents the functor on L-rigid spaces sending U to
the group of continuous group homomorphisms Γ → O(U)×.

Proof. (a) IfX is a rigid space and f ∈ O(X) then for all affinoid
subdomains U ⊆ X, f induces a unique map U → A1 because
there exists 0 6= λ ∈ K such that λf is power-bounded on U ,
and then there is a unique map K〈T 〉 → O(U) sending T to
λf by Proposition 1.4.3/1 of [1]; everything is compatible and
glues, and the result for A1 follows easily. Moreover, if f is in
O(X)× then for every affinoid subdomain U of X, it is possible
to find an affinoid annulus in Gm containing f(U), as both f(U)
and (1/f)(U) lie in an affinoid subdisc of A1. Hence f ∈ O(X)×

gives a map X → Gm, and the result in the multiplicative case
now follows without too much difficulty.

(b) The existence of XΓ is Lemma 2(i) of [5]. We recall the
idea of the proof: the structure theorem for topologically finitely-
generated profinite abelian groups shows that Γ is topologically
isomorphic to a product of groups which are either finite and
cyclic, or copies of Zp. Now by functorial properties of products
in the rigid category, it suffices to show representability in the
cases Γ = Zp and Γ a finite cyclic group. The case Γ = Zp is
treated in Lemma 1 of [5] and the remarks after it, which show
that the functor is represented by the open unit disc centre 1, and
the case of Γ cyclic of order n is represented by the analytification
of µn over K. That χΓ has the stated structure is now clear.

(c) By functoriality it is enough to verify these base change
properties in the two cases Γ = Zp and Γ finite cyclic; but in
both of these cases the result is clear.

We now assume that M0 = Qp, and hence that M is a fi-
nite extension of Qp. We assume (merely for notational ease)
that the norms on M0, M and K are all normalised such that
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|p| = p−1. We remind the reader that if t is an element of an
affinoid K-algebra and |t| < 1 then the power series for log(1+t)
converges, and if |t| < p−1/(p−1) then the power series for exp(t)
converges; furthermore log and exp give isomorphisms of rigid
spaces from the open disc with centre 1 and radius p−1/(p−1) to
the open disc with centre 0 and radius p−1/(p−1). We would like
to use logs to analyse B×

r and hence are particularly interested
in the spaces B×

r for r < p−1/(p−1); we call such r “sufficiently
small”. For these r, we see that the component of B×

r contain-
ing 1 is isomorphic, via the logarithm on each coordinate, to the
component of Br containing 0.

Recall thatO is the integers ofM , and hence Γ = O× satisfies
the conditions just before Lemma 8.2. If n ∈ ZI then there is
a group homomorphism O× → K× = Gm(K), which sends α
to

∏
i α

ni
i . It is easily checked (via exp and log) that if r is

sufficiently small then this map is the K-points of a map of K-
rigid spaces B×

r → Gm. For more arithmetically complicated
continuous maps from O× to invertible functions on affinoids,
we might have to make r smaller still before such an analytic
extension exists, but the proposition below shows that we can
always do this. An important special case of this proposition is
the case of an arbitrary continuous homomorphism O× → K×,
but the proof is essentially no more difficult if K× is replaced by
the invertible functions on an arbitrary affinoid, so we work in
this generality.

Proposition 8.3. If X is a K-affinoid space and n : O× →
O(X)× is a continuous group homomorphism, then there is at
least one r ∈ N×

K and, for any such r, a unique map of K-rigid
spaces βr : B×

r × X → Gm, such that for all α ∈ O×, n(α) is
the element of O(X)× corresponding (via Lemma 8.2(a)) to the
map X → Gm obtained by evaluating βr at the K-valued point α
of B×

r .

Definition. We call βr a thickening of n.
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Proof of Proposition. It suffices to prove that there exists at least
one sufficiently small r such that if B is the component of B×

r

containing theK-point 1, then there is a unique β : B×X → Gm

with a property analogous to that of βr above for all α ∈ ∆ :=
{α ∈ O× : |α − 1| ≤ r} (or even in some subgroup of finite in-
dex). Via the logarithm map one sees that ∆ is isomorphic to O.
It hence suffices to prove that for any continuous group homo-
morphism χ : O → O(X)× there exists N ∈ Z≥0 such that the
induced homomorphism pNO → O(X)× is induced by a unique
map of K-rigid spaces B(0, p−N) × X → Gm. Here B(0, p−N)
denotes the polydisc in V with radius p−N , and pNO is embed-
ded as a subset of the K-points of B(0, p−N) in the usual way.
Now observe that if d = [M : Qp] then as a topological group,
O is isomorphic to Zd

p. Hence, if one fixes a K-Banach algebra
norm on O(X) and a Zp-basis e1, e2, . . . , ed of O, one sees using
Lemma 1 of [5] that there exists a positive integer N such that
|χ(pNej) − 1| < p−1/(p−1) for all j. Observe now that log(χ) is
a continuous group homomorphism pNO → O(X), and O(X) is
a K-vector space; furthermore, the image of pNO will land in
a finite-dimensional K-subspace of O(X). It is a standard fact
(linear independence of distinct field embeddings) that the con-
tinuous group homomorphismsO → K form a finite-dimensional
K-vector space with basis the set I, now regarded as the ring
homomorphisms O → K, and hence there exists f1, f2, . . . , fd ∈
O(X)× such that for all α ∈ pNO we have χ(α) = exp (

∑
i αifi),

where αi denotes i(α) ∈ K. By increasing N if necessary, we
may assume that

∣∣pNfi

∣∣ < p−1/(p−1) for all i, and we claim that
this N will work. To construct β : B(0, p−N) × X → Gm it
suffices, by Lemma 8.2(a), to construct a unit in the affinoid
O(X)〈T1, T2, . . . , Td〉 = O

(
B(0, p−N)×X

)
which specialises to

χ(α) via the map sending Ti to αi/p
N , for all α ∈ pNO. The

unit exp
(∑

i p
NTifi

)
is easily seen to do the trick.

For uniqueness it suffices (again via exp and log) to prove that
a map of rigid spaces f : B1 → A1 which sends every element
of O to 0 must be identically 0, that is, that O is Zariski-dense
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in B1. It suffices to show that f vanishes on a small polydisc
centre 0, and one can check this on points. Again choose a Zp-
basis (e1, e2, . . . , ed) of O as a Zp-module. It suffices to prove
that for all complete extensions L of K, f is zero on all L-points
of B1 of the form z1e1 + z2e2 + . . . + zded with zi ∈ OL, as
this contains all the L-points of a small polydisc in B1 by a
determinant calculation. Note that if all the zβ are in Zp then
certainly f(z1e1 +z2e2 + . . .) = 0. Now fix zβ ∈ Zp for β ≥ 2 and
consider the function on the affinoid unit disc over L sending z1

to f(z1e1 + z2e2 + . . .). This is a function on a closed 1-ball that
vanishes at infinitely many points, and hence it is identically
zero. Now fix z1 ∈ OL and zβ ∈ Zp for β ≥ 3, and let z2 vary,
and so on, to deduce that f is identically 0.

For applications, we want to consider products of the Br and
B×

r constructed above. Let F denote a number field, with in-
tegers OF , and let p be a prime. Let Op denote OF ⊗ Zp, the
product of the integer rings in the completions of F at all the
primes above p, and let K0 be the closure in Qp of the com-

positum of the images of all the field homomorphisms F → Qp.
Then K0 is a finite Galois extension of Qp. Then K0 contains
the image of any field homomorphism Fv → Qp, where v is any
place of F above p, so we are in a position to apply the previ-
ous constructions with M0 = Qp, M = Fv, and K any complete
extension of K0.

Let J denote the set of places of F above p, and let I denote
the set of field homomorphisms F → K. Note that each i ∈ I
extends naturally to a map i : Fp → K where Fp = F ⊗Qp =
⊕j∈JFj. For j ∈ J , let Ij denote the subset of I consisting of
i : Fp → K which factor through the completion F → Fj. Then

I is the disjoint union of the Ij. For r ∈ (NK)J and j ∈ J write
rj for the component of r at j. Let Br (resp. B×

r if rj < 1 for
all j) denote the rigid space over K which is the product over
j ∈ J of the rigid spaces Brj

(resp. B×
rj

) defined above. Then Br

(resp. B×
r ) is a thickening of Op (resp. O×

p ) in the unit g-polydisc
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over K, where now g = [F : Q]. Indeed, it is easily checked that
for all complete extensions L of K we have

Br(L) = {z ∈ LI : there is α ∈ Op with |zi − αi| ≤ ri}

and, when ri < 1 for all i,

B×
r (L) = {z ∈ LI : there is α ∈ O×

p with |zi − αi| ≤ ri}

just as before, where, for α ∈ Op, αi denotes i(α) ∈ K.
Now assume that F is totally real. Let G denote a subgroup

of O×
F of finite index, and let ΓG be the quotient of O×

p ×O×
p by

the closure of the image of G via the map γ 7→ (γ, γ2). Then ΓG

is topologically isomorphic to
(
O×

p /G
)
×O×

p , so its dimension is
related to the defect of Leopoldt’s conjecture for the pair (F, p)
(in particular, the dimension is at least g + 1 and conjecturally
equal to g + 1). Let XΓG

be the rigid space associated to ΓG in
Lemma 8.2(b), and let W to be the direct limit limXΓG

as G
varies over the set of subgroups of finite index of O×

F , partially
ordered by inclusion. The fact that W exists is an easy conse-
quence of Lemma 2(iii) of [5], which shows that the transition
morphisms are closed and open immersions: if G1 ⊆ G2 ⊆ O×

F

are subgroups of O×
F of finite index and Γi = ΓGi

, then there is a
surjection Γ1 → Γ2 with finite kernel, and the corresponding map
XΓ2 → XΓ1 is a closed immersion which geometrically identifies
XΓ2 with a union of components of XΓ1 . In particular we see that
the XΓG

, as G varies through the subgroups of O×
F of finite index,

form an admissible cover of W . A K-point of W corresponds to
a continuous group homomorphism O×

p ×O×
p → K× whose ker-

nel contains a subgroup of O×
F of finite index (we always regard

O×
F as being embedded in O×

p × O×
p via the map γ 7→ (γ, γ2)).

More generally, we define a weight to be a continuous group ho-
momorphism κ : O×

p × O×
p → O(X)×, for X any affinoid, such

that the kernel of κ contains a subgroup of O×
F of finite index.

If U is an affinoid K-space and U → W is a map of rigid
spaces, then (because the XΓG

cover W admissibly) there is a
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subgroup G of finite index of O×
F such that the image of U is

contained within XΓG
. In particular, by the universal property

of XΓG
there is an induced continuous group homomorphism

ΓG → O(U)×, which induces a continuous group homomor-
phism κ : O×

p × O×
p → O(U)×. By composing this map with

the map O×
p → O×

p × O×
p sending γ to (γ, 1), we get a con-

tinuous group homomorphism n : O×
p → O(U)×, which can be

written as a product over j ∈ J of continuous group homomor-
phisms nj : O×

Fj
→ O(U)×. Hence by Proposition 8.3 there

exists r ∈
(
N×

K

)J
and a map B×

r × U → Gm giving rise to n.
We call such a map a thickening of n. Because we have only
set up our Fredholm theory on Banach modules, we will have
to somehow single out one such thickening, which we do (rather
arbitrarily) in the definition below. First we single out a discrete

subset N×
d of

(
N×

K

)J
as follows: let πj denote a uniformiser of

Fj and define N×
d ⊂

(
N×

K

)J
to be the product over j ∈ J of

the sets {|πt
j| : t ∈ Z>0}. We equip N×

d with the obvious partial
ordering.

Definition. Let X be an affinoid and let κ = (n, v) : O×
p ×O×

p →
O(X)× be a weight. We define r(κ) to be the largest element of
N×

d such that the construction above works. Explicitly, we choose

r(κ)j = |πtj
j | with tj ∈ Z>0, and the tj are chosen as small as

possible such that the maps nj : O×
Fj
→ O(X)× are induced by

maps B×
r(κ)j

×X → Gm and hence the map n : O×
p → O(X)× is

induced by a map B×
r(κ) ×X → Gm.

This construction applies in particular when X is an affinoid
subdomain of W (the inclusion X → W induces a map κ as
above). Note however that as the image of X in W gets larger,
the r(κ)j will get smaller—there is in general no universal r and
map B×

r ×W → Gm. Note also that the construction applies if
X is a point, and in this case κ corresponds to a point of W .
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9 Classical automorphic forms.

Our exposition of the classical theory follows [12] for the most
part. We recall the notation of the latter part of the previous
section, and add a little more. Recall that F is a totally real
field of degree g over Q, and OF is the integers of F . We fix an
isomorphism C ∼= Qp; then we can think of I as the set of all

infinite places of F , or as all the field embeddings F → Qp. Note

that any such map i extends to a map i : Fp := F ⊗Qp → Qp.
Recall that K is a complete extension of K0, the compositum
of the images i(F ) of F as i runs through I, and we may also
think of I as the set of all field homomorphisms F → K. We
let J denote the set of primes of OF dividing p. If j ∈ J then
let Fj denote the completion of F at j and let Oj denote the
integers in Fj. We set Op := OF ⊗ Zp; then Fp = ⊕j∈JFj and
Op = ⊕j∈JOj. Choose once and for all uniformisers πj of the
local fields Fj for all j, and let π ∈ Fp denote the element whose
jth component is πj. We will also use π to denote the ideal of
OF which is the product of the prime ideals above p. Note that
some constructions (for example the Hecke operators Uπj

defined
later) will depend to a certain extent on this choice, but others
(for example the eigenvarieties we construct) will not.

Any i ∈ I gives a map Fp → K and this map factors through
the projection Fp → Fj for some j := j(i) ∈ J ; hence we get
a natural surjection I → J . If S is any set then this surjection
induces a natural injection SJ → SI , where as usual SI denotes
the set of maps I → S. We continue to use the following very
useful notation: if (aj) ∈ SJ and i ∈ I then by ai we mean aj

for j = j(i).
Now let D be a quaternion algebra over F ramified at all in-

finite places. Let us assume that D is split at all places above p.5

Let OD denote a fixed maximal order of D, and fix an iso-

5One can almost certainly develop some of the theory as long as at least
one place above p is split, although one might have to fix the weights at the
ramified places.
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morphism OD ⊗OF
OFv = M2(OFv) for all finite places v of F

where D splits (here Fv is the completion of F at v and OFv is
the integers in this completion). In particular we fix an isomor-
phism OD ⊗OF

Op = M2(Op), and this induces an isomorphism
Dp := D ⊗F Fp = M2(Fp).

We recall the classical definitions of automorphic forms forD.
If n ∈ ZI

≥0 then we define Ln to be the K-vector space with ba-
sis the monomials

∏
i∈I Z

mi
i , where m ∈ ZI

≥0, 0 ≤ mi ≤ ni, and
where the Zi are independent indeterminates. If t ∈ ZJ

≥1 then
define Mt to be the elements (γj) of M2(Op) =

∏
j∈J M2(Oj)

with the property that if γj =
( aj bj

cj dj

)
then det(γj) 6= 0, π

tj
j

divides cj, and πj does not divide dj. Then Mt is a monoid
under multiplication. By M1 we mean the monoid Mt for t =
(1, 1, . . . , 1). If v ∈ ZI and n ∈ ZI

≥0 then define the right M1-
module Ln,v to be the K-vector space Ln equipped with the ac-

tion of M1 defined by letting (γj) =
(( aj bj

cj dj

))
j∈J

send
∏

i Z
mi
i to∏

i(ciZi+di)
ni(aidi−bici)vi

(
aiZi+bi

ciZi+di

)mi

and extending K-linearly

(note that here we are using the notation ai for the image of aj(i)

in K via the map i, as explained above). Note that in fact the
same definition gives an action of GL2(Fp) on Ln,v, but we never
use this action.

The natural maps OF → Op → M2(Op) (via the diagonal
embedding) induce an embedding from O×

F into M1. An easy
check shows that the totally positive units in O×

F act trivially on
Ln,v if n+ 2v ∈ Z.

Define AF,f to be the finite adeles of F and Df := D⊗F AF,f .
If x ∈ Df then let xp ∈ Dp = M2(Fp) denote the projection onto
the factor of Df at p. If t ∈ ZJ

≥1 then we say that a compact open
subgroup U ⊂ D×

f has wild level ≥ πt if the projection U → D×
p

is contained within Mt. If t = (1, 1, . . . , 1) then we drop it from
the notation and talk about compact open subgroups of wild
level ≥ π.

SayD×
f =

∐µ
λ=1D

×τλU . Then the groups Γλ := τ−1
λ D×τλ∩U
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are finitely-generated and moreover τλΓλτ
−1
λ ⊂ D× is commen-

surable with O×
D and hence with O×

F . Hence Γλ is also com-
mensurable with O×

F . If n is an ideal of OF which is coprime
to disc(D) then we define U0(n) (resp. U1(n)) in the usual way

as being matrices in (OD ⊗ Ẑ)× which are congruent to
( ∗ ∗

0 ∗
)

(resp.
( ∗ ∗

0 1

)
) mod n. Note that for many such choices of U we

see that the Γλ are all contained within O×
F (see, for example,

Lemma 7.1 of [12] and the observation that, in Hida’s notation,

the groups Γ
i
(U) are finite because D is totally definite). How-

ever we do not need to assume this because of our generalisation
of Coleman’s Fredholm theory.

Say t ∈ ZJ
≥1, U is a compact open of wild level ≥ πt, and A

is any right Mt-module, with action written (a,m) 7→ a.m. If
f : D×

f → A and u ∈ U then define f |u : D×
f → A by (f |u)(g) :=

f(gu−1).up. Now set

L(U,A) :=
{
f : D×\D×

f → A : f |u = f for all u ∈ U
}
.

Note that f ∈ L(U,A) is determined by f(τλ) for 1 ≤ λ ≤ µ,
and one checks easily that the map f 7→ (f(τλ))1≤λ≤µ induces an
isomorphism

L(U,A) →
µ⊕

λ=1

AΓλ .

In particular, the functor L(U,−) is left exact. We remark that
in the circumstances that will interest us later on, A will be an
ONable Banach module over an affinoid in characteristic zero,
the Γλ will all act via finite groups, and the invariants will hence
be a Banach module with property (Pr). Indeed, this phe-
nomenon was the main reason for extending Coleman’s theory
from ONable modules to modules with property (Pr).

If η ∈ D×
f and ηp ∈ Mt then one can define an endomorphism

[UηU ] of L(U,A) as follows: decompose UηU =
∐

i Uxi (a finite
union) and define

f |[UηU ] :=
∑

i

f |xi.
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This operator is called the Hecke operator associated to η.
Now let n ∈ ZI

≥0 and v ∈ ZI be such that n + 2v ∈ Z. Set
k = n + 2 and w = v + n + 1. Then k − 2w ∈ Z and k ≥ 2
(that is, ki ≥ 2 for all i), and conversely given k and w with
these properties one can of course recover n and v. We finish by
recalling the definition of classical automorphic forms for D in
this context. Let U ⊂ D×

f be a compact open subgroup of wild
level ≥ π.

Definition. The space of classical automorphic forms SD
k,w(U)

of weight (k, w) and level U for D is the space L(U,Ln,v).

This space is a finite-dimensional K-vector space. It is not,
in the strict sense, a classical space of forms, because we have
twisted the weight action from infinity to p. On the other hand
if one chooses a field homomorphism K → C then SD

k,w(U)⊗K C
is isomorphic to a classical space of Hilbert modular forms, as
described in, for example, section 2 of [12]. We remark also that
because the full group GL2(Fp) acts naturally on Ln,v, our as-
sumption that U has wild level ≥ π is unnecessary at this point.
However, the forms that we shall p-adically interpolate will al-
ways have wild level ≥ π, because of the standard phenomenon
that to p-adically analytically interpolate forms on GL2 one has
to drop an Euler factor.

10 Overconvergent automorphic forms.

Let X be an affinoid over K, and let κ = (n, v) : O×
p × O×

p →
O(X)× be a weight. In this section we will define O(X)-modules
of r-overconvergent automorphic forms of weight κ. In this gen-
erality, κ really is a family of weights; one important case to
keep in mind is when X is a point, so n and v are continuous
group homomorphisms O×

p → K×, the resulting spaces will then
be Banach spaces over K and will be automorphic forms of a
fixed weight. One important special case of this latter situation
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is when n and v are of the form α 7→
∏

i α
mi
i where the mi are

integers; the resulting spaces of automorphic forms will have a
“classical weight” and there will be a natural finite-dimensional
subspace corresponding to a space of classical automorphic forms
as defined in the previous section.

The group homomorphism κ : O×
p ×O×

p → O(X)× induces a
map f : X →W by Lemma 8.2(b) and (c). We extend the map
v : O×

p → O(X)× to a group homomorphism v : F×p → O(X)×

by defining v(πj) = 1 for all j ∈ J . Note that this extension
depends on our choice of πj (it is analogous to Hida’s choices of
{xv} in [12]) but subsequent definitions will not depend seriously
on this choice (in particular the eigenvariety we construct will
not depend on this choice). Note also that the supremum semi-
norm of every element in the image of n or v is 1.

Now for r ∈ (NK)J define Aκ,r to be the K-Banach algebra
O(Br × X). Note that Aκ,r does not yet depend on κ but we
will define a monoid action below which does. Let us assume
for simplicity that X is reduced (this is not really necessary, but
will be true in practice and also gives us a canonical choice of
norm on O(X), namely the supremum norm). Endow Aκ,r with
the supremum norm. As usual write κ = (n, v) and n =

∏
j∈J nj

with nj : O×
Fj
→ O(X)×.

Definition. We say that t = (tj)j∈J ∈ ZJ
>0 is good for the

pair (κ, r) if for each j ∈ J there is thickening of nj to a map
B×

rj

˛̨̨
π

tj
j

˛̨̨ ×X → Gm.

Equivalently, t ∈ ZJ
>0 is good if r|πt| <= r(κ) in (NK)J with

the obvious partial order. Given any (κ, r) as above, there will
exist good t ∈ ZJ

>0 by Proposition 8.3 (indeed, there will exist
a unique minimal good t). The point of the definition is that if
t is good for (κ, r) then we can define a right action of Mt on
Aκ,r (we denote the action by a dot) by letting γ =

(
a b
c d

)
∈ Mt

act as follows: if h ∈ Aκ,r and (z, x) ∈ Br(L)×X(L) for L any
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complete extension of K then

(h.γ)(z, x) :=

n(cz + d, x) (v (det(γ)) (x))h ((az + b)/(cz + d), x) .

This is really a definition “on points” but it is easily checked
that h.γ ∈ Aκ,r, using Lemma 8.1, and that the definition does
give an action. It is elementary to check that for fixed γ ∈ Mt,
the map Aκ,r → Aκ,r defined by h 7→ h.γ is a continuous O(X)-
module homomorphism (but it is not in general a ring homo-
morphism if κ is non-trivial). The fact that n and v take val-
ues in elements of O(X)× with supremum norm 1 easily implies
that γ : Aκ,r → Aκ,r is norm-decreasing. One also checks using
Lemma 8.1(b) that if | det(γj)| = mj then γ induces a continuous
norm-decreasing O(X)-module homomorphism Aκ,rm to Aκ,r.

We now have enough to define our Banach modules of over-
convergent modular forms. This definition is ultimately inspired
by [16], a preprint which sadly may well never see the light of day
but which contained the crucial idea of beefing up a polynomial
ring to a restricted power series ring in order to move from the
classical to the overconvergent setting.

Definition. Let X be a reduced affinoid over K and let X →W
be a morphism of rigid spaces, inducing κ : O×

p ×O×
p → O(X)×.

If r ∈ (NK)J , if t is good for (κ, r), and if U is a compact open
subgroup of D×

f of wild level ≥ πt, then define the space of r-
overconvergent automorphic forms of weight κ and level U to be
the O(X)-module

SD
κ (U ; r) := L(U,Aκ,r).

We remark that, just as in the case of “classical” overconver-
gent modular forms, the hypotheses of the definition imply that
if κ is a weight near the boundary of weight space (that is, such
that r(κ) is small), then r|πt| must be small and hence for each
j either rj is small or there must be some large power of πj in
the level.
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If f ∈ SD
κ (U ; r) then f is determined by f(τλ) for λ =

1, . . . , µ. Moreover, if u ∈ U then so is u−1, and hence both
up and u−1

p are in Mt. In particular, both up and its inverse
are norm-decreasing, and hence up is norm-preserving. We de-
duce that for d ∈ D×, τ ∈ D×

f and u ∈ U we have |f(dτu)| =
|f(τ).up| = |f(τ)| and hence |f(g)| ≤ maxλ f(τλ) for all g ∈
D×

f . In particular we can define a norm on SD
κ (U ; r) by |f | =

maxg∈D×
f
|f(g)|, and the isomorphism

SD
κ (U ; r) →

µ⊕
λ=1

(Aκ,r)
Γλ

defined by f 7→ (f(tλ))λ is norm-preserving. Next observe that
the group Γλ contains, with finite index, a subgroup of O×

F of
finite index, and hence Γλ acts on Aκ,r via a finite quotient.
Hence SD

κ (U ; r) is a direct summand of an ONable BanachO(X)-
module and our Fredholm theory applies.

11 Classical forms are overconvergent.

Fix n ∈ ZI
≥0 and v ∈ ZI such that n + 2v ∈ Z. Set k = n + 2

and w = v + n + 1 as usual. Define κ : O×
p × O×

p → K×

by κ(α, β) =
∏

i α
ni
i β

vi
i . Note that κ is trivial on the totally

positive units in O×
F (embedded via γ 7→ (γ, γ2) as usual) and

hence κ is a K-point of W . With notation as above, we are
taking L = K and X a point. The map n : O×

p → K× defined
by α 7→

∏
i α

ni
i extends to a map of rigid spaces B×

r → Gm for

any r ∈
(
N×

K

)J
, so r(κ)j = |πj| for all j ∈ J . If r ∈ (NK)J then

there is a natural injection Ln,v → Aκ,r = O(Br) induced from
the natural inclusion Br ⊂ (A1)I and one checks easily that this
is an M1-equivariant inclusion. If U ⊂ D×

f is a compact open
subgroup of level ≥ π then we get an inclusion

SD
k,w(U) = L(U,Ln,v) ⊆ L(U,Aκ,r) = SD

κ (U ; r)
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between the finite-dimensional space of classical forms and the
typically infinite-dimensional space of overconvergent ones.

This relationship between classical and overconvergent mod-
ular forms is however not quite the one that we want in general.
When we construct our eigenvarieties in this setting, we will
want the level structure at p to be U0(π), and hence we need to
explain how to interpret finite slope classical forms of conduc-
tor π2 and above, or forms with non-trivial character at p, as
forms of level π and some appropriate weight. Briefly, the trick
is that we firstly load the character at p into the weight of the
overconvergent form, thus reducing us to level U0(π

n), and then
decrease r and decrease the level to U0(π). Note that a variant of
this trick is used to construct the classical eigencurve—although
there the level structure is reduced only to Γ1(p) (or Γ1(4) if
p = 2) because the p-adic zeta function may have zeroes on
points of weight space which are not contained in the identity
component.

Let us explain these steps in more detail. Let U0 be a compact
open subgroup of D×

f of the form U ′×GL2(Op), choose t ∈ ZJ
≥1,

and let U1 denote the group U0 ∩ U1(π
t). Then U1 is a normal

subgroup of U0 ∩ U0(π
t); let ∆ denote the quotient group. The

map O×
p → GL2(Op) ⊂ U0 sending d to

(
1 0
0 d

)
identifies ∆ with

the quotient (Op/π
t)×. If L is a complete extension of K, if n ∈

ZI
≥0 and v ∈ ZI are chosen such that n+2v ∈ Z, and if k = n+2

and w = v + n+ 1 as usual, then for f ∈ SD
k,w(U1) = L(U1, Ln,v)

and u ∈ U0 ∩ U0(π
t) we have f |u−1 ∈ SD

k,w(uU1u
−1) = SD

k,w(U1)
and hence there is a left action of U0 ∩ U0(π

t) on the finite-
dimensional L-vector space SD

k,w(U1) defined by letting u act by
f 7→ f |u−1. This action is easily seen to factor through ∆,
and is just the Diamond operators at primes above p in this
setting. If L contains enough roots of unity then SD

k,w(U1) is a
direct sum of eigenspaces for this action. Choose a character
ε : ∆ → L× and let ε also denote the induced character of O×

p .
Now define κ : O×

p × O×
p → L× by κ(α, β) = ε(α)

∏
i α

ni
i β

vi
i .

The fact that n + 2v ∈ Z means that κ vanishes on a subgroup
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of O×
F of finite index, and hence κ is a weight. One checks that

|πt| ≤ r(κ) and hence that if r ∈ (NK)J then t is good for
(r, κ), so the spaces L(U0,Aκ,r) and L(U1,Aκ,r) are well-defined.
Moreover, the natural map Ln,v → Aκ,r is equivariant for the
action of the submonoid of Mt consisting of matrices

(
a b
c d

)
with

π
tj
j |(dj − 1). Hence if L(U1, Ln,v)(ε) denotes the ε-eigenspace of
L(U1, Ln,v) under the action of ∆, then we get an induced map
L(U1, Ln,v)(ε) → L(U1,Aκ,r) and unravelling the definitions one
checks easily that the image of L(U1, Ln,v)(ε) is in fact contained
in L(U0,Aκ,r) (the point being that the map Ln,v → Aκ,r is
not U0(π

t)-equivariant, and the two actions differ by ε). This
construction embeds classical forms with non-trivial character
at primes above p into overconvergent forms with U0(π

t) level
structure at p, and should be thought of as the replacement in
this setting of the construction of moving from a classical form of
level pn and character ε to an overconvergent function of level pn

and trivial character, by dividing by an appropriate Eisenstein
series with character ε. Note the phenomenon, also present in the
classical case, that forms in distinct eigenspaces of SD

k,w(U1) for
the Diamond operators above p actually become overconvergent
eigenforms of distinct weights in this setting.

We now explain the relationship between forms of level U0(π)
and forms of level U0(π

r) for any r ≥ 1. Let X → W be a map
from a reduced affinoid to weight space, and let κ = (n, v) :
O×

p ×O×
p → O(X) be the induced weight. Let U be a compact

open subgroup of D×
f of the form U ′×GL2(Op). Say r ∈ (NK)J ,

s ∈ ZJ
≥0 and t ∈ ZJ

≥1 are chosen such that there is a thickening
of n to B×

r|πs+t|×X → Gm. Then we have defined spaces of r|πs|-
overconvergent weight κ automorphic forms of level U ∩ U0(π

t)
and also r-overconvergent weight κ automorphic forms of level
U ∩ U0(π

t+s). We now show that these spaces are canonically
isomorphic.

Proposition 11.1. There is a canonical isomorphism

L(U ∩ U0(π
t),Aκ,r|πs|) ∼= L(U ∩ U0(π

t+s),Aκ,r).
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Remark. We will see later that this isomorphism preserves the
action of various Hecke operators when U = U1(n) or U0(n).

Proof. The proof is an analogue of [5], Lemma 4, part 4, in this
setting. We explain the construction of maps in both directions;
it is then easy to check that these maps are well-defined and
inverse to one another. As usual let πs denote the element of Op

whose component at j ∈ J is π
sj

j . Then
(

πs 0
0 1

)
is an element of

GL2(Op) and hence we can think of it as an element of D×
f .

If f ∈ L(U ∩ U0(π
t),Aκ,r|πs|) then define h : D×

f → Aκ,r

by h(g) = f
(
g
(

π−s 0
0 1

))
.
(

πs 0
0 1

)
; note that if φ ∈ O(Br|πs| × X)

then φ.
(

πs 0
0 1

)
can be thought of as an element of O(Br × X)

as if z ∈ Br(L) then πsz ∈ Br|πs|(L). One checks that h ∈
L(U ∩ U0(π

t+s),Aκ,r).
Slightly harder work is the map the other way. First note

that Br|πs| is the disjoint union of πsBr + α as α ∈ Op runs
through a set of coset representatives S for Op/π

s; hence Aκ,r =⊕
α∈S O((πsBr + α) × X). Now if h ∈ L(U ∩ U0(π

t+s),Aκ,r)
then define f : D×

f → Aκ,r|πs| as follows: for g ∈ D×
f we define

f(g) on (πsBr +α)×X by f(g)(πsz+α, x) = h
(
g
(

πs α
0 1

))
(z, x).

One checks easily that this is well-defined (that is, independent
of choice of coset representatives S). A little trickier is that
f ∈ L(U ∩ U0(π

t),Aκ,r|πs|), the hard part being to check that
f |u = f for u ∈ U ∩ U0(π

t). We give a sketch of the idea, which
is just algebra. Firstly one checks easily that f |u = f if u =

(
1 γ
0 1

)
with γ ∈ Op. Now say u ∈ U ∩ U0(π

t), and choose α ∈ Op. We
must check that (f(g))(πsz+α, x) = ((f |u)(g))(πsz+α, x) for all
x ∈ X and z ∈ Br (again we present the argument on points but
of course this suffices). The trick is knowing how to unravel the
right hand side. Because u′ :=

(
1 −α
0 1

)
u
(

1 α
0 1

)
∈ U ∩U0(π

t), there
exists β ∈ Op such that

(
1 β
0 1

)
u′ = v with vp =

(
a b
c d

)
satisfying

πs|b. In particular
(

π−s 0
0 1

)
v
(

πs 0
0 1

)
= v′ ∈ U ∩ U0(π

t+s). Hence

((f |u)(g))(πsz + α, x) =
(
f |v

(
1 −α
0 1

))
(g)(πsz + α, x)

= (f |v)
(
g
(

1 α
0 1

))
(πsz, x)
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and by expanding out the definition of f |v and then using the
definition of f in terms of h, one checks readily that this equals
(h|v′)

(
g
(

πs α
0 1

))
(z, x). We are now home, as h|v′ = h.

Finally one checks easily that the above associations f 7→ h
and h 7→ f are inverse to one another.

No doubt one can now mimic the constructions of section 7
of [5] to deduce the existence of various canonical maps between
spaces of overconvergent forms, and relate the kernels of these
maps to spaces of classical forms; these maps, analogous to Cole-
man’s θk−1 operator, will not be considered here for reasons of
space, as they are not necessary for the construction of eigenva-
rieties. The reader interested in these things might like, as an
exercise, to verify that overconvergent forms of small slope are
classical in this setting, following section 7 of [5].

12 Hecke operators.

Let X be a reduced affinoid over K and let κ = (n, v) : X →W
be a morphism of rigid spaces. If r ∈ (NK)J , if ρ = |πt| ∈ N×

d

is such that n has a thickening to Brρ, and if U is a compact
open subgroup of D×

f of wild level ≥ πt, then we have defined
the r-overconvergent automorphic forms of weight κ and level U .
If v is a finite place of F where D splits then we define ηv ∈ D×

f

to be the element which is the identity at all places away from v,
and the matrix

(
πv 0
0 1

)
at v, where πv ∈ Fv is a uniformiser.

If v is prime to p then will not matter which uniformiser we
choose, but if v|p then for simplicity we use the uniformiser which
we have already chosen earlier (this is really just for notational
convenience though—a different choice would only change the
operators we define by units). Let us assume in this section that
U is a compact open of the form U0(n)∩U1(r) for some integral
ideals n and r of OF , both prime to disc(D), with π|n and π
coprime to r. In this case, the resulting Hecke operator Tv =
[UηvU ], acting on L(U,Aκ,r), is easily checked to be independent
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of the choice of πv, as long as v is prime to p. If furthermore v is
prime to nr then we may regard πv as an element of the centre of
D×

f and we define Sv to be the resulting Hecke operator [UπvU ].
A standard argument shows that the endomorphisms Tv and

Sv all commute with one another. Furthermore, we have

Lemma 12.1. The isomorphism of Proposition 11.1 is Hecke
equivariant.

Proof. For the Hecke operators away from p this is essentially
immediate. At primes above p things are slightly more deli-
cate, because for tj ≥ 1 the natural left coset decomposition of

the double coset U0(π
tj
j )

(
πj 0
0 1

)
U0(π

tj
j ) is

∐
α∈Oj/πj

U0(π
tj
j )

( πj 0

απ
tj
j 1

)
which depends on tj. However, one checks easily that if (in the
notation of Proposition 11.1) f ∈ L(U ∩ U0(π

t),Ar|πs|) and h is
the element of L(U ∩ U0(π

t+s),Ar) associated to f in the proof,
then Tvh is indeed associated to Tvf , for all v|p, the calculation
boiling down to the fact that(

πj 0

απ
tj
j 1

) (
πs 0
0 1

)
=

(
πs 0
0 1

) (
πj 0

απ
tj+sj

j 1

)
.

If p factors in F as
∏

j p
ej

j then let Uj denote the Hecke op-
erator Tpj

, let Uπ denote
∏

j∈J Uj, and let ηj denote the matrix
ηpj

.

Lemma 12.2. The map Uπ : SD
κ (U ; r) → SD

κ (U ; r) is the com-
posite of the natural inclusion SD

κ (U ; r) → SD
κ (U ; r|π|) and a

continuous norm-decreasing map SD
κ (U ; r|π|) → SD

κ (U ; r). The
inclusion SD

κ (U ; r) → SD
κ (U ; r|π|) is norm-decreasing and com-

pact, and hence Uπ, considered as an endomorphism of SD
κ (U ; r),

is also norm-decreasing and compact.

Proof. One checks easily that Uπ is the Hecke operator [UηU ]
associated to the matrix η :=

∏
j ηj. If one decomposes UηU into
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a finite disjoint union
∐

δ Uxδ of cosets, then det((xδ)p)/ det(ηp)
is a unit at all places of F above p, and hence by Lemma 8.1(b)
the endomorphism of Aκ,r induced by (xδ)p can be factored as
the inclusion Aκ,r ⊂ Aκ,r|π| followed by a norm-decreasing map
Aκ,r|π| → Aκ,r. The inclusion Aκ,r ⊂ Aκ,r|π| is induced by the
inner inclusion of affinoids Br|π| → Br and is hence compact and
norm-decreasing; the result now follows easily.

13 The characteristic power series of Uπ.

We now have enough data to define the ingredients for our eigen-
variety machine in this case. Let n be an integral ideal of OF

prime to p and to disc(D) (this latter hypothesis is not really nec-
essary, but we enforce it for simplicity’s sake), and set U0 = U0(n)
or U1(n). Define U = U0 ∩ U0(π); then U has wild level ≥ π.
If X ⊂ W is an affinoid subdomain, then set RX = O(X), let
κ : O×

p × O×
p → O(X)× denote the corresponding weights, and

let r = r(κ). Let T be the set of Hecke operators Tv (for v run-
ning through all the finite places of F where D splits) and Sv (for
v running through all the finite places of F prime to np where D
splits) defined above, and let φ denote the operator Uπ. Define
MX = SD

κ (U ; r) = L(U,Aκ,r). If Y ⊆ X is an affinoid subdo-
main and κ′ is the weight corresponding to Y then r(κ) ≤ r(κ′)
and hence there is an inclusion Br(κ) ⊆ Br(κ′). There is a canon-
ical isomorphism MX⊗̂RX

RY = L(U,Aκ′,r(κ)), and the inclusion
Br(κ) → Br(κ′) induces an injection Aκ′,r(κ′) → Aκ′,r(κ) and hence
an injection α : MY →MX⊗̂RX

RY . It is easy to check that this
injection commutes with the action of all the Hecke operators Tv

and Sv. We now check that α is a link; the argument is a slight
variant on the usual one because we have allowed non-parallel
radii of convergence in our definitions and hence have to make
essential use of r-overconvergent forms with r 6∈ N×

d .

Lemma 13.1. If U = U0∩U0(π) as above, if Y ⊆ W is a reduced
affinoid with corresponding weight κ : O×

p ×O×
p → O(Y )×, and
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if r, r′ ∈ (NK)J with r, r′ ≤ r(κ) and rj ≤ r′j for all j, then the
natural map SD

κ (U ; r′) → SD
κ (U ; r) is a link.

Proof. It suffices to prove that α is a primitive link when r′j|πj| <
rj ≤ r′j for all j. But this is not too hard: let c be the composi-
tum of the (compact) restriction map SD

κ (U ; r) → SD
κ (U ; r′|π|)

and the continuous norm-decreasing map β : SD
κ (U ; r′|π|) →

SD
κ (U ; r′) in the statement of Lemma 12.2; then it is not hard

to check that αc and cα are both Uπ as endomorphisms of their
respective spaces.

We may now apply our eigenvariety machine, and deduce
the existence of an eigenvariety parametrising systems of Hecke
eigenvalues on overconvergent automorphic forms, and in partic-
ular p-adically interpolating classical automorphic forms for D.
The eigenvariety itself is a rigid space, the geometry of which
we know very little about—indeed if we do not know Leopoldt’s
conjecture then we do not even know its dimension.

If one were to check (and it is no doubt not difficult, following
the ideas of section 7 of [5]) that overconvergent forms of small
slope were classical, then the existence of the eigenvariety implies
results of Gouvêa-Mazur type for classical Hilbert modular forms
over F , if [F : Q] is even (although there are probably more
elementary ways of attacking analogues of the Gouvêa-Mazur
conjectures in this setting—see for example the recent thesis of
Aftab Pande).
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