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Abstract

Coleman and Mazur have constructed “eigencurves”, geometric ob-
jects parametrising certain overconvergent p-adic modular forms. We for-
mulate definitions of overconvergent p-adic automorphic forms for two
more classes of reductive groups—firstly for GL1 over a number field,
and secondly for D×, D a definite quaternion algebra over the rationals.
We give several reasons why we believe the objects we construct to be the
correct analogue of an overconvergent p-adic modular form in this setting.

1 Introduction

The definition of an overconvergent modular form was formulated in [14] and
used in a very powerful way in work of Coleman (see [5], [6], [7] etc) as a key
tool for constructing families of modular forms. Using these arguments Coleman
was able to resolve some questions of Gouvêa and Mazur about the existence of
analytic families of modular forms. In fact, Coleman’s ideas gave more: using
them, Coleman and Mazur constructed “eigencurves”, geometric objects which
parametrise finite slope normalised overconvergent modular eigenforms.

There is now evidence that these parameter spaces are just the tip of an ice-
berg, and that there should exist parameter spaces, or “eigenvarieties”, parametris-
ing systems of eigenvalues occurring in p-adic Fréchet spaces of “overconvergent
automorphic forms” for a wide class of reductive groups. One way of looking
at the formalism is as follows: firstly there should be some appropriate set of
classical infinity types (for example, the regular algebraic ones), which naturally
form a subset of a rigid analytic space of “p-adic infinity types”, or “weights”
for short. We call such a space a weight space, we call points of this space
weights, and we call the subset mentioned above the set of classical weights. If
κ is a weight, then the space of overconvergent automorphic forms of some fixed
level U and weight κ should be a (typically infinite-dimensional) p-adic vector
space that, if κ is classical, will naturally contain the finite-dimensional space of
classical automorphic forms of this weight (after one has chosen isomorphisms
C ∼= Cp and so on). Furthermore, the spaces should naturally p-adically inter-
polate the classical spaces of forms as the infinity type varies in weight space.
Note that in this context, as was observed in the 1970s by Serre and Katz, the
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notion of a weight should include both an infinity type and also a level structure
at the prime p.

Now fix a level structure U prime to p. Then there should be a second rigid
space, the eigenvariety associated to this data—this will be a rigid-analytic space
equipped with a map to weight space, such that the fibre above a weight will be
equal to the spectrum of a Hecke algebra acting on the space of “finite slope”
overconvergent forms of that weight, and “tame level” U . In this perspective, a
Hecke operator becomes a map from the eigenvariety to the affine line, sending
a point to the eigenvalue of the corresponding eigenform.

There should be a family of p-adic Galois representations living on the eigen-
variety, and the eigenvariety should in general be strongly connected to the
deformation theory of such Galois representations. Moreover, the eigenvari-
ety should perhaps be the natural domain for the special values of p-adic L-
functions, in analogy with the role of the collection of Riemann surfaces that
Tate uses to great effect in the study of classical L-functions in his thesis (see
p314 of [3]). These sides of the story will not be treated in this paper, however.

One interesting application of the existence of these eigenvarieties is that
one can re-formulate cases of Langlands functoriality in this setting as simply
predicting the existence of a morphism between two such parameter spaces that
intertwines Hecke operators appropriately.

It is not currently clear to the author in what generality one would expect
these parameter spaces to exist, but this may be due to a large extent to the fact
that the author is certainly no expert in the theory of automorphic forms. On
the other hand, there do seem to be some cases where this philosophy does not
apply. For example, we know of no evidence to suggest that Maass forms can be
p-adically interpolated in such a way, although perhaps Mazur’s observation that
it seems harder to deform even Galois representations than odd ones might be
evidence to suggest that the associated rigid spaces may all be 0-dimensional.
On the other hand, there is a growing body of evidence to suggest that in
many other common cases, non-trivial parameter spaces do exist. The author
is optimistic that, for example, if the reductive group in question is compact
mod centre at infinity then almost all the techniques now exist for constructing
such parameter spaces. See the thesis of G. Chenevier [4], forthcoming work [2]
of the author and also future joint work of the author and Chenevier, where
the constructions will be given in many cases. Unfortunately, the works cited
above are perhaps daunting to read, relying on many technical computations in
representation theory, as well as a generalisation of much of Coleman’s theory
of families of p-adic Banach spaces to families of dimension greater than one.

The purpose of this paper however is to give an explicit construction of
the parameter spaces in two of the simplest cases: firstly in the case of GL1

over a number field, and secondly in the case of D×, D a definite quaternion
algebra over the rationals. The motivation for explaining these cases explicitly
is several-fold. Firstly, the theory for GL1 drops out from class field theory and
known results about p-adic Galois representations, and is excellent motivation
for believing that these parameter spaces exist in some generality. One avoids
having to generalise Coleman’s theorems because the Banach spaces in question
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are finite-dimensional and everything is easy. Note that already the dimension of
the parameter spaces in this case depends on the truth of Leopoldt’s conjecture,
but not knowing the dimension of the spaces constructed here does not seem to
lead to any problems in the theory. Secondly, the representation theory involved
in the GL1 case is trivial, so one sees a concrete example of the theory without
having to get too bogged down in technicalities.

One motivation for the construction in the definite quaternion algebra case is
that it is easy to make all the representation theory very explicit, thus avoiding
the technical computations in [4] where analogous results are proved for com-
pact forms of GLn. Another reason is that by the Jacquet-Langlands theorem,
classical automorphic forms in this setting will correspond to classical modular
forms, and overconvergent automorphic forms in this setting should correspond
to overconvergent p-adic modular forms (in fact this has recently been proved
by Chenevier: see [4]). The families one constructs are one-dimensional, so one
does not need to generalise Coleman’s work either. We refer to Theorem 1 be-
low for some of the results proved by Coleman and others about classical and
overconvergent modular forms. On the other hand, we show in this paper that
the analogues of these theorems in this setting are, for the most part, elemen-
tary consequences of the definitions. This gives weight to our hope that our
definitions are the right ones in this setting.

Some of this work in this paper was done during the semestre automorphe at
the IHP in Paris in 2000, and some was done during a visit to Paris 13 funded
by the Arithmetic Algebraic Geometry RTN network. The author thanks all
these institutions. The results for GL1 in this paper were presented at the
conference on modular curves at the CRM in Barcelona, and the author thanks
the organisers of this conference for giving him the opportunity to speak there.
The author also thanks the referee for several useful comments and observations.

Note added in proof: recent preprints of Emerton seem to give the construc-
tion of eigenvarieties in a very wide class of situations, using more representation-
theoretic techniques.

2 The case of GL1 over a number field

Throughout this paper, p > 0 will be a prime, and K will denote a field which is
complete with respect to a non-trivial non-Archimedean valuation, and whose
residue field has characteristic p. The rigid spaces we construct will be rigid
spaces over K. We will consider K as being fixed—the interested reader can
verify that all rigid spaces in this paper are quasi-separated and their definitions
commute with base change if K ′ is a complete extension of K. Up to and
including Lemma 2, K may have characteristic 0 or p, but after Lemma 2 and
for the rest of the paper we assume that the characteristic of K is zero. From
section 3 onwards, we assume furthermore that K is a complete subfield of Cp,
but this is only for notational convenience; one has to do little more than to
replace p by |p|−1 on many occasions to deal with the general case.

Let L/Q be a number field of degree d, and let OL denote the integers of L.
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Let L∞ denote L ⊗Q R and (L×∞)◦ the identity component of the topological
group L×∞. Similarly, let Lp denote L⊗Q Qp, let OL,p denote OL⊗Z Zp and let
O×L,p denote the topological group of units in OL,p.

We would like to formulate a definition of an overconvergent p-adic automor-
phic form for the group ResL/Q GL1, defined over K. Associated to an overcon-
vergent eigenform we should expect a one-dimensional p-adic Galois representa-
tion. On the other hand, any Hodge-Tate one-dimensional p-adic representation
of Gal(L/L) comes from an algebraic Grössencharacter, and hence one should
suspect that for classical weights, the overconvergent eigenforms should be in
bijection with the classical eigenforms. In fact the main problem for GL1 is
simply that of constructing weight space and we present the natural definition
below.

Lemma 1. Let R be an affinoid algebra over K. For there to exist a continuous
group homomorphism Zp → R× sending 1 to 1 + r ∈ R, it is necessary and
sufficient that r should be topologically nilpotent, and when this is the case, the
group homomorphism sending 1 to 1 + r is unique.

Proof. Fix a complete K-algebra norm on R inducing the topology on R. If there
is a continuous group homomorphism Zp → R× sending 1 to 1 + r then (1 +
r)pn → 1 as n →∞ in R, and the same is true in R/m for m any maximal ideal
of R. This means that modulo m, the residue norm of r must be less than 1 (look
at the residue field). Hence r is topologically nilpotent by Proposition 6.2.3.2
of [1]. Conversely, if r is topologically nilpotent, then |rn| → 0 as n → ∞ and
hence an easy argument using the binomial theorem shows that (1+ r)pN

tends
to 1 as N →∞, which suffices to construct the group homomorphism Zp → R×,
and uniqueness follows because of continuity.

Now let X be an arbitrary rigid space, and let O(X) denote the global
sections of the structure sheaf on X. If H is a topological group, then we say
that a group homomorphism H → O(X)× is continuous if for all admissible
affinoid subdomains U of X, the resulting map H → O(U)× is continuous. The
lemma above shows that there is a canonical functorial bijection between the
continuous homomorphisms Zp → O(X)× and the maps of rigid spaces X → ∆,
where ∆ denotes the open disc of radius 1 and centre 1, considered as a subspace
of rigid affine 1-space.

Let Gm denote the rigid space over K associated to the affine scheme
A1\{0}. We now explain an elementary but key construction. Let H be an
abelian profinite group which contains an open subgroup isomorphic to (Zp)n

for some n ≥ 0. Let Hom(H,Gm) denote the functor on rigid spaces over
K sending a rigid space X to the set of continuous group homomorphisms
H → O(X)×.

Lemma 2. (i) The functor Hom(H,Gm) is represented by a quasi-separated
rigid space over K, also denoted Hom(H,Gm).

(ii) The space Hom(H,Gm) is a union of finitely many open n-balls and
naturally has the structure of a group object in the category of rigid spaces over
K.
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(iii) If H → J is a surjective morphism of profinite groups with finite kernel,
then the canonical map Hom(J,Gm) → Hom(H,Gm) is a closed immersion. If
furthermore the size of the kernel of H → J is non-zero in K (for example, if the
characteristic of K is 0), then the canonical map Hom(J,Gm) → Hom(H,Gm)
is a closed and open immersion, identifying Hom(J,Gm) with a union of com-
ponents of Hom(H,Gm).

(iv) If H → J is an injective morphism of profinite groups with finite coker-
nel, then the canonical map Hom(J,Gm) → Hom(H,Gm) is finite and flat, of
degree equal to [J : H]. If furthermore [J : H] 6= 0 in K then the map is etale.

Proof. Note firstly that if H1 and H2 satisfy the hypotheses put on H above,
and Hom(H1,Gm) and Hom(H2,Gm) are representable, then one can represent
Hom(H1 × H2,Gm) by the product Hom(H1,Gm) × Hom(H2,Gm). Further-
more, if H is as in the lemma, then by the structure theorem for topologically
finitely-generated abelian profinite groups, H is isomorphic to the product of a
finite group and a group isomorphic to (Zp)n.

(i) By the remarks above, we are reduced to representing the functor in the
following two cases: the case of finite cyclic H, and the case H ∼= Zp. If H is
finite cyclic of order n then the rigid space associated to the affinoid algebra
K〈T 〉/(Tn − 1) is easily shown to do the trick. If on the other hand H ∼= Zp,
then by Lemma 1 and the remarks following it, the open disc with centre 1 and
radius 1 over K represents the functor in question.

(ii) By the construction of the representing space above, we see it is a product
of rigid spaces each of which is either finite or an open unit ball, and the results
follow easily.

(iii) Here one only need observe that H is isomorphic to the product of a free
Zp-module and a finite group, and the kernel of the map H → J is contained in
this finite group. One now easily reduces to the case where H is finite, where
the result is easy.

(iv) One reduces easily to the case where J/H is finite cyclic of degree n
for some n ≥ 1. In this case the cover Hom(J,Gm) of Hom(H,Gm) is defined
by taking the nth root of some function f on Hom(H,Gm), and the fact that
|f − 1| < 1 for any residue norm means that f is a unit. Hence the covering is
finite and flat, and moreover it is etale if n is prime to the characteristic of K.

We now use this lemma to construct a “weight space”. Assume for the
rest of this paper that the characteristic of K is zero. If Γ is a subgroup of
O×L of finite index, and Γ denotes the closure of Γ in O×L,p, then the quotient
HΓ := O×L,p/Γ satisfies the hypotheses of the lemma. Hence one has a rigid
space WΓ := Hom(HΓ,Gm) defined over K. If ∆ ⊆ Γ is a subgroup of finite
index, then the corresponding surjection H∆ → HΓ has kernel of finite order
[Γ : ∆] and hence by part (iii) of Lemma 2 there is a closed and open immersion
WΓ →W∆, identifying the former with a union of components of the latter.

Definition. We define weight-space W to be the direct limit lim→WΓ, as Γ
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varies over the set of subgroups of finite index in O×L , partially ordered by in-
clusion.

The space W is a rigid space defined over K. It has a group structure,
which we in fact shall never use. By definition, a K-point in W corresponds
to a continuous group homomorphism O×L,p → K× which vanishes on some
subgroup of finite index in O×L .

Let σ1, . . . , σd denote the d embeddings L → Cp. Each such embedding
gives a continuous group homomorphism O×L,p → C×p , which we also denote
by σi.

Definition. We say that a weight in W(K) is classical if there are a collection
(n1, n2, . . . , nd) of integers, and a subgroup H of finite index of O×L,p, such that
the corresponding group homomorphism κ, when restricted to H, equals

(σ1)n1(σ2)n2 . . . (σd)nd .

Choose a K-point of WK and let κ denote the corresponding map O×L,p →
K×. If S is a finite set of places of Q, let AS

L denote the adeles of L away from
the places in L above the places in S.

Set S = {p,∞} once and for all, and let U be a compact open subgroup of
(AS

L)×. We refer to such a subgroup U as a tame level.
Let G denote the group ResL/Q GL1.

Definition. An overconvergent automorphic eigenform for G, of weight κ and
tame level U , defined over K, is a continuous group homomorphism L×\A×L →
K× which contains U.(L×∞)◦ in its kernel, and whose restriction to O×L,p equals
κ. An overconvergent automorphic form for G, of weight κ and tame level U , de-
fined over K, is a continuous function f : L×\A×L → K such that f(gu) = f(g)
for all u ∈ U.(L×∞)◦, the K-vector space generated by all the A×L -translates of f
is finite-dimensional, and such that, after a finite base extension of K if neces-
sary, there is a basis of this finite-dimensional space consisting of overconvergent
automorphic eigenforms for G of weight κ and tame level U .

Note that any continuous group homomorphism L×\A×L → K will automat-
ically contain (L×∞)◦ and some compact open subgroup of (AS

L)× in its kernel,
and hence its restriction to O×L,p will automatically be a weight, in the sense
that it must vanish on a subgroup of O×L of finite index.

Note that there are only finitely many overconvergent automorphic eigen-
forms of a given weight and tame level, because L×\A×L/O×L,pU(L×∞)◦ is finite.
By the main theorem of global class field theory, to an overconvergent eigenform
defined over K there is associated a continuous one-dimensional representation
Gal(L/L) → GL1(K). If K is a finite extension of Qp and κ ∈ W(K), then this
associated Galois representation will be Hodge-Tate if and only if κ is classical.
In fact, for classical κ, the space we have constructed perhaps deserves to be
thought of as either the space of p-adic, overconvergent p-adic, or classical forms
defined over K.
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Note that Weil associated a Hodge-Tate p-adic Galois representation to any
algebraic Grössencharacter L×\A×L → C× and this p-adic Galois representation
gives rise to an overconvergent automorphic eigenform (although of course one
does not need class field theory here—Weil’s argument directly constructs an
overconvergent automorphic eigenform from a classical one). The weight of such
an eigenform is classical, and the corresponding integers (n1, n2, . . . , nd) are the
Hodge-Tate weights of the associated Galois representation, if one normalises
the isomorphism of global class field theory appropriately.

It is easy to see, given what we have done, that these definitions interpolate
naturally. More precisely, if V is an affinoid subdomain of W with O(V ) = R,
then the inclusion V → WK gives us, from the functorial property of WK , a
continuous group homomorphism O×L,p → R×. Now for a tame level U one can
define an overconvergent automorphic eigenform of weight V as simply being
a continuous group homomorphism f : L×\A×L → R× containing U.(L×∞)◦ in
its kernel, such that the restriction of f to O×L,p is the group homomorphism
O×L,p → R× corresponding to the map V → WK , and one can give a similar
definition of an overconvergent automorphic form of weight V . These spaces
should of course be thought of as interpolating the spaces of overconvergent
forms of weight κ introduced above, as κ varies through V .

Let U be a fixed tame level, and let Γ denote the intersection

L× ∩ U.O×L,p(L
×
∞)◦.

Then Γ is a subgroup of O×L of finite index. We will now define an “eigenvariety”
of tame level U , which will be a finite cover of the weight space WΓ introduced
earlier. Its definition is simple, given what we have already. Let H denote the
quotient of the group L×\A×L by the closure of the image of U.(L×∞)◦. Then
the map O×L,p → H is continuous with finite cokernel, and hence H satisfies the
hypotheses of Lemma 2.

Definition. We define the eigenvariety of tame level U to be the rigid space

Hom(H,Gm).

Let Γ denote the closure of Γ in O×L,p. Then the natural map O×L,p/Γ → H
is injective and the cokernel is finite. The corresponding map of rigid spaces
Hom(H,Gm) → WΓ is finite flat of degree equal to the order of this cokernel,
by part (iv) of Lemma 2. Note that it also follows from this lemma that the
eigenvariety is a finite union of open balls, and that the fibre of a point κ
in weight space is canonically the set of overconvergent automorphic forms of
weight κ and tame level U . The eigenvariety itself can be thought of as a
parameter space interpolating overconvergent eigenforms of varying weights.
Finally, the Hecke operator corresponding to a uniformiser at a place q of L
manifests itself as the evaluation homomorphism from the eigenvariety to Gm

corresponding to evaluation at this uniformiser.
In this setting, the eigenvariety is smooth and has finitely many components.

It still appears to be an open question as to whether the Coleman-Mazur eigen-

7



curve has finitely or infinitely many components (indeed, almost every natural
question about the Coleman-Mazur eigencurve is still open).

3 Classical and overconvergent modular forms:
Results of Coleman and others.

In this section we briefly summarise (see Theorem 1 below) some of the main
results from the theory of classical and overconvergent modular forms. Our
goal in the rest of this paper is to propose analogous definitions in the setting of
automorphic forms for D×, D a definite quaternion algebra over Q, and then to
prove analogues of the results in Theorem 1, although we shall only sketch the
construction of the eigencurve in this setting, and the construction will be made
under a minor but unnecessary technical restriction, which we shall remove in
forthcoming work.

Let p be prime, and let N be a positive integer prime to p. Let K be a
complete subfield of Cp (this is just for notational convenience; all of this works
for a general K of characteristic zero, complete with respect to a non-trivial
non-archimedian valuation and with residue field of characteristic p), and for
Γ ⊆ SL2(Z) let Sk(Γ) denote the space of classical cusp forms of level Γ and
weight k defined over K. If Γ = Γ1(N) then we refer to this space as the space
of classical cusp forms of level N and weight k defined over K. For r = p−t

with t ∈ Q and 0 ≤ t < p/(p + 1), let Sk(Γ1(N); r) denote the p-adic Banach
space of r-overconvergent cusp forms of tame level N and weight k, that is, at
least for N ≥ 5, the cuspidal sections of ωk on the rigid subspace of X1(N)
obtained by removing open discs of radius r above every supersingular point
in characteristic p (a more precise definition may be found in, for example, [7]
and [5]. We omit the more precise definitions as we shall never be using them).
Let Sk(Γ1(N)) denote the space of forms which overconverge as far as one can
reasonably ask, that is, sections of ωk on the wide-open subspace of X1(N)
obtained by removing closed discs of radius p−p/(p+1) in each supersingular
disc. By definition, Sk(Γ1(N)) ⊂ Sk(Γ1(N)) ⊂ Sk(Γ1(N); r) and if r < s then
Sk(Γ1(N); r) ⊂ Sk(Γ1(N); s). We remind the reader of some theorems about
these objects (again we shall be slightly sketchy, and refer the reader to the
original papers for more precise statements)

Theorem 1. 1. If f ∈ Sk(Γ1(N) ∩ Γ0(pn)) then f ∈ Sk(Γ1(N); r) for some
appropriate r.

2. If f ∈ Sk(Γ1(N); r) and Upf = λf for some non-zero λ, then f ∈
Sk(Γ1(N)).

3. For k ≥ 1, there is a map θk−1 : S2−k(Γ1(N)) → Sk(Γ1(N)) which on

q-expansions is
(
q d

dq

)k−1

, and whose cokernel is finite-dimensional.

4. Say 0 6= f ∈ Sk(Γ1(N); r) and Upf = λf for some non-zero λ. If vp(λ) <

8



k − 1, then f ∈ Sk(Γ1(N)). On the other hand, if vp(λ) > k − 1 then
f 6∈ Sk(Γ1(N)).

5. Any finite slope overconvergent eigenform is part of a family of constant
slope, in some precise sense.

6. Finite slope normalised overconvergent eigenforms of tame level N are
parametrised by a rigid-analytic geometric object, the eigencurve of tame
level N (at least if p > 2 and N = 1).

Proof. Parts 1 and 2 are classical. Part 1 is proved in [14] for n = 1 and in [10]
for general n. Part 2 is also proved in [14]. Parts 3 and 4 are related and
deeper, and are both proved in [5]. Part 5 is proved in [6] and part 6 in [7].
Note also that the constructions in [7] should also go through for general p
and N , although nothing is published in this generality as yet (see [2] and also
forthcoming work of Emerton, however).

As already explained, we will prove analogues of all these results in the
setting of automorphic forms on definite quaternion algebras over the rationals.
The main question to be solved here is that of finding the correct definition of an
overconvergent automorphic form in this setting. The problem with the classical
definition is that it is inherently geometric, and relies (amongst other things)
on the fact that modular curves are one-dimensional. This causes problems
when trying to construct analogues of the Coleman-Mazur construction for other
reductive groups, although some progress has been made by Goren and others
in the case of Hilbert modular forms. See also forthcoming work of Nevens,
and recent preprints of Abbes-Mokrane and Kisin-Lai, which should hopefully
culminate in a geometric construction of p-adic parameter spaces for Hilbert
modular forms.

In the setting of groups which are compact mod centre at infinity, the
problem is rather different: now one cannot remove canonical small regions
from the moduli space because it is 0-dimensional, and it appears that a com-
pletely different approach is necessary. Our approach is very much inspired by
a preprint [9] of Stevens and involves using an “Eichler-Shimura” philosophy
which re-interprets the theory of modular forms in a much more combinatorial
way, which seems to be more amenable to generalisation. One consequence of
this is that the proofs of the analogues of the results above in this setting are
much easier, requiring no hard algebraic geometry.

One natural question that can be raised is what relation there is between
the eigencurves constructed here and those of Coleman-Mazur. Is there a map
between them “explaining” the Jacquet-Langlands correspondence? In fact Ch-
enevier in [4] has recently constructed such a map, although his construction
assumes the classical Jacquet-Langlands result and hence does not give another
proof of it.
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4 Definitions and classical forms

Let p be a fixed prime. For α ≥ 1 an integer, let Mα be the monoid consisting
of 2 by 2 matrices

(
a b
c d

)
with a, b, c, d ∈ Zp and such that pα | c, p - d and

ad− bc 6= 0. Let D be a definite quaternion algebra over Q with discriminant δ
prime to p. Fix once and for all a maximal order OD of D and an isomorphism
OD ⊗ B ∼= M2(B), where B = lim←(Z/MZ), the limit being taken over all
integers M prime to δ. This isomorphism induces isomorphisms OD ⊗ Zl

∼=
M2(Zl) and OD ⊗ Ql

∼= M2(Ql) for all primes l - δ, and we will henceforth
identify these rings with one another. Let Af denote the finite adeles over Q
and define Df = D⊗QAf . Then Df can be thought of as the restricted product
over all primes l of D ⊗Ql and in particular if g ∈ Df then the component gp

of g at p can be regarded as an element of M2(Qp).

Definition. If U is an open compact subgroup of D×f and α ≥ 1 then we say
that U has wild level ≥ pα if the projection of U onto GL2(Qp) is contained
in Mα.

We offer the following as examples. If M is any integer prime to δ, then
define U0(M) (resp. U1(M)) to be the compact open in D×f formed as a product∏

l Ul where Ul = (OD ⊗ Zl)× for l | δ, and Ul is the matrices which are of the
form

( ∗ ∗
0 ∗

)
(resp.

( ∗ ∗
0 1

)
) mod lvl(M) for all other l. If pα divides M then the

projection of U1(M) to the factor at p is contained in Mα and hence U has
wild level ≥ pα. At the other extreme, we say that a compact open U is “prime
to p” if U can be written as U ′ × GL2(Zp) where U ′ is a compact open of
(D⊗Af,p)×, where Af,p denotes the adeles with trivial components at infinity
and p. As examples, if N is a positive integer prime to pδ then U0(N) and
U1(N) have level prime to p. We refer to the subgroups U ′ above as “tame
levels”.

Let α ≥ 1 be an integer, and let U be a compact open of wild level ≥ pα. If
R is any commutative ring and A is an R-module with an R-linear right action
of Mα, then define the R-module L(U,A) by

L(U,A) =
{

f : D×f → A : f(dgu) = f(g)up

}
,

where d ∈ D× (embedded diagonally in D×f ), g ∈ D×f and u ∈ U . This object
looks rather terrifying if one is not familiar with this kind of thing, but in fact
it is well-known that if one writes D×f as a disjoint union of double cosets D×f =∐

i D×diU then this union is finite, of size n say, and hence any f ∈ L(U,A) is
determined uniquely by the finite amount of data f(d1), f(d2), . . . f(dn). More
precisely it can be shown that if Γi = d−1

i D×di ∩ U then Γi is a finite group,
and then an easy formal argument shows that the map

L(U,A) →
n⊕

i=1

AΓi (1)

sending f to
(
f(di)

)
1≤i≤n

is an isomorphism of R-modules. In particular, if U

is chosen such that all the groups Γi are trivial, then the map L(U,A) → An
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sending f to
(
f(d1), f(d2), . . .

)
is an isomorphism of R-modules. Triviality of all

the Γi is a common occurrence—if γ ∈ Γi is non-trivial then the characteristic
polynomial of γ must be of the form X2−aX +1 where a ∈ {−2,−1, 0, 1}, with
a = −2 occurring iff γ = −1. Hence if U ⊆ U1(M) for some M ≥ 4, for example,
then all the Γi are trivial. The non-triviality of the groups Γi can be dealt with
if one extends some of Coleman’s theory on families of compact operators—see
forthcoming work [2] of the author. For simplicity we shall here assume that all
Γi are trivial whenever this eases the exposition. The more sophisticated reader
might be happier thinking of L(U,A) in the general case as being the global
sections of the sheaf corresponding to A on the stack D×\Df/U .

We recall the classical definition of the space of automorphic forms of level U
and weight k. Strictly speaking these are not classical forms because we have
shifted the “weight” action from ∞ to p, so one should perhaps think of the
spaces below as being analogues of modular forms with coefficients in K. It is an
elementary exercise (see for example the argument around equation (2) on p443
of [8]) to verify, however, that if there is an embedding of fields K → C then the
K-spaces we are about to define, when tensored up to C, become isomorphic as
Hecke modules to spaces of classical forms.

Recall that K is a complete subfield of Cp. Let Lk denote the space of
polynomials in one variable z, of degree at most k−2, and with coefficients in K.
Define an action of M1 (and hence of Mα for all α ≥ 1) by, for γ =

(
a b
c d

)
∈ M1

and h ∈ Lk,

(h|γ)(z) = (cz + d)k−2h

(
az + b

cz + d

)
.

If U is a compact open subgroup of D×f of wild level ≥ p, we shall refer to the
K-vector space SD

k (U) := L(U,Lk) as the space of classical automorphic forms
of weight k and level U for D, defined over K. If U = U1(M) for some integer M
which is a multiple of p and prime to δ as usual, then we refer to SD

k (U1(M)) as
the space of classical automorphic forms for D of level M and weight k, defined
over K. If K contains all the φ(M)th roots of unity then this space decomposes
as a direct sum

SD
k (U1(M)) =

⊕
ε

SD
k (U1(M))(ε)

where the sum is over all characters ε : (Z/MZ)× → K×, and SD
k (U1(M))(ε)

is defined to be{
f : D×f → Lk : f(dgu) = ε(u)f(g)up for all d ∈ D×, u ∈ U0(M)

}
.

Here ε is considered as a character of U0(M) via the map U0(M) → (Z/MZ)×

sending
(

a b
c d

)
to d mod M .

It is more convenient to split up a character into its p-power part and its
p-primary part. If M = Npn with n ≥ 1 and N prime to p, and we continue
to assume that K contains all φ(M)th roots of unity, then one can write ε :
(Z/MZ)× → K× as a product εpεp, where εp has level N and εp has level pn.
Let α ≥ 1 be minimal such that εp factors through (Z/pαZ)×. One can then

11



define a “weight-character (k, εp)”-action of Mα on Lk by, for h ∈ Lk and
γ =

(
a b
c d

)
∈ Mα,

(h|γ) (z) = (cz + d)k−2εp(d)h
(

az + b

cz + d

)
.

Let Lk,εp denote Lk equipped with this action. If U is any compact open of
level prime to p, then it makes sense to define SD

k (U ∩ U1(pn))(εp) := L(U ∩
U0(pn), Lk,εp

) and we see that⊕
εp:(Z/NZ)×→K×

SD
k (U1(M))(εpεp) = SD

k (U1(M))(εp),

⊕
εp:(Z/pnZ)×→K×

SD
k (U1(M))(εp) = SD

k (U1(M)),

and more generally⊕
εp:(Z/pnZ)×→K×

SD
k (U ∩ U1(pn))(εp) = SD

k (U ∩ U1(pn))

if U has level prime to p. This philosophy, of treating characters at p differently
to characters of level prime to p, by amalgamating the character at p with the
weight, is already present in the “classical” theory of p-adic modular forms, and
we also saw it in the GL1 case.

Now let us return to the setting of a compact open U of wild level ≥ pα,
and a general right Mα-module A. The space L(U,A) comes equipped with
certain standard operators, which we now define. Firstly say η ∈ D×f such that
ηp ∈ Mα. If f : D×f → A then define f |η : D×f → A by

(f |η)(g) = f(gη−1)ηp.

Note that using this definition we have

L(U,A) = {f : D×\D×f → A : f |η = f for all η ∈ U}.

Now say η is as above. We define A[ηp] to be the abelian group A equipped with
the action, denoted ·, of η−1

p Mαηp ∩Mα, defined by a · (η−1
p γηp) := aγ. The

map f 7→ f |η is easily shown to be an isomorphism L(U,A) → L(η−1Uη, A[ηp]),
which we shall denote |η. If the map a 7→ aηp induces an isomorphism of abelian
groups A → A, then one can think of this map as an isomorphism A[ηp] → A
and in this case the map |η sends L(U,A) to L(η−1Uη, A) isomorphically.

Next we define Hecke operators. Let η be as above, write UηU =
∐

i Uηi

(a finite union) and define the Hecke operator [UηU ] : L(U,A) → L(U,A) by
[UηU ]f =

∑
i f |ηi. Of particular interest are the standard Hecke operators,

defined as follows. If l is a prime not dividing δ, then define $l ∈ Af to be the
finite adele which is l at l and 1 at all other finite places. We sometimes think
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of $l as an element of D×f via the diagonal embedding. By a mild abuse of
notation, we define ηl =

(
$l 0
0 1

)
to mean the element of D×f which is

(
l 0
0 1

)
at l

and is the identity at all other places. We define Tl = [UηlU ] and Sl = [U$lU ].
An easy computation verifies for example that if f ∈ SD

k (U1(M))(ε), then for
all l - M we have Sl(f) = ε(l)lk−2f . We conclude this section by reminding the
reader of the explicit form that the Jacquet-Langlands theorem takes in this
setting:

Theorem 2 (Jacquet-Langlands, Shimizu, Arthur). If k ≥ 3 then the
space SD

k (U1(M)) is isomorphic to the space Sδ-new
k (Γ1(M)∩Γ0(δ)) of classical

δ-new forms, and this isomorphism commutes with the action of the standard
Hecke operators defined above. If k = 2 then Sδ-new

k (Γ1(M) ∩ Γ0(δ)) is iso-
morphic to the quotient of SD

k (U1(M)) by the subspace of forms which factor
through the norm map, and again the isomorphism commutes with the action of
the standard Hecke operators defined above.

Proof. This is a “concrete” realisation of the Jacquet-Langlands theorem; a
good reference for how to deduce it from Theorem 16.1 of [13] is the first few
pages of section 5 of [8] (with t = 1 in their notation).

As a consequence we see that if f ∈ SD
k (U1(M))(ε) is an eigenform then there

is a continuous Galois representation ρf : Gal(Q/Q) → GL2(K) associated to f
satisfying the usual properties.

5 Overconvergent automorphic forms of a fixed
weight.

Let K be a complete subfield of Cp as usual.

Definition. A real number r is said to be a radius of convergence if r = p−n

for some integer n ≥ 0.

Definition. If r is a radius of convergence then we let Br be the rigid subspace
of affine 1-space over K whose Cp-points are

Br(Cp) = {z ∈ Cp : there exists y in Zp such that |z − y| ≤ r}.

If furthermore r < 1 then we define B×r as the rigid subspace of affine 1-space
whose Cp-points are

B×r (Cp) = {z ∈ Cp : there exists y in Z×p such that |z − y| ≤ r}.

In fact Br and B×r are just disjoint unions of finitely many closed affinoid
discs. One can think of Br and B×r as being a sequence of rigid neighbourhoods
of Zp and Z×p respectively in the analytification of affine 1-space over K. If
s < r are both radii of convergence then Bs ⊂ Br and B×s ⊂ B×r .

We say that a map between K-Banach spaces is compact (some authors use
the term “completely continuous”) if it is a limit of maps having finite rank.
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If r is a radius of convergence then let Ar denote the ring of functions on Br,
equipped with the supremum semi-norm (which is a norm in this case, as Ar is
reduced). A basic result is

Lemma 3. If s < r are radii of convergence, then the inclusion Bs ⊂ Br

induces a compact map Ar → As.

Proof. This is an immediate consequence of the fact that the inclusion Bs ⊂ Br

is inner. Alternatively, one can give a direct proof, as follows: the space Br is a
finite disjoint union of closed discs, and hence Ar is a finite direct sum of rings
topologically isomorphic to the affinoid K〈x〉. The inclusion Bs → Br induces,
on each affinoid corresponding to a component of Br, a map K〈x〉 → K〈y〉
which, if one chooses appropriate parameters on the discs, is equal to the ring
homomorphism defined by x 7→ (r/s)y. But this map is compact because for
any ε > 0, the image of the basis {1, x, x2, . . .} of K〈x〉 only contains finitely
many terms with norm greater than ε.

Note that we think of Br and B×r not as being abstract rigid spaces but as
being explicit rigid subspaces of rigid affine 1-space. Hence these spaces come
with with a fixed parameter z, upon which several constructions below will
depend.

Let W denote “weight space” in this setting, that is, the rigid space

Hom(Z×p ,Gm)

over K (see Lemma 2). Then the L-points (L any finite extension of K) of W
are the continuous group homomorphisms κ : Z×p → L×. We refer to points
of W as weights, or as weight-characters. Points of W corresponding to weight-
characters of the form κ(x) = xkεp(x), where k is an integer and εp is a finite
order character, will be called classical weight-characters.

We have seen that W is a union of finitely many open discs. Say κ ∈ W(K).
Then it is an easy check (use log and exp) that κ extends to a morphism of
rigid spaces B×r → Gan

m for some radius of convergence r < 1, (and hence to a
morphism B×s → Gm,K for any radius of convergence s < r). For example, one
can take r = p−1 if κ(x) = xk for some k ∈ Z, and r = p−n if κ is of finite order
and factors through (Z/pnZ)×.

If
(

a b
c d

)
∈ Mα then the map z 7→ cz + d defines a morphism Br → B×rp−α ,

and the map z 7→ az+b
cz+d defines a morphism Br → Br|∆|, where ∆ = ad−bc. We

frequently use the weaker statement that z 7→ az+b
cz+d defines a map Br → Br.

Now say κ ∈ W(K) and r is a radius of convergence.

Definition. We say an integer α ≥ 1 is good for (κ, r) if κ : Z×p → K× extends
to a morphism of rigid spaces B×rp−α → Gan

m .

For any κ and r, a good integer α will exist, by the remarks above. Of
course, given α which is good for (κ, r), the extension of κ to B×rp−α is unique.
Finally, if α is good for (κ, r) and β > α then β is also good for (κ, r) and the
extension of κ to B×

rp−β is just the restriction of the extension of κ to Brp−α .
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Now choose κ and r as above, and let α be any integer which is good for
(κ, r). Let κ also denote the extension of κ to B×rp−α .

Definition. Let Aκ,r be the ring Ar of rigid-analytic functions on Br, equipped
with the following right action of Mα: for h ∈ Aκ,r and γ =

(
a b
c d

)
∈ Mα,

(h|γ)(z) =
κ(cz + d)
(cz + d)2

h

(
az + b

cz + d

)
.

Note that α has to be good for (κ, r) for this definition to make sense. Note
also that the simplest example of these rings is just Aκ,1 which is the ring K〈z〉
of power series

∑
anzn such that an → 0 as n →∞.

We say that a map f between Banach spaces is norm-decreasing if |f(x)| ≤
|x| for all x. We have equipped Ar with the structure of a Banach space and we
think of Aκ,r also as having this Banach space structure. The map Aκ,r → Aκ,r

defined by h 7→ h|γ is norm-decreasing: this is an immediate consequence of the
fact that κ(cz + d) and cz + d both have norm 1. If |det(γ)| < 1 then one can
say much more. In this case, the endomorphism f 7→ f |γ of Aκ,r is compact, as

it factors as Aκ,r
res−→ Aκ,r|∆|

|γ−→ Aκ,r, where ∆ = det(γ), and the restriction
map Aκ,r → Aκ,r|∆| is compact by Lemma 3.

On the other hand if |det(γ)| = 1 then γ has an inverse in Mα, and so
the induced endomorphism of Aκ,r is norm-decreasing with a norm-decreasing
inverse and is hence an isometry.

For κ a weight and r = p−n, choose α ≥ 1 which is good for (κ, r), and let
U be a compact open subgroup of D×f of wild level ≥ pα. The key definition is
the following:

Definition. The space of r-overconvergent automorphic forms of weight-character κ
and level U is the space SD

κ (U ; r) := L(U,Aκ,r).

We now make some elementary observations about this space. Firstly, note
that this space is independent of the choice of α, in the sense that if β is also
good for (κ, r) and U also has wild level ≥ pβ , then the two induced actions of U
on Aκ,r are the same and hence the definition is independent of the choice of α.
Next note that using the “explicit” description of equation (1) in section 4, one
sees that SD

κ (U ; r) is naturally a Banach space over K (note that the groups Γi

are finite and K has characteristic 0 and hence the subspace ofAκ,r where Γi acts
trivially is a closed direct summand). In fact one can write down an explicit
norm on SD

κ (U ; r), useful for computational purposes—if f ∈ SD
κ (U ; r) then

define |f | = maxg∈D×
f
|f(g)|. This max exists, is finite, and is attained, because

if u ∈ U and h ∈ Aκ,r then det(up) ∈ Z×p , so h and h|u have the same norm, and
hence |f(g)| is constant on double cosets D×gU . One can also view the norm
on SD

κ (U, r) in the following manner: fix once and for all {d1, . . . , dn} such that
D×f =

∐
D×diU ; then there is an induced isomorphism SD

κ (U ; r) ∼= ⊕iAΓi
κ,r as

above, and the right hand side is a closed subspace of the affinoid ⊕iAκ,r (which
can be thought of as being equipped with its usual supremum semi-norm).
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If s < r is another weight, then the restriction map Aκ,r → Aκ,s is com-
pact and norm-decreasing, and hence induces a compact norm-decreasing map
SD

κ (U ; r) → SD
κ (U ; s).

For η ∈ D×f such that ηp ∈ Mα, the endomorphism [UηU ] of SD
κ (U ; r)

is continuous and norm-decreasing. Moreover if also ηp has determinant ∆ a
non-unit, then [UηU ] factors as

[UηU ] : SD
κ (U ; r) res−→ SD

κ (U ; r|∆|) → SD
k (U ; r)

and hence is norm-decreasing and compact, as the restriction morphism is com-
pact. Recall that a compact map has a characteristic power series, or a Fredholm
determinant, which is the natural generalisation of the characteristic polynomial
of a finite rank map: see section 5 of [16] for a beautifully-written introduction to
these notions. The fact that [UηU ] is compact and norm-decreasing means that
its characteristic power series is in OK{{T}}, that is, in the space of power series
that converge on the whole of affine 1-space. The case we are most interested
in is the Hecke operator Up := [UηpU ] where we recall ηp =

(
$p 0
0 1

)
.

If κ is a classical weight-character, that is, κ(x) = xkεp(x) where k is an
integer and εp is a finite order character, then choose α ≥ 1 minimal such that
εp factors through (Z/pαZ)×. We have a natural inclusion Lk,εp

→ Aκ,1 of
Mα-modules. This induces a map from classical automorphic forms (with p-
adic coefficients) to 1-overconvergent automorphic forms. More precisely, if we
fix a level U0 prime to p and any n ≥ α then we get a continuous embedding from
SD

k (U0 ∩U1(pn))(εp) = L(U0 ∩U0(pn), Lk,εp) to Sκ(U0 ∩U1(pn), 1). This is the
analogue in this setting of the statement that classical forms are overconvergent.
In the next section we will discuss the slightly more subtle question of letting
the level drop at p, and prove an analogue of the result that classical forms of
level Npn with trivial character at p are overconvergent of level Np.

6 The operator Up

We record a few useful facts about the Hecke operator Up. Let κ be a weight
and let r = p−t be a radius of convergence. Choose any α ≥ 1 which is good
for (κ, r) and choose any n ≥ α. We will be concerned with forms of level
U = U0 ∩ U1(pα) ∩ U0(pn), where U0 is a compact open of level prime to p.

Lemma 4. 1. There exist maps αs : SD
κ (U ; s/p) → SD

κ (U ; s), for all radii
of convergence s, such that Up : SD

κ (U ; r) → SD
κ (U ; r) factors as

SD
κ (U ; r) res−→ SD

κ (U ; r/p) αr−→ SD
κ (U ; r)

and if r < 1 it also factors as

SD
κ (U ; r)

αpr−→ SD
κ (U ; pr) res−→ SD

κ (U ; r).

2. Up is a compact operator on SD
κ (U ; r).
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3. If s < r is another radius of convergence then the characteristic power
series of Up on SD

κ (U ; s) and on SD
κ (U ; r) coincide.

4. There is a canonical isomorphism of Hecke modules

ι : SD
κ (U ; r/p) ∼= SD

κ (U ∩ U0(pn+1); r)

5. The characteristic power series of Up on SD
κ (U ; r) equals the characteristic

power series of Up on SD
κ (U0 ∩ U1(pα); r). That is, “the characteristic

power series does not see the higher U0(pn) structure”.

Proof. 1. By definition, Up is the sum of various maps f 7→ f |γ where γ ∈
Mα has determinant p. Hence the results follow from the fact that |γ :

Aκ,r → Aκ,r factors as Aκ,r
res−→ Aκ,r/p

|γ−→ Aκ,r, and also as Aκ,r
|γ−→

Aκ,pr
res−→ Aκ,r if r < 1. Hence αr(f) :=

∑
i f |ηi will do the job, if

U
(

$p 0
0 1

)
U =

∐
i Uηi.

2. The restriction maps are compact and compactness of Up follows.

3. Let αps : SD
κ (U ; s) → SD

κ (U ; ps) be as in part 1. The characteristic power
series of αs◦res and res◦αs are equal, by [16], Corollaire 2 to Proposition 7,
and the result follows easily by induction on − logp(s).

4. One constructs ι by composing the following sequence of canonical iso-
morphisms. Firstly define U0(p) to be the matrices γ ∈ U0(1) such that
γp is lower triangular mod p. Then one observes that SD

κ (U ; r/p) =
L(U,Aκ,r/p) is the subspace of L(U ∩ U0(p),Aκ,r/p) where the matri-
ces

(
1 i
0 1

)
all act as the identity. This space is naturally isomorphic to

the space L(U ∩ U0(p),O(pBr)), where pBr is the rigid subspace of Aan
1

whose Cp-points are {z : z/p ∈ Br(Cp)}. Note that pBr ⊂ Br/p. Next
we observe that the map h 7→ h|

(
$p 0
0 1

)
induces an isomorphism L(U ∩

U0(p),O(pBr)) → L(U ∩ U0(pn+1),O(pBr)
[
(

p 0
0 1

)
]). Finally, one checks

that the map f 7→ f |
(

p 0
0 1

)
induces an isomorphism O(pBr)

[
(

p 0
0 1

)
] →

Aκ,r and hence an isomorphism L(U ∩U0(pn+1),O(pBr)
[
(

p 0
0 1

)
]) = L(U ∩

U0(pn+1),Aκ,r) = SD
κ (U ∩U0(pn+1); r). If we define ι to be the composite

of these isomorphisms then it is elementary to check that ι commutes with
the Hecke operators away from p, and an explicit calculation shows that ι
also commutes with the Hecke operator Up. We remark that the way we
have normalised things, the operator Up at level pn is

∑p−1
i=0 |

( p 0
ipn 1

)
, and

in particular it depends on n. This annoyance could have been avoided at
the expense of introducing other annoyances.

5. It suffices to prove that the characteristic power series of Up on SD
κ (U0 ∩

U1(pα)∩U0(pn); r/p) and SD
κ (U0∩U1(pα)∩U0(pn+1); r) are equal, if n ≥ α.

Let T denote the composition

SD
κ (U0 ∩ U1(pα) ∩ U0(pn+1); r) res−→ SD

κ (U0 ∩ U1(pα) ∩ U0(pn+1); r/p) →
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→ SD
κ (U0 ∩ U1(pα) ∩ U0(pn); r/p),

where this latter morphism is given by the trace map f 7→
∑p−1

i=0 f |
(

1 0
pni 1

)
.

Then it is an elementary exercise to check that T is compact, and that
both ι ◦ T and T ◦ ι are equal to Up on their respective spaces. The result
follows by [16], Corollaire 2 to Proposition 7.

We can now easily prove analogues of the first two parts of Theorem 1. As
before, let U0 be some compact open of level prime to p, let κ be a weight-
character and let r be a radius of convergence. Let α be any positive integer
which is good for (κ, r), and let n ≥ α be any integer. Set U = U0 ∩ U1(pα) ∩
U0(pn).

Proposition 3.

1. If f ∈ Sκ(U ; r) then f |
(

$α−n
p 0

0 1

)
(appropriately interpreted) is an element

of Sκ(U0 ∩ U1(pα); r/pn−α).

2. If f ∈ Sκ(U ; r) and Upf = λf for some non-zero λ then f ∈ Sκ(U ; s) for
any radius of convergence s ≥ r such that α is good for (κ, s).

Proof. 1. One continually applies the inverse of the map ι defined in part 4
of Lemma 4.

2. By part 1 of Lemma 4, Upf ∈ Sκ(U ; pr) and hence f ∈ Sκ(U ; pr). So we
are finished by induction on − logp(r).

Note that the map f 7→ f |
(

$n−α
p 0

0 1

)
, the inverse of the map in part 1 of this

proposition, is in fact the natural inclusion Sκ(U0∩U1(pα); r/pn−α) → Sκ(U ; r),
in the sense that it is the one which commutes with the Hecke operator Up.
The fact that it is this morphism which is natural, rather than the identity
map, is a mildly annoying consequence of the way we have set things up—more
specifically, it is because the matrices defining Up depend on the level that we
are working with.

7 Classical and overconvergent forms.

We have just seen how classical forms embed into overconvergent ones. Now
we show how to pull them out. Let κ = (k, εp) be a classical weight-character,
where k ≥ 1, and as usual choose α ≥ 1 minimal such that εp factors through
(Z/pαZ)×. Then Mα acts on Lk,εp . Let U0 be a compact open in D×f of level
prime to p, and let U = U0 ∩ U0(pn) for any n ≥ α. Let κ′ be the character
(2− k, εp). We define a map

θ1−k : SD
κ (U, 1) → SD

κ′(U, 1)

18



by (
θ1−k(f)

)
(g) = (|ν(g)|det(gp))

1−k dk−1f(g)
dzk−1

.

Here ν is the norm map D×f → A×f , and |.| is the usual absolute value map
Af → Q. Note that the superscript 1 − k is notational and merely there to
indicate that θ1−k looks like the (1− k)th power of some kind of Tate twisting
operator.

One has to verify that the map θ1−k is well-defined, which boils down to
checking that for

(
a b
c d

)
∈ Mα and F a power series in z, we have the identity(

dk−1

dzk−1

) (
(cz + d)k−2F

(az + b

cz + d

))
= (ad−bc)k−1(cz+d)−k

(
dk−1F

dzk−1

) (az + b

cz + d

)
.

This identity is trivial for k = 1 and the general case is easily established
by induction on k. Next one can analyse the relationship between θ1−k and
Hecke operators. Again it is elementary to check that if f ∈ SD

κ (U, 1) and
η ∈ D×f with ηp ∈ Mα, then (θ1−kf)|η = |ν(η)|k−1θ1−k(f |η) and hence that
[UηU ]θ1−k = |ν(η)|k−1θ1−k[UηU ]. Applying this with η = ηl one sees that
Tlθ

1−k = l1−kθ1−kTl and hence that if f ∈ SD
κ (U, 1) is an eigenform for Tl with

eigenvalue al then θ1−kf is an eigenform for Tl with eigenvalue all
1−k. We now

prove the analogue of the third and fourth results of Theorem 1 in this setting.

Proposition 4. The kernel of θ1−k is precisely the classical forms

SD
k (U0 ∩ U1(pn))(εp).

Let 0 6= f ∈ SD
κ (U ; r) be an eigenvector for Up with non-zero eigenvalue λ. Then

f ∈ SD
κ (U ; 1). Moreover, if vp(λ) < k−1 then f is classical, and if vp(λ) > k−1

then f is not classical.

Proof. The kernel of θ1−k is the functions f ∈ SD
κ (U ; 1) whose image is con-

tained within the space of polynomials of degree at most k − 2, which is pre-
cisely the space of classical forms L(U,Lk,εp

) = SD
k (U0 ∩ U1(pn))(εp). Next,

let 0 6= f ∈ SD
κ (U ; r) be an eigenvector for Up with non-zero eigenvalue λ. By

the proposition in the previous section, f ∈ SD
κ (U, 1).

If f is classical then one can easily deduce from the classical theory (see
for example Theorem 4.6.17 of [15], the fact that λ is an algebraic integer, and
the Jacquet-Langlands theorem) that vp(λ) ≤ k − 1. On the other hand, if
vp(λ) < k − 1 then θ1−kf is in SD

κ′(U ; 1) and if it is non-zero then it is an
eigenvector for Up with eigenvalue λ/pk−1, which has negative valuation. On
the other hand, Up is an operator with norm at most 1, and hence θ1−kf = 0.
Hence f is classical.

In the classical theory, one can find both classical and non-classical forms
with vp(λ) = k − 1, and it would be an interesting computational exercise to
search for examples of this phenomenon in this situation.

We finish by remarking that if we had defined our spaces of overconvergent
automorphic forms as L(U, (Aκ,r)∗), using the dual of Aκ,r, then one would see
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the theta operator going in the other direction, which would be more analogous
to the classical theory. On the other hand, using this convention gives a surjec-
tion from overconvergent forms to classical ones, rather than an injection from
classical forms to overconvergent ones. Using the duals would give a theory
more analogous to the one set up by Stevens in the classical case.

8 Families

Let R be a reduced affinoid over K. Then R is a Banach algebra in the sense
of section A1 of [6]. Let A be a Banach module over R. Briefly, the key points
are that R is a ring complete with respect to a non-trivial ultrametric norm
and A is a complete normed R-module satisfying various natural axioms such
as |ra| ≤ |r||a| for r ∈ R and a ∈ A. In fact the only cases of interest to
us in this paper are when R is an affinoid disc over K. Assume furthermore
that we have an R-linear action of Mα on A, and that all elements of Mα act
continuously. Then for U ⊂ D×f open and compact and of wild level ≥ pα, we
see that L(U,A) also inherits the structure of a Banach module over R. Let us
for simplicity assume in this section that all the finite groups Γi are trivial.

We now specialise to the case that we are interested in. Let R be the ring of
functions on an affinoid disk V defined over K in W. Define AV,r to be the ring
of functions on the rigid space V ×K Br. We say that an integer α ≥ 1 is good
for the pair (V, r) if for all κ ∈ V (Cp), the map κ : Z×p → C×p extends to a map
B×r → Gan

m . Because V is affinoid, one can check that good integers α do exist.
Define a right action of Mα on AV,r by, for h ∈ AV,r and γ =

(
a b
c d

)
∈ Mα,

(h|γ)(κ, z) =
κ(cz + d)
(cz + d)2

h

(
κ,

az + b

cz + d

)
.

It is easily verified that Mα acts by continuous R-linear maps. If U is a com-
pact open of wild level ≥ pα then we define SD

V (U ; r) := L(U,AV,r). This is
a Banach module over R and it enjoys various base change properties. For
example, if V1 ⊆ V2 are affinoids in W, with associated algebras R1 and R2,
then SD

V2
(U ; r)⊗̂R2R1 = SD

V1
(U ; r), and if κ ∈ V (K) inducing a map R → K

then SD
V (U ; r)⊗R K = SD

κ (U ; r). The same formalism as we have seen already
in the case of fixed weight shows that we have continuous Banach R-module
endomorphisms Tl of SD

V (U ; r) for l any prime not dividing δ, and furthermore
that Up is a compact morphism. In particular Up on SD

V (U, r) has a characteris-
tic power series in R{{T}} whose restriction to a weight κ is the characteristic
power series of Up on forms of weight κ.

The reader who has read the construction of the classical eigencurve in [7]
will now see that we have all the ingredients to construct the analogous object in
this case. The reason we have restricted to the case where the Γi are all trivial is
to ensure that all the Banach modules SD

V (U, r) are orthonormizable, although
in future work we shall show that this assumption is unnecessary. We point out
here that we only define the “D” eigencurve in this setting, although no doubt
one can also construct a “C” eigencurve by mimicking the construction in [7].
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By the argument at the beginning of Chapter 7 of [7], for every Hecke op-
erator α we can construct a spectral curve Zα representing the spectrum of the
compact operator αUp. All of Coleman’s Riesz theory applies in this setting,
and the construction of the curve Dα in Section 7.2 of [7] goes through word for
word in our setting. Similarly the arguments of Section 7.3 go over unchanged,
to give us an eigencurve D. Once the existence of D is established, the usual
corollaries, such as local constancy of dimension of spaces of overconvergent
forms of a given slope follow, although of course one can prove these corollaries
directly just by an analysis of the spaces SD

V (U, r). Finally, the fact that forms
of small slope are classical enables one to deduce that the dimensions of spaces
of classical forms of a given slope are also locally constant.

We remark that Dan Jacobs in his thesis ([12]) has make some explicit com-
putations which indicate that, just as in the classical case, these new eigencurves
exhibit some surprising and unexplained regularity in their structure.

We end with a remark about what is lacking in this theory. One can prove
slightly less about these eigencurves than the classical eigencurves, because the
arguments in [7] that rely on the existence of q-expansions seem to have no
analogue in this setting. The fact that points on the eigencurve correspond to
overconvergent eigenforms follows from some elementary commutative algebra,
but on the other hand, the lack of a natural pairing between spaces of forms
and Hecke algebras in this setting means that the author cannot currently prove
that the rank of the Hecke algebra acting on a space of overconvergent forms
of some fixed slope is as big as the rank of the space of the forms. We hope to
resolve this problem in the future.
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