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1 Introduction.

“The existence of free groups is immediate from the Adjoint Functor Theorem.”
Whilst I’ve long believed this statement to be true, I have not (until now) ever
bothered to understand a precise statement of one of the Adjoint Functor the-
orems, so I thought it would be a good exercise to do so. My reference is Mac
Lane’s “Categories for the working mathematician”. There I discovered some-
thing I vaguely knew already—there are several adjoint functor theorems. One
version appears to be called Freyd’s Adjoint Functor Theorem, or the General
Adjoint Functor Theorem (p117 of Mac Lane). Another is called the Special
Adjoint Functor Theorem (p125), and a corollary of this is called “the classical
form of the Special Adjoint Functor Theorem”, or the SAFT (p126). I’ve been
told that the SAFT was motivated by the construction of the Stone-Cech com-
pactification of a topological space—indeed SAFT gives this compactification
with little difficulty).

My initial thought was to understand the SAFT on the basis that it could
be the “easiest” to understand. But (see later on) I realised soon after trying
to understand the statement of the theorem that it would not apply to the case
of constructing free groups! It will construct Stone-Cech compactifications, but
wouldn’t do what I wanted, so I gave up and decided to go for the General
Adjoint Functor Theorem.

Having established which version of the Adjoint Functor Theorem I wanted
to understand, the problem now becomes one of unravelling the definitions. So
let’s go.

The way Mac Lane sets things up is as follows. He starts with a model of
set theory and the assumption that there is a universe U in his model. A set is
small if it’s an element of U . His definition of a category is a set of objects and
a set of morphisms, but these sets don’t have to be small. For example, Set is
the category of all small sets, Grp is the category of all small groups, and so
on. He will frequently assume however that his categories have small hom-sets,
however, which of course means that if a, b ∈ C then Hom(a, b) is a small set.
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Now to the statement of the the General Adjoint Functor Theorem, as found
on p117 of Mac Lane. The theorem, also called Freyd’s Adjoint Functor Theo-
rem was formulated and popularised by Freyd in 1964. Recall that a left adjoint
to a functor G : A → X is a functor F : X → A such that there are natural
bijections between A(Fx, a) and X(x,Ga).

Theorem 1.1 (General Adjoint Functor Theorem). If A is small-complete and
has small hom-sets, then a functor G : A→ X has a left adjoint iff it’s contin-
uous and satisfies the SSC (see below).

The SSC, or “solution set criterion”, is the following: for all x ∈ X there’s a
small set I and a set of objects ai : i ∈ I of A and a set of arrows fi : x→ G(ai)
such that every arrow x → G(a) can be written as a composite h = G(t)fi for
some i, where t : ai → a is an arrow in A.

Rather than talking about the definitions of the category-theoretic words in
this theorem (continuous, small complete), I will talk about the SSC for a while,
as it’s more “mathematical”. Let’s consider for example the forgetful functor
from groups to sets. Does this satisfy the SSC? Well it certainly does: if x is a
set, one can use the set with one element for I, define a1 to be the free group on
x and f1 to be the canonical map; this works. But of course this presupposes
the existence of free groups! In fact what I’ve just given you here is a special
case of the proof that if the functor has an adjoint then it satisfies the SSC
(with I the set with one element). The whole point of course is that way before
one knows the existence of free groups, one can check the SSC—if x is a set and
f : x → G(a) is a map to the underlying set of a group a, then the subgroup
generated by x has size bounded by the cardinality of x (or can be countably
infinite if x is finite)—and hence one can consider all groups of cardinality at
most this, and then let I run through all maps from x to all of these groups!

If we consider the forgetful functor from compact Hausdorff topological
spaces to topological spaces, then here’s the argument that the SSC holds. It
suffices to show that if X is a subset of a compact Hausdorff topological space
Y then the closure of X has cardinality at most 22X

. WLOG Y is the closure
of X. Here’s a map L from Y to the power set of the power set of X: define
L(y) to be the collection of subsets T of X with the property that y is in the
closure of T . I claim that this is an injection; if z is another element of Y then
choose disjoint opens U containing y and V containing z in Y ; then the closure
of U ∩ X certainly misses V and hence U ∩ X isn’t an element of L(z). On
the other hand, U ∩ X is dense in U and hence U ∩ X is an element of L(y).
Hence L is an injection and we’ve got a bound on the cardinality of the closure
of X and now we easily get an SSC, just take all compact Hausdorff topological
spaces of size at most this cardinality and so on. . . .

2 Notation in the theorem.

My task now is to explain what small-complete is, what continuous means (it
means that the functor preserves all small limits, which I’ll explain), and to do
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enough to convince myself that this theorem applies in the free group case. By
the way, Mac Lane comments that the free group application is good because
it constructs free groups “without entering into the usual (rather fussy) explicit
construction of the elements of [the free group on X] as equivalence classes of
words in letters of X”. I find it hard to believe that this comment isn’t tongue-
in-cheek! It might avoid this, but it doesn’t avoid constructions in comma
categories in the proof of the theorem!

Anyway, let’s get down to the definitions. A category is small if it comprises
of a small set of objects and a small set of morphisms.

Now some words on limits. If J and C are categories, then CJ is the category
of functors J → C. Note that if C has small hom-sets and J is small then CJ

has small hom-sets. There’s an obvious diagonal functor ∆ : C → CJ . A limit
for F : J → C is a universal arrow from ∆ to F . In other words, it’s an object
r = lim(F ) ∈ C (think of a projective limit) and a natural transformation
∆(r) → F which is universal amongst natural transformations ∆(c) → F . In
other words, for any c ∈ C and any “natural transformation ∆(c) → F ,” that
is, arrows from c to all objects of J such that all the triangles commute—maybe
I should say that this is called a “cone to the base F from the vertex c”—there’s
a map c→ r making everything commute.

A small diagram in a category C is a morphism F : J → C with J a small
category. A category C is small complete if all small diagrams in C have limits
in C. For example, Set, Grp, Ab, Rng, R-Mod, Comp Haus are all small
complete.

A functor H : C → D preserves small limits if for all F : J → C (J small)
with a limiting cone ν : b → F , hitting everything with H gives us a limiting
cone hν : Hb → HF . This is a bit more than sending limiting objects to
limiting objects—it sends limiting diagrams to limiting diagrams. A functor
is called continuous if it preserves all small limits. Note that a random nice-
looking functor might not be continuous: the functor from Set to Ab sending
a set to the free abelian group on the set, isn’t continuous. Note however that
if C is a category with small hom-sets and c is an object of C then HomC(c,−)
is continuous.

If C is complete and H : C → D preserves all small products and all equal-
izers of parallel pairs, then H is continuous—this is an exercise on p114 of Mac
Lane. It can be thought of as a “morphism” version of a corollary on p109 of
Mac Lane, which says that if C is a category which has equalizers of all pairs
of arrows, and all small products, then it’s small-complete.

Remark 2.0.1. When typing this up, I noticed that on p118 of Mac Lane there is
a “representability theorem”, which gives necessary and sufficient conditions for
a functor to Set to be representable. I wondered whether this would be useful for
constructing universal elliptic curves! Of course, it shouldn’t be, because people
like Schlessinger and Artin were proving deeper (non-formal) representability
results in specific cases and must have been aware of this general nonsense. To
apply the theorem on p118 to elliptic curves, even before one checks the analogue
of SSC, one needs that the opposite category to the category of schemes is small-
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complete. But I don’t think that this is true—even though the opposite of the
category of schemes is close to the category of rings, I don’t think it’s close
enough. When constructing p-divisible groups, for example, one really doesn’t
take the direct limit; over an affine base one could take the projective limit of
the resulting global sections, and this would construct a limit that worked in the
category of rings, but I don’t think that this limit is a limit in the category of
schemes. Here’s a concrete direct system in the category of schemes: consider
the direct system defining µp∞ over Z say. I think I once convinced myself
that this had no limit in the category of schemes—but unfortunately I can’t
reconstruct my proof! Maybe I should chck this later?1. On the other hand, 1
quotients don’t exist in the category of schemes and surely this is enough.

3 Examples.

1) Can I deduce the existence of free groups? Let G : Grp→ Set be the forget-
ful functor. A left adjoint will be F : Set→ Grp such that HomGrp(FS,K) =
HomSet(S,K) for any group K and set S. So indeed it’s what we’re after.
I remarked above that Grp is small-complete but to check that the forgetful
functor is continuous, it’s worth finding out why this is the case. That Set
is small complete is clear—the obvious definitions work. One checks that the
same obvious definitions work for Grp. The fancy way of saying this is that
the forgetful functor Grp → Set creates limits, which is stronger than saying
it preserves them! The proof of this is just diagram-chasing.

Erm. . . that’s it for examples because I’ve wasted too much time on this
already!

4 Appendix: the uselessness of the Special Ad-
joint Functor Theorem.

I would have to define more terms if I wanted to give a full precise statement of
the Special Adjoint Functor Theorem, so I will simply refer the reader to p125
of Mac Lane for the gory details. Here’s the heart of the problem though. A
small set Q of objects of a category C is called a small cogenerating set if for
any f 6= g : a → b in C there is q ∈ Q and a map h : b → q with hf 6= hg.
For example, if C = Set, T is a set with 2 elements, and Q = {T}, then Q is
a small cogenerating set for C. The Special Adjoint Functor Theorem and its
corollary apply to functors G : C → X with the property that C has a small
cogenerating set. Unfortunately

Lemma 4.1. Grp doesn’t have a small cogenerating set.

Proof. It suffices to construct abstract simple groups of arbitrarily large cardinality—
as this would make any small generating set contain elements of arbitrarily large

1it would be nice to see an example.
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cardinality in our universe, which can’t happen. So the lemma follows from the
assertion that PGL2(k) is simple for any algebraically closed field k. This latter
assertion is true—here’s a proof. We have to show that the normal subgroup
generated by any non-identity element is the whole thing. Take a non-identity
element and let N be the normal subgroup it generates. One can conjugate
the element so that it’s upper-triangular, and some easy messing around now
shows that N contains an element of the form

(
1,t
0,1

)
with t 6= 0, and then that N

contains all upper triangular unipotent matrices, and then all lower triangular
unipotent matrices, and then all matrices in SL2(k) with a 1 in the bottom right
hand corner (each is an upper unipotent times a lower unipotent), and hence
all matrices in PGL2(k) with non-zero bottom right hand corner, and hence all
of PGL2(k) (use

(
1,1
0,1

)
).

Hence we can’t use the Special Adjoint Functor Theorem, or SAFT, to con-
struct free groups. In fact this small cogenerating set condition is the one that’s
usually the hardest to check, and not always true.
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