
Tannakian categories.

Kevin Buzzard

April 26, 2012

Last modified Dec 2007.

1 Introduction

I just want to give definitions and examples.

2 Tensor categories.

If C is a category and ⊗ : C × C → C is a functor, then an associativity constraint for (C,⊗) is,
for each X,Y, Z ∈ C, an isomorphism X ⊗ (Y ⊗ Z) → (X ⊗ Y ) ⊗ Z which is functorial in X, Y
and Z and such that the two obviousish induced maps X⊗ (Y ⊗ (Z⊗T )) = (X⊗ (Y ⊗Z))⊗T are
the same: this is “the pentagonal axiom”. A commutativity constraint for (C,⊗) is functorial (in
X and Y ) isomorphisms X ⊗ Y → Y ⊗X such that the obvious induced endomorphism of X ⊗ Y
(apply it twice) is the identity. The associativity and commutativity constraints are compatible if
the two obviousish maps from X ⊗ (Y ⊗Z) to (Z ⊗X)⊗ Y are the same (the “hexagon axiom”).
An identity obect is a pair (U, u) with U an object of C and u : U → U ⊗U an isomorphism, such
that X 7→ U ⊗X is an equivalence of categories.

A tensor category is (C,⊗) equipped with compatible associativity and commutativity con-
straints, and having an identity object (not prescribed).

Example: finitely-generated modules over a commutative ring. Warning: if you change the
sign in the associativity constraint then the pentagon axiom fails!

Example: All modules over a commutative ring?
Example: The category of sets, with ⊗ being product of sets?
Basic properties: all identity objects in a tensor category are canonically isomorphic. If U is

an identity object then there’s a canonical isomorphism X = U ⊗X for any X. All the natural
ways of computing the tensor product of n ≥ 2 objects are canonically isomorphic.

A strictly full subcategory of a category is a full subcategory (recall that full means that hom
sets don’t change) with the property that if X is in it, then anything isomorphic (in the big
category) to X is also in it.

A tensor subcategory of a tensor category C is a strictly full subcategory which contains an
identity (and hence all of the identities) and is closed under tensor products. Such a thing is,
unsurprisingly, a tensor category itself.

3 Rigid tensor categories.

Say C is a tensor category, and let 1 be an identity object. If X,Y are objects of C, the functor
Copp → Set sending T to Hom(T ⊗X,Y ) might perchance be representable, i.e., perhaps there’s
some Z such that Hom(T⊗X,Y ) = Hom(T,Z). If it is, we call the representing object Hom(X,Y ).
Note that the representing object comes with a canonical map Hom(X,Y ) ⊗ X → Y , which is
called “evaluation” and written evX,Y . Note also that Hom(1,Hom(X,Y )) = Hom(X,Y ).
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Say Hom(X,Y ) exists for all X,Y ∈ C. Then we can define the dual X∨ of an object X by
X∨ = Hom(X, 1) and in fact X 7→ X∨ is a contravariant functor C → C. General nonsense shows
us that there’s a canonical map X → (X∨)∨ and X is reflexive if this is an isomorphism.

Examples: In the category of abelian groups, Z/2Z isn’t reflexive because its dual is 0. In the
category of vector spaces over a field, finite-dimensional vector spaces will be reflexive but infinite
ones won’t.

What we have so far isn’t, apparently, enough to deduce that “Homs commute with tensor
products”, that is, if n ≥ 2 and Xi and Yi are objects of C for 1 ≤ i ≤ n, then there’s a natural
map

⊗1≤i≤nHom(Xi, Yi)→ Hom(⊗1≤i≤nXi,⊗1≤i≤nYi).

[As special cases we see that there are natural maps (X∨1 ⊗X∨2 ) → (X1 ⊗X2)∨ and X∨ ⊗ Y →
Hom(X,Y ).]

A tensor category C is rigid if
(i) Hom(X,Y ) exists for all X and Y ,
(ii) all objects are reflexive, and
(iii) all those maps above (commuting Homs and tensors) are isomorphisms. (it suffices to

stick to the case n = 2, unsurprisingly).
Nonexamples: sets, finite sets, finitely-generated modules over a general commutative ring,

vector spaces over a field.
Examples: finite-dimensional vector spaces over a field. Finitely-generated projective modules

over a commutative ring.
The axioms imply that the map X 7→ X∨ is an equivalence of categories C → Copp (and

in particular that Hom(X,Y ) = Hom(Y ∨, X∨), and that uHom(X,Y ) and Hom(Y ∨, X∨) are
canonically isomorphic). In fact Copp is naturally a tensor category and, when I’ve defined it,
we’ll see that this map is a tensor equivalence of tensor categories.

While we’re here, let’s define traces. For X an object of a rigid tensor category, there’s a
canonical map Hom(X,X)→ X∨⊗X → 1, where the last map is the evaluation map. Applying the
functor Hom(1, ∗) to this map we get a map Hom(X,X)→ Hom(1, 1), that is, a map End(X)→
End(1), and this is called the trace map. The rank of X is defined to be the trace of the identity
map from X to X. The trace map End(1) → End(1) is the identity. The rank of X ⊗ Y is the
rank of X composed with the rank of Y .

A rigid tensor subcategory of a rigid tensor category is a tensor subcategory (so strictly full,
closed under tensor products) which is also closed under taking duals. One can check that such a
thing is naturally a rigid tensor category.

4 Tensor functors.

A tensor functor (C,⊗) → (C ′,⊗′) is a pair (F, c) with F a functor C → C ′ and c a collection
of isomorphisms cX,Y : F (X)⊗ F (Y )→ F (X ⊗ Y ), functorial in X and Y , that “commute with
the associativity and commutativity constraints” in the obvious way, and send identity objects to
identity objects. If furthermore F is an equivalence of categories then F is said to be a tensor
equivalence.

Example: the map X 7→ X∨ from a rigid tensor category to itself is a tensor equivalence
C → Copp.

One checks that if C and C ′ are rigid then the axioms force the induced map F (Hom(X,Y ))→
Hom(FX,FY ) to be an isomorphism. Tensor functors commute with traces and ranks in the
obvious way. In particular, in the example we’ll come to at some point, where C is a certain
category of finite-dimensional representations of a group, the forgetful functor (forgetting the
group action) will be a tensor functor, so will preserve rank, and the rank of a finite-dimensional
representation will just be its dimension.

A morphism of tensor functors (F, c) → (G, d) is a morphism of functors λ : F → G such
that (i) λ1 : F (1)→ G(1) is the isomorphism of identity objects between F (1) and G(1), and (ii)
λX ⊗ λY and λX⊗Y fit into the obvious commutative diagram involving c and d.
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Amazing fact: if C and C ′ are rigid then any morphism of tensor functors F,G : C → C ′ is
an isomorphism! The idea of the proof is that if λ : F → G then λ is, amongst other things,
λX : F (X)→ G(X) for all X, and we define µ : G→ F by letting µX be the dual of λX∨ .

5 Abelian tensor categories.

An additive tensor category is a tensor category (C,⊗) such that C is additive and⊗ is a bi-additive
functor. An abelian tensor category is (C,⊗) such that C is abelian and ⊗ is bi-additive.

Example: finitely-generated projective modules over a general commutative ring R: this is
additive and rigid, but not in general abelian. Finitely-generated modules over a general commu-
tative Noetherian ring R: this is abelian, but not rigid in general. If R = k is a field though then
we get the finite-dimensional vector spaces over k and this is a rigid abelian tensor category.

If C is an additive tensor category then End(1) is a ring and, because there are canonical
isomorphisms X → 1⊗X for each X, each X inherits an action of End(1). The action commutes
with the endomorphisms of X, for all X, so “all homs are R-linear” and in particular R is com-
mutative! Hence C is instantly R-linear and ⊗ is R-bilinear! If furthermore C is rigid then the
trace morphism is an R-linear map End(X)→ R.

Let C be a rigid tensor category that happens to be abelian. Then ⊗ is bi-additive, and
commutes with direct and inverse limits, so in particular it’s exact. This is because the map
X 7→ X ⊗ Y has a right adjoint (namely Z 7→ Hom(y, Z)) so commutes with direct limits, and a
duality argument gives the other way.

If C is rigid and abelian then there’s a bijection between subobjects of 1 and idempotents in
R. In particular if R is a field then 1 is simple. In fact an idempotent e in R gives a decomposition
C = C1 × C2 where C1 is the objects of C on which e acts as the identity.

6 Rigid abelian tensor categories.

Recall that if C is a rigid tensor category which is also abelian, then ⊗ has behaves well with
respect to additivity. We call such a category a rigid abelian tensor category.

Example: finite-dimensional vector spaces over a field. Here rank is the obvious thing.
We’ll come to representation-theoretic examples in a minute, but let me give a stupid example

first:
Example: Let k be a field, and let C be the category whose objects are pairs (V0, V1) of

finite-dimensional vector spaces over k, or equivalently vector spaces graded by Z/2Z. We give C
the structure of a tensor category whose associativity constraint is the obvious thing but whose
commutativity constraint is given by the “Koszul rule of signs”: we identify v⊗w in Vi⊗Wj with
(−1)ijw⊗ v in Wj ⊗ Vi. This is a rigid abelian tensor category, but the rank of (V0, V1) is d0 − d1
with di = dim(Vi), and in particular the rank is not always a non-negative integer! This means
that this category can’t be the category of representations of a group.

7 An important worked example.

If k is a field, and if G is any affine group scheme over k, in particular it’s just the spectrum of a
Hopf algebra A over k, with no assumptions on finite-generation of A as an algebra or anything,
then the category of finite-dimensional (algebraic) k-representations of G is rigid and abelian.

Let’s work some of this one out in detail. I know that “forgetting the G-action” is supposed to
be a tensor functor to the category of k-vector spaces, and tensor functors really “commute with
the tensors”: F (V ⊗W ) = F (V )⊗F (W ). This means that the tensor structure on the category of
finite-dimensional representations of G will have to be tensoring over k, not over k[G] or anything
like that, and we would like to define a G-action on V ⊗k W by defining g(v ⊗ w) := (gv ⊗ gw).
This doesn’t really make sense because G is a group scheme, not a group, but here’s how to
make it work: if we think of the group as the Hopf algebra A, then a comodule for A is a vector
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space V over k equipped with k-linear ρ : V → V ⊗k A such that the coidentity map A → k
induces the identity map V → V ⊗k A → V ⊗k k = V and such that the two obvious maps
V → V ⊗k A ⊗k A (one using the comultiplication, one using ρ twice) are the same. One checks
that to give a representation G→ GL(V ) is just to give a comodule structure on V , and now one
can do algebra, if one is so inclined, to see the real definitions of tensor product. I’m too lazy
though, so will continually argue on points.

What next? There are obvious associativity and commutativity constraints. The trivial 1-
dimensional representation is an identity object. The category is clearly abelian. Hom-sets present
a subtlety! If V and W are representations of G then Hom(V,W ) is the G-homs from V to W ,
which does not have a natural action of G, but for the internal homs we want HomG(T ⊗kX,Y ) =
HomG(T,Hom(X,Y )) and because tensors are over k but homs are over G we see that we want
Hom(X,Y ) to be Homk(X,Y ) equipped with the usual action (g.f)(x) = g(f(g−1x)); now if T is
the trivial 1-dimensional representation we recover the fact that the G-homs from X to Y are the
G-homs from the trivial representation to the k-homs!

This certainly now looks like a rigid abelian tensor category, doesn’t it.
One nice fact about not-necessarily finitely-generated Hopf algebras A over k is that any finite

subset of A is contained within a sub-Hopf-algebra that is finitely-generated as an algebra. This
is rather delicate (but fun) to check! See 2.6 of Deligne-Milne. As a result, any Hopf algebra is a
direct limit of Hopf algebras of finite type, so any affine group scheme over k is a projective limit
of algebraic groups over k.

8 Neutral Tannakian categories.

If k is a field then a neutral Tannakian category over k is a rigid abelian tensor category C which
is k-linear, and for which there exists an exact faithful k-linear tensor functor ω from C to the
category of finite-dimensional vector spaces over k. Recall that faithful just means that the maps
on the hom-sets are injective. Note that we don’t specify ω in the data. Any such ω is called a
fibre functor for the category.

Example: if k is a field, A is a Hopf algebra over k and C is the category V eck of finite-
dimensional k-representations of the associated affine group scheme over k, then C is a neutral
Tannakian category, and ω is just the forgetful functor. We call this category Repk(G).

Recall that any morphism of tensor functors between rigid tensor categories is an isomorphism,
so the automorphisms of ω form a group, well, if they form a set! Let’s try and figure out the
automorphisms of ω in the situation above. For any k-rep X of G we need λX : X → X a k-linear
map, such that λ1 is the identity, λX⊗Y = λX⊗λY , and also λ has to commute with G-equivariant
maps X → Y . Clearly any element of G(k) will give such a λ. Now my understanding is that the
converse is also true!

Even better: if R is a k-algebra then V 7→ V ⊗k R is a tensor functor from finite-dimensional
k-vector spaces to finitely-generated R-modules, and we can compose ω with this map and try
and compute the automorphisms of the resulting functor: this automorphism group contains G(R)
and is in fact equal to G(R). So we can recover the entire functor G from automorphisms of the
fibre functor! In particular we can recover G from Repk(G) and ω.

Theorem 1. Let C be a rigid abelian tensor category such that k = End(1) is a field, and let
ω : C → V eck be an exact faithful k-linear tensor functor. Then the automorphism group of ω
(regarded as a functor from k-algebras to groups) is representable by an affine group scheme G,
and ω can be re-interpreted as a map C → Repk(G) (because G is acting on ω, as it were).

Remarks: The proof looks like this. First construct the vector space A with a coalgebra
structure on it (without using much at all). Then, using the tensor structure on C, define an
algebra structure on A. Then, using rigidity of C show that it’s a Hopf algebra (rather than a
monoid scheme).
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9 How do reductive groups fit into all this?

Let k be a field of characteristic zero and let G be an affine group scheme over k.
1) G is connected iff for any representation X of G on which G acts non-trivially, the strictly

full subcategory of Repk(G) whose objects are isomorphic to subquotients of Xn, n ≥ 0, is not
stable under ⊗. For if you can find such an object (for which it’s stable) then you get a surjection
G→ H with H finite and non-zero.

Again assume k has char 0. Let G0 denote the identity component of G.
2) G0 is a limit of reductive groups iff Repk(G) is semisimple! Here’s the idea of the proof.

Reduce to the case G of finite type. Reduce to k algebraically closed. Reduce to considering Lie
algebras. Now it all follows from classical theorems.

10 More examples.

Finite-dimensional Z-graded vector spaces are a neutral Tannakian category, and the obvious fibre
functor gives us G = Gm.

Finite-dimensional real vector spaces V plus a decomposition V⊗RC = ⊕V p,q with V p,q = V q,p

are a rigid tensor category and indeed a neutral Tannakian category; the obvious fibre functor
gives us § := ResC/R Gm.

More generally, say an affine algebraic group G over a field k is of multiplicative type if its
character group is finitely-generated and if it’s the dual of its character group M . So it’s 0 →
T → G → C → 0 with C finite and of multiplicative type, and T a torus. A representation of G
is just a vector space over k with an M -grading over k such that the grading is permuted in the
obvious way by Galois.

TODO: (k-linear) Tensor functors. k-linear tensor cats. Rigid abelian tensor cats. And then I
can define an ab cat and write down Deligne-Milne theorem 2.11.
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