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Chapter 1

Introduction

In [8], Chenevier defines overconvergent p-adic automorphic forms on any

twisted form of GLn /Q compact at infinity cohomologically by embedding

classically constructed irreducible representations of GLn(Qp) in certain in-

finite dimensional p-adic Banach spaces. He also defines and proves results

about Hecke operators on these spaces of forms, including an analogue of

Coleman’s ‘forms of small slope are classical’ result, and constructs an ‘eigen-

variety’ of finite slope eigenforms. Chenevier’s work is a higher dimensional

analogue of the study of p-adic overconvergent modular forms for subgroups

of SL2 developed by Serre, Katz, Dwork, Hida, Gôuvea-Mazur and Coleman.

Also central in the process of developing the theory in higher dimensions is

work of Ash-Stevens and Emerton.

In what follows we adapt Chenevier’s ideas to the case of Siegel modular

forms, modular forms for subgroups of the symplectic group Sp2n, defin-

ing a cohomological model for p-adic overconvergent Siegel modular forms.

Further we define a Hecke operator Up and prove a ‘forms of small slope

are classical’ result. We also define explicitly maps analogous to Coleman’s

θk+1-maps of [10] between these spaces of cohomological p-adic overconver-

gent Siegel forms in the case n = 2.

First we recall some definitions and motivation from the theory of Siegel

modular forms.

Let K be a field and consider the group GSp2n(K) of 2n by 2n matrices
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defined by

GSp2n(K) :=
{
M ∈M2n(K)

∣∣c(M)J = MTJM, c(M) ∈ K∗} ,
where J =

(
0 −In
In 0

)
, which forces det M 6= 0 for M ∈ GSp2n(K).

Notice also that GSp2n(K) is closed under transpose as c(M)J = MTJM

thus (c(M))−1J−1 = M−1J−1(MT )−1 and as J−1 = −J we have MJMT =

c(M)J , thereby giving an equivalent condition for the definition of GSp2n(K).

The following characterisation is also equivalent: M =

(
A B

C D

)
∈ GSp2n(K),

A,B,C,D ∈ Mn(K), if and only if ABT and CDT are symmetric and

ADT −BCT = c(M)I. Let Sp2n(K) be the subgroup of GSp2n(K) defined

by c(M) = 1.

Define Siegel upper half space by

Zn = {Z ∈Mn(C)|ZT = Z, Im(Z) > 0}

where here > 0 denotes positive definite.

If we define

GSp+
2n(R) = {M ∈ GSp2n(R)|c(M) > 0}

for R a subring of R then GSp+
2n(R) acts on Zn by(

A B

C D

)
z = (Az +B)(Cz +D)−1, z ∈ Zn.

If Wt denotes the irreducible representation of GLn(C) with highest weight

t and we denote by ρt the representation ρt : GLn×C∗ → GL(Wt) where

C∗ acts via λ → λ
1
2
n(n+1)−

∑
ti and Γ ⊂ GSp+

2n(Q) is a discrete congruence

subgroup then we denote by St(Γ) the space of holomorphic functions f :

Z →Wt such that

· f |γ = f, ∀γ ∈ Γ

· limλ→+∞(f |γ)

(
z 0

0 iλ

)
= 0, ∀γ ∈ GSp+

2n(Q), z ∈ Zn−1

where for γ ∈ GSp+
2n(R) we define

(f |γ)(z) = [ρ(Cz +D, c(γ))]−1f(γz), γ =

(
A B

C D

)
.
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Call f ∈ St(Γ) a vector valued Siegel cusp form for Γ of weight t. It is well

known that the space St(Γ) is a finite dimensional C-vector space.

We now look at the relation between Siegel cusp forms and group coho-

mology. This generalizes the maps of Eichler-Shimura in the classical case.

With t as above, if Γ ⊂ GSp+
2n(Z) is a discrete congruence subgroup then

there is a Hecke equivariant natural map

St(Γ) ↪→ H
1
2
n(n+1)(Γ, Vt−(n+1)t0)

where t0 = [1, . . . , 1] and Vλ is the irreducible Sp2n(C) module of highest

weight λ.

If Γ is torsion free then this is a special case of [20] §2.3 and [11] Theorem

10. If Γ has torsion then by standard arguments ∃N ∈ N such that

ΓN = {g ∈ Sp2n(Z)|g ≡ I2n mod N} ⊂ Γ

with ΓN torsion free and of course |Γ/ΓN | < ∞. Then we have a Hecke

equivariant natural map

St(ΓN ) ↪→ H
1
2
n(n+1)(ΓN , Vt−(n+1)t0)

where this map respects the action of Γ/ΓN and thus

St(Γ) = St(ΓN )Γ/ΓN ↪→ H
1
2
n(n+1)(ΓN , Vt−(n+1)t0)

Γ/ΓN

= H
1
2
n(n+1)(Γ, Vt−(n+1)t0)

where the last equality follows from the Inflation-Restriction sequence.

The philosophy guiding the content herein is to embed the finite dimen-

sional irreducible algebraic representation of Sp2n(Qp) of highest weight t

into a suitably defined infinite dimensional p-adic Banach space to which

Hecke operators extend. Overconvergent Siegel modular forms will then be

modelled by the appropriate group cohomology group of this infinite dimen-

sional space. A ‘small slopes are classical’ result will then allow us to recover

classical forms by way of their slopes with respect to the Hecke operator at

p.
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Chapter 2

Certain Representations of

GSp2n

Throughout this section we follow [8].

Consider variables Xij , 1 ≤ i, j ≤ 2n and consider the matrix X with

(X)ij = Xij . LetRG = K[Xij , D,D
−1]/I where I is the ideal ofK[Xij , D,D

−1]

generated by the relations among the Xij and D defined by DJ = XTJX

and Dn = det(X).

For example, if n = 2 then I is generated by γ0 = X11X23 −X13X21 +

X12X24−X14X22, γ1 = X31X43−X41X33+X32X44−X34X42, γ2 = X11X33−
X13X31+X12X34−X14X32−D, γ3 = X11X43−X13X41+X12X44−X14X42,

γ4 = X21X33 −X23X31 +X22X34 −X24X32, and γ5 = X21X43 −X23X41 +

X22X44 −X24X42 −D.

GSp2n(K) induces two actions on K[Xij , D,D
−1], one which we will call

the Left action and one which we will call the Right action (though they are

both left actions). These are induced by the following changes of variables:

glX = (g−1X)ij grX = (Xg)ij , g ∈ GSp2n(K).

Since these actions preserve I, they descend to actions on RG.

We now restrict our attention to the K = Qp, for some prime p. Thus

GSp2n and Sp2n will denote GSp2n(Qp) and Sp2n(Qp) respectively unless

otherwise noted.As described in [15] Sp2n has a Borel subgroup H realised
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as the semidirect product H = UT where

T =

{(
Γ 0

0 Γ−1

)
: Γ ∈ GLn(Qp) is diagonal

}
,

and where U is again a semidirect product, U = V L, where

V =

{(
I B

0 I

)
: B ∈Mn(Qp), B = Bt

}
,

L =

{(
X 0

0 X−t

)
: X ∈ GLn(Qp), X lower triangular and unipotent

}
.

Thus the unipotents of H are U which one checks easily are the matrices(
A B

0 D

)

where A is lower triangular, D is upper triangular, A and D are unipotent,

ADT = 1 and ABT is symmetric.

Let U denote the tranpose of U . Then similarly U is the set of matrices

of the form (
A 0

B D

)
where A is upper triangular, D is lower triangular, A and D are unipotent,

ADT = 1 and BDT is symmetric.

If we define RU
G to be the elements of RG fixed by the Left action of U

then we will study the Right action of GSp2n on RU
G.

For 1 ≤ m ≤ n put increasing m-tuples of {1, 2, . . . , 2n} in lexographical

order and define J = J(m) =
(
2n
m

)
. Then define

Ymj =

∣∣∣∣∣∣∣∣∣∣∣

Xn+1−m,j1 Xn+1−m,j2 . . . Xn+1−m,jm

Xn+2−m,j1 Xn+2−m,j2 . . . Xn+2−m,jm

...
...

. . .
...

Xn,j1 Xn,j2 . . . Xn,jm

∣∣∣∣∣∣∣∣∣∣∣
for j = (j1, . . . , jm), 1 ≤ j1 < j2 < . . . < jm ≤ 2n.

Lemma 2.0.1. For each m ∈ N, 1 ≤ m ≤ n and for any m-tuple j =

(j1, . . . , jm), 1 ≤ j1 < j2 < . . . < jm ≤ 2n, Ymj is in RU
G.
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Proof: A simple calculation confirms that for g ∈ GSp2n, g−1 = (g−1
ij ),

we have

gl

∣∣∣∣∣∣∣∣∣∣∣

Xi1,j1 . . . Xi1,jm

Xi2,j1 . . . Xi2,jm

...
. . .

...

Xim,j1 . . . Xim,jm

∣∣∣∣∣∣∣∣∣∣∣
=

∑
k=(k1,...,km)

∣∣∣∣∣∣∣∣∣∣∣

g−1
i1,k1

. . . g−1
i1,km

g−1
i2,k1

. . . g−1
i2,km

...
. . .

...

g−1
im,k1

. . . g−1
im,km

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

Xk1,j1 . . . Xk1,jm

Xk2,j1 . . . Xk2,jm

...
. . .

...

Xkm,j1 . . . Xkm,jm

∣∣∣∣∣∣∣∣∣∣∣
.

for all m-tuples i = (i1, . . . , im), j = (j1, . . . , jm), 1 ≤ i1 < . . . < im ≤ 2n,

1 ≤ j1 < . . . < jm ≤ 2n.

Thus for 1 ≤ m ≤ n, choosing i = (n+ 1−m,n+ 2−m, . . . , n), we see that

for g ∈ U the only nonvanishing∣∣∣∣∣∣∣∣∣∣∣

g−1
n+1−m,k1

. . . g−1
n+1−m,km

g−1
n+2−m,k1

. . . g−1
n+2−m,km

...
. . .

...

g−1
n,k1

. . . g−1
n,km

∣∣∣∣∣∣∣∣∣∣∣
is for k = (n + 1 −m,n + 2 −m, . . . , n) where it equals 1 thus confirming

that Ymj is in RU
G for any m-tuple j = (j1, . . . , jm), 1 ≤ j1 < . . . < jm ≤ 2n.

�

Observe also that Qp[Yij ], the Qp-subalgebra of RG generated by the Yij ’s

is invariant under the Right action of GSp2n. This follows as
∑

j QpYij is

easily seen to be preserved by the Right action of GSp2n.

2.1 Weights

The group GSp2n has torus

TG = {diag(d1, . . . , dn, cd
−1
1 , cd−1

n ), di 6= 0, c 6= 0}

and since TG normalizes U , then the Left action of TG preserves RU
G and

thus induces a Left action of TG on RU
G. We also restrict to obtain the Right

action of TG on RU
G.

Let t = [a1, . . . , an, z] ∈ Zn+1 denote the character TG → Q∗
p defined by

t(diag(d1, . . . , dn, cd
−1
1 , . . . , cd−1

n )) =
∏

i

dai
i · cz
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and denote ti = [0, . . . , 1, . . . , 0] with a 1 in the i-th position for 1 ≤ i ≤ n,

let µ denote [0, . . . , 0, 1] with a 1 in the n+ 1-st position and ti = µ− ti−n

for n+ 1 ≤ i ≤ 2n.

If d ∈ T and 1 ≤ n ≤ n we have

dlYmj =
m∏

i=1

tn+1−i(d)−1Ymj

and

drYmj =
m∏

i=1

tji(d)Ymj .

We say f ∈ RG is of Left (resp. Right) weight t if TG acts on the Left

(resp. Right) by t−1 (resp. t). If we denote the vector space of all elements

of Left weight t by (RG)t the action of T is diagonalisable and we get a

decomposition

RG =
⊕

t∈Zn+1

(RG)t.

We now define R = RG/(D − 1) ∼= Qp[Xij ]/I, where I is the ideal of

relations generated by J = XTJX. Then R does not have a Left or Right

action of GSp2n but does inherit the restricted Left and Right actions of

Sp2n. These actions are of course the natural actions induced by the changes

of variables

glX = (g−1X)ij grX = (Xg)ij , g ∈ Sp2n(K).

However, we note the following lemma:

Lemma 2.1.1. The subalgebras Qp[Yij ] ⊂ R and Qp[Yij ] ⊂ RG are isomor-

phic as Qp-algebras via the natural reduction map. Thus Qp[Yij ] ⊂ R retains

the Right GSp2n-module structure of Qp[Yij ] ⊂ RG.

Proof: We must show that there are no new relations between the Yij

introduced by reducing from RG to R. This is equivalent to showing that

the ideal of relations between the Yij and D in RG is generated by relations

between the Yij alone.

Given a polynomial relation P (Yij , D) = 0 in RG we can write P =

Pt1 + . . .+Ptk , with Pti ∈ (RG)ti for distinct ti and with the Pti polynomials
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in the Yij and D. Then, since RG is a direct sum of the (RG)t we know that

each Pti = 0 in RG. Furthermore, since the Yij are of Left weights of the

form [a1, . . . , an, 0] and D is of weight [0, . . . , 0, 1] we know that Pti times a

suitable power of D is a relation amongst the Yij alone.

Applying this reduction to a finite set of generators for the ideal of rela-

tions between the Yij and D shows that the ideal of relations between the

Yij and D in RG is generated by relations between the Yij alone. �

Now for t = [a1, . . . , an] ∈ Zn define Rt to be the image of ⊕(RG)t′ in

R, where t′ ∈ Zn+1 ranges over {[a1, . . . , an, z], z ∈ Z}. Then Rt is of course

the space of elements on which the torus

T = {diag(d1, . . . , dn, d
−1
1 , . . . , d−1

n ), di 6= 0}

of Sp2n acts on the Left by t−1 where t ∈ Zn denotes the character T → Q∗
p

defined by restricting [a1, . . . , an, 0] to T . Again, by abuse of notation let

ti henceforth denote [0, . . . , 1, . . . , 0] ∈ Zn with a 1 in the i-th position, for

1 ≤ i ≤ n and ti = −ti−n for n+ 1 ≤ i ≤ 2n.

We define RU to be the elements of R fixed by the Left action of U and

RU
t the elements in Rt fixed by U . Note that the Yij are again in RU . We

get a direct sum decomposition

R =
⊕
t∈Zn

Rt

and we see below that we have a sub-decomposition

RU =
⊕
t∈Zn

RU
t .

We note that the Yij are each of Left weight t for some t satisfying 0 ≤ a1 ≤
a2 ≤ . . . ≤ an with ai ∈ Z. We will call such weights positive increasing and

denote this condition by t ≥ 0.

For ease of notation let F := RU . We are now ready to describe F

completely.
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2.2 Invariants

Proposition 2.2.1. [13] We have F =
⊕

t≥0R
U
t . If t = [a1, . . . , an] ≥ 0

then RU
t is the irreducible algebraic representation of Sp2n(Qp) of highest

weight t. RU
t is generated over Qp by all monomials in the variables Yij of

Left weight t and has highest weight vector
∏n

i=1 Y
(ai−ai−1−...−a1)
i,i

, where i
denotes the i-tuple (n− i+ 1, n− i+ 2, . . . , n).

Proof: We refer to classical results in [13] §12.1.4.

With notation as in [13] we establish that the dominant weights P++(G)

are indeed the weights t ≥ 0 with our notation as above. One confirms that

the Lie algebra of U is generated by

aij =

(
Eij 0

0 −Eji

)
, 1 ≤ j < i ≤ n,

bij =

(
0 Eij + Eji

0 0

)
, 1 ≤ i < j ≤ n,

and

ci =

(
0 Eii

0 0

)
, 1 ≤ i ≤ n.

We see aij is in root space tit−1
j , i > j, bij is in root space titj and ci is in

root space t2i . Thus these are the positive roots corresponding the U .

One checks that α1 := t21, α2 := t−1
1 t2, . . . , αn := t−1

n−1tn are simple roots

and we get, with notation as in [13],

H1 = diag(1, 0, . . . ,−1, 0, . . . , 0)

with −1 in the n+ 1-st position, and

Hi = diag(0, . . . ,−1, 1, 0, . . . , 1,−1, 0, . . . , 0), i > 1

with −1 in the i−1-st and n+i-th positions and 1 in the i-th and n+i−1-st

positions. For µ =
∑
kiti, < µ,Hi >≥ 0, ∀i is equivalent to 0 ≤ k1 ≤ k2 ≤

. . . ≤ kn as desired.

Theorems 12.1.9 and 12.1.10 in [13] §12.1.4 establish that F is the direct

sum of all irreducible algebraic representations of Sp2n, each with multiplic-

ity one. Furthermore, these results confirm that the space RU
t , t ≥ 0, is the

12



irreducible algebraic representation of highest weight t. Now we must only

confirm that the monomials of Left weight t in the variables Yij generate

RU
t . Since for each i,

∑
j QpYij is preserved by the (Right) action of Sp2n,

it follows easily that the subspace generated by monomials in the Yij ’s of

Left weight t is stable under the (Right) action of Sp2n. Then by irreducibil-

ity of RU
t , the monomials in the Yij ’s of Left weight t generate RU

t . It is

easily noted that
∏n

i=1 Y
(ai−ai−1−...−a1)
i,i

is of highest (Right) weight t. �

For ease of notation, let us reparameterize the weights in the following

fashion: Let δ1 = [0, . . . , 0, 1], δ2 = [0, . . . , 0, 1, 1] and similarly through

to δn = [1, . . . , 1, 1]. Then let (b1, . . . , bn) ∈ Zn denote
∑n

i=1 biδi = [bn, bn +

bn−1, . . . , bn + bn−1 + . . .+ b1].Thus Yij is of Left weight δi for 1 ≤ i ≤ n.

Note that as F = Qp[Yij ] we have seen above that it retains a Right

action by GSp2n. Since the Left action of U on F is by definition trivial, by

the action of Sp2n (resp. GSp2n) on F we will henceforth mean the Right

action of Sp2n (resp. GSp2n) on F and will denote grYij simply by gYij .

Let V := Q2n
p be the standard representation of GSp2n(Qp) with its

canonical basis and give
∧i(V ) its canonical basis Zij , 1 ≤ j ≤ J(i) ordered

lexographically. If we define B := Sym
(⊕n

i=1

∧i(V )
)

we have the following:

Proposition 2.2.2. We have a map of Qp algebras φ : B → F induced by

Zij 7→ Yij which respects the action of GSp2n. The map φ is surjective.

Proof: A simple calculation checks that φ(gZij) = gφ(Zij) = gYij for

g ∈ GSp2n and this suffices to check that φ respects the action of GSp2n.

The map φ is surjective since its image contains Qp[Yij ] = F with equality

by the previous proposition. �

2.3 An Example

In the case n = 2 the following calculations use Magma to compute all the

relations between the Yij . Furthermore, we use the Proposition 2.2.1 and

the Weyl character formula to calculate the Hilbert Polynomial of Qp[Yij ].
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P<x11,x12,x13,x14,x21,x22,x23,x24,x31,x32,x33,x34,x41,x42,x43,x44,

D,E,y11,y12,y13,y14,y21,y22,y23,y24,y25,y26> := PolynomialRing(Rationals(),28);

I:=ideal<P|x11*x23-x13*x21+x12*x24-x22*x14,x31*x43-x41*x33+x32*x44-x42*x34,

x11*x33-x13*x31+x12*x34-x14*x32-D,x11*x43-x13*x41+x12*x44-x14*x42,

x21*x33-x23*x31+x22*x34-x24*x32,x21*x43+x22*x44-x23*x41-x24*x42-D,y11-x21,

y12-x22,y13-x23,y14-x24, y21 - x11*x22+x12*x21, y22-(x11*x23-x21*x13),

y23 -(x11*x24-x21*x14), y24-(x12*x23-x13*x22),y25-(x12*x24-x14*x22),

y26-(x13*x24-x14*x23), E*D-1,

x11*x22*x33*x44 - x11*x22*x34*x43 - x11*x23*x32*x44

+x11*x23*x34*x42 + x11*x24*x32*x43 - x11*x24*x33*x42

-x12*x21*x33*x44 + x12*x21*x34*x43 + x12*x23*x31*x44

-x12*x23*x34*x41 - x12*x24*x31*x43 + x12*x24*x33*x41

+x13*x21*x32*x44 - x13*x21*x34*x42 - x13*x22*x31*x44

+x13*x22*x34*x41 +x13*x24*x31*x42 - x13*x24*x32*x41

-x14*x21*x32*x43 + x14*x21*x33*x42 +x14*x22*x31*x43

-x14*x22*x33*x41 - x14*x23*x31*x42 + x14*x23*x32*x41 - D*D>;

J:= EliminationIdeal(I,18);

J;

This code returns that the ideal of relations between the Yij is generated

by the following relations: Y22 + Y25,Y11Y24 − Y12Y22 + Y13Y21, −Y11Y22 −
Y12Y23 +Y14Y21, Y11Y26−Y13Y23 +Y14Y22, Y12Y26 +Y13Y22 +Y14Y24, Y21Y26 +

Y23Y24 + Y 2
22.

Note: Although we performed these calculations over the rationals the same

relations generate the ideal of relations between the Yij over Qp for the fol-

lowing reason:

The following holds for n ∈ N and not just n = 2.

Let I be the ideal in Z[Xij , D,D
−1]1≤i,j≤2n defined by DJ = XTJX and

14



Dn = det(X), X = (Xij), J as above. Let the Yij ’s be defined as above and

J be the ideal I ∩ Z[Yij ] in Z[Yij ]. Then as Z[Yij ] is Noetherian we have

J = (f1, . . . , fM ) some M ∈ N.

Then as Qp is a flat Z-module tensoring the exact sequence

0 → J → Z[Yij ] → Z[Xij , D,D
−1]/I → 0

with Qp gives

0 → J ⊗Qp → Qp[Yij ] → Qp[Xij , D,D
−1]/(I ⊗Qp) → 0.

The ideal of relations between the Yij is generated by relations in Z[Yij ].

The previous calculation shows that the kernel of the map φ for n = 2 is the

ideal of B generated by Z22 + Z25, Z11Z24 − Z12Z22 + Z13Z21, −Z11Z22 −
Z12Z23 + Z14Z21, Z11Z26 − Z13Z23 + Z14Z22, Z12Z26 + Z13Z22 + Z14Z24,

Z21Z26 + Z23Z24 + Z2
22.

Let h denote the Hilbert polynomial Qp[Yij ]. Proposition 2.2.1 tells us

that Ft, t = (a, b), is generated by monomials of degree a in the Y1j ’s and

b in the Y2j ’s. Thus h(d), the number of linearly independent monomials of

degree d in the variables Yij , is equal to dim(⊕a+b=dF(a,b)).

Using the Weyl character formula we compute that

dimF(a,b) =
(b+ 1)(a+ 1)(a+ 2b+ 3)(a+ b+ 2)

6
.

So we calculate

h(d) = dim

( ⊕
a+b=d

F(a,b)

)

=
d∑

a=0

(d− a+ 1)(a+ 1)(a+ 2(d− a) + 3)(a+ (d− a) + 2)
6

=
d5

24
+

5d4

12
+

13d3

8
+

37d2

12
+

17d
6

+ 1.

This agrees with the following Magma calculation:

Q<y11,y12,y13,y14,y21,y22,y23,y24,y26> := PolynomialRing(Rationals(),9);

K:= ideal<Q|y11*y24 - y12*y22 + y13*y21,
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-y11*y22-y12*y23+y14*y21,y11*y26-y13*y23+y14*y22,

y12*y26+y13*y22+y14*y24,y21*y26+y23*y24+y22*y22>;

HilbertPolynomial(K);

which returns:

h(d) =
d5

24
+

5d4

12
+

13d3

8
+

37d2

12
+

17d
6

+ 1.

2.4 Integrality

Now define B0 and F 0 to be the Zp-subalgebras of B and F generated by the

Zij and Yij respectively. We have a direct sum decomposition B =
⊕

t∈Nn Bt

by defining Bt to be the Qp-vector space generated by monomials of total

degree ai in the variables Zij , for each 1 ≤ i ≤ n, for t = (a1, . . . , an). Clearly

our decomposition of B into weight spaces restricts to a decomposition B0 =⊕
t∈Nn B0

t where B0
t is the Zp-submodule of Bt with coefficients in Zp.

Both B0 and F 0 are stable under the action of M2n(Zp) ∩GSp2n(Qp).

Let us denote by ∆ the monoid (with respect to matrix multiplication) of

matrices M ∈ GSp2n(Qp) ∩M2n(Zp) such that for each 1 ≤ i ≤ n,∣∣∣∣∣∣∣∣
Mn−i+1,n−i+1 . . . Mn−i+1,n

...
. . .

...

Mn,n−i+1 . . . Mnn

∣∣∣∣∣∣∣∣
has p-adic norm ≥ the norm of any other∣∣∣∣∣∣∣∣

Mj1,k1 . . . Mj1,ki

...
. . .

...

Mji,k1 . . . Mji,ki

∣∣∣∣∣∣∣∣ ,
for any 1 ≤ j1 < . . . < ji ≤ 2n and 1 ≤ k1 < . . . < ki ≤ 2n, and strictly

greater if (k1, . . . , ki) = (n− i+ 1, . . . , n) .

Straightforward calculation confirms that this is a monoid.
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Define the congruence subgroup of Sp2n

Γ0(p) = {γ ∈ Sp2n(Z)| γ ≡

(
A B

0 D

)
mod p,

A lower triangular, D upper triangular}.

For α = (α1, . . . , α2n) ∈ Z2n
≥0, we call α admissible if αn ≤ αn−1 ≤ . . . ≤

α1 ≤ αn+1 ≤ . . . ≤ α2n and α1 + αn+1 = α2 + αn+2 = . . . = αn + α2n. For

α admissible we let uα denote diag(pα1 , pα2 , . . . , pα2n). All α are henceforth

assumed admissible.

Fix α0 = (n−1, n−2, . . . , 0, n, n+1, . . . , 2n). Also let βi =
∑i

j=1 αn+1−j ,

for 1 ≤ i ≤ n.

Lemma 2.4.1. For all γ ∈ ∆,

(i) Fix 1 ≤ i ≤ n, γZii ∈ pm(Z∗pZii + p
∑

j 6=i
ZpZij), with m ≥ 0 where i

is as in Proposition 2.2.1 and |γZij | ≤ p−m with γZij ∈
∑

1≤k≤J(i) ZpZik,

∀j = 1, . . . , J(i).

(ii) If 1 ≤ i ≤ n, and j = (j1, . . . , ji) then uαZij = p
∑

k αjkZij. In particular

uαZij ∈ pβiZpZij, uα0Zij ∈ p
i(i−1)

2 ZpZij.

Proof: These are all immediate. If γ = (γij) ∈ ∆ then a simple calcula-

tion yields

γZij =
∑

1≤k≤J(i)

∣∣∣∣∣∣∣∣
γk1j1 . . . γk1ji

...
. . .

...

γkij1 . . . γkiji

∣∣∣∣∣∣∣∣Zik,

confirming the second statement in (i). Furthermore, for j = i, examining

the definition of ∆ confirms the remainder of (i).

The second statement in (ii) follows from βi ≤
∑i

k=1 αjk
as α admissible.

�

Let us fix notation and denote the coefficients occurring in γZij by aijk =

aijk(γ) thus

γZij =
∑

1≤k≤J(i)

aijkZik.

17



2.5 Analytification

Define variables zij = Zij/Zii , j 6= i and for simplicity of notation define

zii = 1. Similarly define yij = Yij/Yii , j 6= i and define yii = 1.

Form the affinoid algebras AB := Qp < zij > and AF := Qp < yij >.

The map φ : B → F induces a map φ : AB → AF , ie. the map of affinoid

algebras between AB and AF sending zij to yij . Clearly φ is surjective.

Let zt denote
∏

j 6=i
z

tij
ij . Let t ∈ Z≥0 denote that tij ≥ 0,∀i, j. With

respect to the standard multiplicative norm |f | := max|at|, f =
∑

t≥0 atz
t ∈

AB, AB is a Qp-Banach algebra. Since the ideal kerφ is closed in AB, see

[4], AF inherits a complete quotient norm defined by |f | = infξ∈φ−1(f) |ξ|,
f ∈ AF .

Let A0
B denote the unit ball Zp < zij > in AB. Define A0

F to be the unit

ball of AF with respect to the norm given above.

Define Qp-algebra homomorphisms π : Qp[Zij ] → Qp[zij ] ⊂ Qp < zij >

by

f(Zij) 7→ f(zij)

and define similarly a map, by abuse of notation also denoted π, from

Qp[Yij ] → Qp[yij ] ⊂ Qp < yij > by

f(Yij) 7→ f(yij).

Lemma 2.5.1. The following, induced by the action of GSp2n on B, defines

a right action of ∆ on AB. For γ ∈ ∆ define

γzij =
π(γZij)
π(γZii)

and extend linearly and multiplicatively to AB.

Proof: The only thing that is nonimmediate is that this expression

for γzij is in AB. From Lemma 2.4.1 we have that γπ(Zii) ∈ pm(Z∗p +

p
∑

j 6=i
Zpzij), with m ≥ 0 and that |π(γZij)| ≤ p−m. Thus, following di-

viding through numerator and denominator in the expression for γzij by pm

it is clear that the denominator is a unit in AB and thus γzij lies in AB. �

Similarly we define an actions of ∆ on AF by replacing zij ’s by yij ’s. Then
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we have φ(γzij) = γφ(zij) = γyij ,∀γ ∈ ∆, and thus the map φ : AB → AF

is also ∆ equivariant. Thus we have:

Corollary 2.5.2. This action descends to an action of ∆ on AF .

Proof: By the observation above, the action of ∆ on AB preserves kerφ

and thus descends to an action of ∆ on AF . �

Corollary 2.5.3. If g ∈ ∆ then we can express

gzij =
ai +

∑
k 6=i

akzik

λ+ p(
∑

k 6=i
bkzik)

where ak, bk ∈ Zp, λ ∈ Z∗p. Thus gzij is in A0
B.

Similarly for gyij.

Proof: This is a restatement of what precedes. �

Lemma 2.5.4. (i) AB and AF are orthonormalisable over Qp.

(ii)The monoid ∆ acts by continuous linear operators of norm ≤ 1 on AB

and AF .

(iii)For α admissible, uα acts completely continuously on AB and AF ⇔
αn < αn−1 < . . . < α1 < αn+1 < . . . < α2n.

Proof: (i) For AB, clearly monic monomials in the zij provide an or-

thonormal basis whereas for AF it is clear that property (N) from [16] is

satisfied and thus Proposition 1 and Lemma 1 of [16] imply AF orthonor-

malisable.

(ii) From Corollary 2.5.3 that for γzij ∈ A0
B, γ ∈ ∆, and thus as γ acts

as Qp-algebra homomorphism on AB, which preserves the unit ball A0
B and

thus acts as a linear operator of norm ≤ 1.

For the maps induced by ∆ on AF , we have f ∈ A0
F means that f = φ(ξ),

some f ∈ A0
B under φ. Then γξ ∈ A0

B, ∀γ ∈ ∆, from the above, and since

γf = φ(γξ) ∈ A0
F so ∆ also acts by continuous linear operators of norm ≤ 1

on AF .

(iii) Choose an ordering for the basis of AB consisting of monic mono-

mials in the zij . Let ηmn denote the coefficient of the m-th basis monomial
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in the expression of the n-th monomial under the action of uα. Note that

ηmn = 0 if m 6= n as uα acts diagonally. Then αn < . . . < α1 < αn+1 <

. . . < α2n ⇔ uα(zij) = pkzij , k > 0,∀i, j ⇔ limn→∞|ηnn| = 0 ⇔ uα acts

completely continuously on AB.

To show that uα, for strictly increasing α, acts completely continuously

on AF we let {uα
n} be a sequence of linear operators on AB of finite rank

converging to uα. We can write AB = kerφ ⊕W and ensure that uα
n = uα

as maps on kerφ by replacing uα
n with ũα

n = uα ◦ πker φ + uα
n ◦ πW . So ũα

n

preserve kerφ and thus induce finite rank operators on AF which converge

to uα ∈ End(AF ). Thus uα acts completely continuously on AF . If α is not

strictly increasing ∃yij such that uαyn
ij = yn

ij , ∀n and since these yn
ij span an

infinite dimensional subspace of AF , the map uα on AF is not completely

continuous. �

2.6 Twisted Representation Spaces

Let t = (m1,m2, . . . ,mn) ∈ Zn. We construct a ∆-module Nt := etAB with

et :=
∏n

i=1 Z
mi
ii

. Let addition in Nt be induced by that of AB and make Nt

a Banach space by |etb| := |b|, b ∈ AB. Then ψt : AB → Nt, b 7→ etb is an

isometric isomorphism of Banach spaces.

Similarly, we construct St := ftAF with ft :=
∏n

i=1 Y
mi
ii

which we make

into a Banach space by |ftc| = |c|, c ∈ AF and we have a map which we again

denote by ψt : AF → St. We also have a map of Banach spaces induced by

φ which we will again denote φ : Nt → St.

We let ∆ act on Nt and St as follows: For g ∈ ∆ let

g(etb) = et · π(get) · gb

for b ∈ AB.

Similarly, define

g(ftc) = ft · π(gft) · gc

for c ∈ AF .
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Lemma 2.6.1. For all t = (m1, . . . ,mn) ∈ Nn, the maps of Banach spaces

Ft → St : c 7→ ftπ(c)

and

Bt → Nt : b 7→ etπ(b)

are injective. These maps respect the actions of ∆.

Proof: In the second case, it is evident that π : Bt → AB is injective and

hence so is the map Bt → Nt.

In the first case, we notice that the open subgroup

Γ0(p)Zp = {γ ∈ Sp2n(Zp)| γ ≡

(
A B

0 D

)
mod p,

A lower triangular, D upper triangular}

of Sp2n(Qp) also acts on Ft and St. The kernel of the map Ft → St must

contain an irreducible subrepresentation of sp2n(Qp), which is also the Lie

algebra of the open subgroup Γ0(p)Zp . Since Ft is an irreducible representa-

tion of sp2n(Qp), the kernel of the map Ft → St is either trivial or all of Ft.

But the kernel is not all of Ft since ft 7→ ft 6= 0. Thus the kernel is trivial.

A simple calculation verifies that these maps are ∆ equivariant. �

We confirm Lemma 2.5.4 for Nt and St.

Lemma 2.6.2. (i) Nt and St are orthonormalisable over Qp.

(ii)The monoid ∆ acts by continuous linear operators of norm ≤ 1 on Nt

and St.

(iii)For α admissible, uα acts completely continuously on Nt and St ⇔ αn <

αn−1 < . . . < α1 < αn+1 < . . . < α2n.

Proof: The proofs of (i) and (ii) are simple modifications of those in

Lemma 2.5.4.

(iii) The actions of uα on Nt and St differ only by a factor of p
∑

i miβi

from the actions on AB and AF via the isometric isomorphism ψt. �
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Alternatively, we may describe Nt as follows: Let Nt have the same un-

derlying Banach space as AB but with the action of ∆ twisted by

γf =
n∏

i=1

(ji(γ))mi · γb

for b ∈ Nt, γ ∈ ∆, where ji is the 1-cocycle defined by

ji(γ) = π(γZii), 1 ≤ i ≤ n.

Remark: Straightforward computation confirms that the ji are indeed 1-

cocyles, that is

ji(γγ′) = ji(γ) · γji(γ′)

for γ, γ′ ∈ ∆.

Similarly, we may define St analogously with, by abuse of notation, the

ji now defined by

ji(γ) = π(gYii), 1 ≤ i ≤ n.

For ease of notation it is these descriptions that we shall use henceforth.

Given an action of a monoid M on a K-vector space V , we denote

by V ∗ be the dual space of K-valued continuous linear functionals on V

equipped with the dual action of M induced by the trivial action of ∆ on

K. We cite [16] 8.14 which states that the dual of a completely continuous

endomorphism on a Banach space is again completely continuous. Thus

Proposition 2.6.3. (i) N∗
t and S∗t are orthonormalisable over Qp.

(ii)The monoid ∆ acts by continuous linear operators of norm ≤ 1 on N∗
t

and S∗t .

(iii)For α admissible, with αn < αn−1 < . . . < α1 < αn+1 < . . . < α2n, uα

acts completely continuously on N∗
t and S∗t . �

2.7 Finiteness Properties of Γ0(p)

Let R be a ring. Recall the following definitions from [5].

Definition 2.7.1. Let M be an R-module. A resolution of M is an exact

sequence of R-modules

. . . F2 → F1 → F0 →M → 0.
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A partial resolution is a sequence of R-modules

Fn → . . .→ F1 → F0 →M → 0

which is exact at each Fi, i < n, and at M .

A resolution or partial resolution is said to be projective (resp. free) if each

Fi is a projective (resp. free) R-module.

Definition 2.7.2. If M is an R-module, then a projective resolution or

partial projective resolution (Pi) is said to be of finite type if each Pi is

finitely generated.

Definition 2.7.3. An R-module M is said to be of type FPn if there is a

partial projective resolution Pn → Pn−1 → . . . → P0 → M with each Pi

finitely generated as R-modules. A module is said to be of type FP∞ if

these equivalent conditions hold:

(a) M admits a free resolution of finite type.

(b) M admits a projective resolution of finite type.

(c) M is of type FPn for all n ≥ 0.

Definition 2.7.4. We say a group Γ is of type FPn (0 ≤ n ≤ ∞) if Z is of

type FPn as a ZΓ-module.

Definition 2.7.5. A projective resolution is said to be finite if it is both of

finite type and finite length. A group Γ is said to be of type FP if Z admits

a finite projective resolution over ZΓ. A group Γ is said to be of type FL if

Z admits a finite free resolution over ZΓ.

We also recall

Definition 2.7.6. A subgroup Γ of Sp2n(Q) is said to be arithmetic if it

is commensurable with Sp2n(Z) (ie. Γ ∩ Sp2n(Z) has finite index in both Γ

and Sp2n(Z)).

We chain together standard results to the following end:

Proposition 2.7.7. The subgroup Γ0(p) of Sp2n is of type FP∞.
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Proof: Proposition VIII.5.1 of [5] states that if Γ
′ ⊂ Γ a subgroup of

finite index then, for all n ≥ 0, Γ is of type FPn if and only if Γ
′
is of type

FPn.

In chapter VIII §9 of [5], Brown refers to Borel and Serre’s result from

[3] that torsion free arithmetic subgroups are of type FL (and thus of type

FP∞).

In [17], Serre proves that any arithmetic subgroup has a torsion free

subgroup of finite index. Thus, Γ0(p) has a torsion free subgroup of finite

index, which is therefore of type FP∞. And so from [5] so is Γ0(p). �

2.8 The map Up on Group Cohomology

Let us denote Γ := Γ0(p). Choose once and for all a free resolution

. . .→ Fk
δk→ Fk−1 → . . .→ F0 → Z

of finite type for Z as a ZΓ-module. Let r(k) be the rank of free ZΓ -

module Fk. Fix also generators xk
1, . . . , x

k
r(k) of for Fk. Let V be a Qp-

Banach space and ZΓ-module. Then Ck(Γ, V ) ∼= V r(k) as ZΓ-modules via

f 7→ (f(xk
1), f(xk

2), . . . , f(xk
r(k))). Give Ck(Γ, V ) the structure of a Banach

space induced by this isomorphism and the sup norm on V r(k), so that for

f ∈ Ck(Γ, V ), ‖ f ‖= sup1≤i≤r(k)|f(xk
i )|.

Assume henceforth that each γ ∈ Γ acts as a bounded linear operator

on V . Then the boundary maps δk : Ck−1(Γ, V ) → Ck(Γ, V ) are continous,

and so for each k ∈ Z≥0, Zk := Zk(Γ, V ) is closed in Ck := Ck(Γ, V ) as

the preimage of a closed point under a continuous map. However, Bk :=

Bk(Γ, V ) may not be closed in Zk. We essentially follow [2], to prove the

following result.

Lemma 2.8.1. V a Banach space over a valued field K. Let R be the

unit ball in K. Assume that R is compact. Let V ∗
0 be the unit ball in

V ∗ with respect to the strong topology on V ∗ induced by the operator norm

and assume Γ acts by continuous linear operators of norm ≤ 1 on V , thus
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making V ∗
0 a ZΓ-module. If Γ is FP∞ then for each k and with respect to

any resolution of finite type, Bk(Γ, V ∗
0 ) is closed in Zk(Γ, V ∗

0 ).

Proof: Define the weak topology on V ∗
0 by saying that a sequence con-

verges for the weak topology in V ∗
0 if and only if its images converge in K

for any v ∈ V .

Then V ∗
0 is compact in the weak topology as follows: Let {fi} be a sequence

in V ∗
0 . Let {ei} be a basis for V with |ei| ≤ 1 then any subsequence of

{fi(ej)}, j fixed, has a convergent subsequence. Pick a subsequence {f1i} of

{fi} such that {f1i(e1)} converges to some a1 ∈ R. Now pick a subsequence

{f2i} of {f1i} such that {f2i(e2)} converges to some a2 ∈ R. Continue so

that for each n we get a subsequence {fni} of {fi} such that {fni(ej)} con-

verges to aj ∈ R for all j fixed, j ≤ n. Take f
′
i = fii. Then for each N ∈ N,

the tail of {f ′i} is in fNi so f
′
i (eN ) converges to aN . Thus f

′
i converges to f

as defined by f(ei) = ai in the weak topology.

Now choose a projective resolution of finite type, P = (Pi), of Z over

ZΓ and a basis of each Pi thus giving an isomorphism Ck(Γ, V ∗
0 ) with (V ∗

0 )r

some integer r.

Now let bi ∈ Bk(Γ, V ∗
0 ) converge to c ∈ Ck(Γ, V ∗

0 ). Then it also converges to

c in the weak topology. Let bi = δai. Passing to a subsequence ai converges

to some a in the weak topology. Since δ is continuous in both topologies a

subsequence of the bi converges to δa. Since the weak topology is Hausdorff

we have δa = c. �

Definition 2.8.2. Let A be normed ring in the sense of [4]. By a Banach

A-module we shall mean a normed A-module in the sense of [4] that is in

addition complete.

Corollary 2.8.3. Lemma 2.8.1 gives Hk(Γ0(p),M∗
0 ) the structure of a Ba-

nach Zp-module where M∗
0 is the unit ball in the dual of M , for M = Nt, St.

Thus Hk(Γ0(p),M∗
0 )⊗̂ZpQp is a Banach space over Qp for M = Nt, St.

Proof: For each of the above choices of M , Ck(Γ,M∗
0 ) is isometrically

isomorphic to (M∗
0 )r(k) equipped with the sup norm and is thus a Banach
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Zp-module. Then Zk(Γ,M∗
0 ) is closed in Ck(Γ,M∗

0 ) and complete and thus

a Banach Zp-module.

As Zp is compact in Qp and Γ acts on M by linear operators of norm

≤ 1, the conditions of Lemma 2.8.1 are satisfied and Bk(Γ,M∗
0 ) is closed

in Zk(Γ,M∗
0 ). Thus, by [4] §2.1.2 Proposition 3, Hk(Γ,M∗

0 ) equipped with

the residue norm is complete and thus a Banach Zp-module. Clearly then,

Hk(Γ0(p),M∗
0 )⊗̂ZpQp is a Qp-Banach space. �

Fix admissible α such that αn < αn−1 < . . . < α1 < αn+1 < . . . < α2n

and let u denote uα. Fix a coset decomposition for ΓuΓ =
∐
uiΓ, then

by [1] Lemma 3.1.2 we have a coset decomposition Γ =
∐
βi(Γ ∩ uΓu−1),

with βi = uiu
−1. From [1] Lemma 3.3.1 we have that the commensura-

tor of Γ is GSp+
2n(Q) and thus these coset decompositions are finite, say

ΓuΓ =
∐N

i=1 uiΓ.

Recall our resolution F∗ of Z by free, finitely generated ZΓ-modules. We

may use this resolution to compute the cohomology of Γ and u−1Γu ∩ Γ.

Define ρ : uΓu−1 → Γ, uγu−1 7→ γ. For the group uΓu−1 ∩ Γ we may use

the resolution F • where the underlying groups are the same as F but the

group action is defined by gf• = (ρ(g)f)•, g ∈ uΓu−1. Define τ : F • → F

to be the map sending f• 7→ f , ie. the identity map on underlying spaces.

Then τ is a chain map compatible with ρ and is a homotopy equivalence

between the two uΓu−1 ∩ Γ resolutions F • and F .

Let M be ∆-module. By definition the Hecke operator Up at p is Up :=

tr ◦ Φ ◦ res, where res, Φ and tr are defined as follows:

res : H∗(Γ,M) → H∗(u−1Γu∩ Γ,M) is the map induced by the restric-

tion map HomΓ(F,M) → Homu−1Γu∩Γ(F,M).

Φ : H∗(u−1Γu ∩ Γ,M) → H∗(uΓu−1 ∩ Γ,M), is the map induced by

ρ|uΓu−1∩Γ and f : M → M , m 7→ um. Then, using the notation from [5] §
III.8 (ρ, f) is a pair in D. So the map Φ on cocycles

Φ : Homu−1Γu∩Γ(F,M) → HomuΓu−1∩Γ(F •,M)

is given by

Φ(µ)(x) = uµ(τ(x)),

for µ ∈ Homu−1Γu∩Γ(F,M) and x ∈ F •.
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tr: The map on cochains:

tr : HomuΓu−1∩Γ(Fk,M) → HomΓ(Fk,M)

defined by

tr(µ)(x) =
∑

βiµ(β−1
i x)

commutes with δ and thus induces a map on cohomology

Hk(uΓu−1 ∩ Γ,M) → Hk(Γ,M).

The induced map on cohomology agrees with the map tr in [5] §III.9 on

H0.

Consider the following two cohomological functors on ZΓ modules: S =

(Sk), Sk(M) = Hk(uΓu−1 ∩ Γ,M), T = (Tk), Tk(M) = Hk(Γ,M). There

is a proof in [5] §III.6 Proposition 6.1, that S and T are coeffacable in

dimension i > 0 on the category of ZΓ-modules.

We verify straightforwardly that tr commutes with connecting homomor-

phisms and is natural on H0 so it is the unique map of δ-functors extending

tr on H0, see [5] §III.7 Theorem 7.5, and is thus is the transfer map of [5]

III.9.

Let the ∆-module M be also an orthonormalisable Qp-Banach space

such that Γ acts on M by continuous operators and u acts completely con-

tinuously on M . Endow the cochains HomΓ(Fk,M) with the Banach space

structure as described above:

‖ f ‖= sup1≤i≤r(k)|f((xk
i ))| for f ∈ HomΓ(Fk,M).

As (Γ : u−1Γu ∩ Γ) <∞, F is also a resolution of finite type for u−1Γu ∩ Γ

with Fk generated as a Z(u−1Γu ∩ Γ)-module by the finite set {β−1
j xk

i }.
For convenience let us fix an order for the set {β−1

j xk
i }i=1,...,r(k),j=1,...,N and

denote its elements by {yk
i }i=1...,Nr(k)}. Define the Banach norm ‖ f ‖=

supi|f(yk
i )| on Homu−1Γu∩Γ(Fk,M) and similarly define the Banach norm

‖ f ‖= supi|f((yk
i )•)| on HomuΓu−1∩Γ(Fk,M).

To simplify notation somewhat let us denote Homu−1Γu∩Γ(Fk,M) by

Ck(u−1Γu∩Γ,M) and the cocycles and coboundaries in Ck(u−1Γu∩Γ,M)

by Zk(u−1Γu ∩ Γ,M) and Bk(u−1Γu ∩ Γ,M) respectively. Similarly let
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us denote HomuΓu−1∩Γ(F •k ,M) by Ck(uΓu−1 ∩ Γ,M) and the cocycles and

coboundaries in Ck(uΓu−1 ∩ Γ,M) by Zk(uΓu−1 ∩ Γ,M) and Bk(uΓu−1 ∩
Γ,M) respectively.

We now provide conditions sufficient for Φ to be completely continuous

on cochains.

Proposition 2.8.4. With M as above

Φ : Ck(u−1Γu ∩ Γ,M) → Ck(uΓu−1 ∩ Γ,M)

is completely continuous.

Proof: Let {ei}i∈N be an orthonormal basis of M . Define orthonormal

bases {µi,m} and {µ•i ,m}, i ∈ {1, . . . , Nr(k)}, m ∈ N of Ck(u−1Γu∩Γ,M)

and Ck(uΓu−1 ∩ Γ,M) respectively by

µi,m(yk
j ) = δijem

and

µ•i,m((yk
j )•) = δijem.

Order these bases as follows: µ1,1, . . . , µr(k),1, µ1,2, . . . , µr(k),2, . . . and simi-

larly for the µ•i,m.

We compute Φµi,m by looking at (Φµi,m)((yk
j )•). We have

(Φµi,m)((yk
j )•) = uµi,m(τ((yk

j )•)) = uµi,m(yk
j ) = δijuem.

If we write uem =
∑

n∈N anmen then, from [16], limn→∞supm|anm| = 0.

We have

(Φµi,m((yk
j )•) = δij

∑
n∈N

anmen.

So

Φµi,m =
∑
n∈N

anmµ
•
i,n.

If we write

Φµi,m =
∑
n∈N

Aimnµi,n

then Φ is completely continuous if and only if

limn→∞supm∈N,i∈{1,...,r(k)}|Aimn| = 0
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but as we have just seen Aimn = amn so

Φ : Ck(u−1Γu ∩ Γ,M) → Ck(uΓu−1 ∩ Γ,M)

is completely continuous. �

We define completely continuous maps of Banach modules: Let A be a

normed ring and let M,N be orthonormalisable Banach A-modules.

Definition 2.8.5. For L ∈ L(M,N), if there exist orthonormal bases {ei}
and {di} of M and N respectively such that L(ei) =

∑
j ajidj with

limj→∞supi|aji| = 0 (∗)

then we say L is a completely continuous map of Banach A-modules.

We now have the following corollary to Proposition 2.8.4.

Corollary 2.8.6. The map Φ restricts to a completely continuous map of

Banach Zp-modules

Ck(u−1Γu ∩ Γ,M0) → Ck(uΓu−1 ∩ Γ,M0)

for M = N∗
t , S

∗
t .

Proof: We note that Ck(u−1Γu∩Γ,M0) and Ck(uΓu−1 ∩Γ,M0) are the

unit balls in Ck(u−1Γu ∩ Γ,M) and Ck(uΓu−1 ∩ Γ,M) respectively. Since

the action of ∆ on M preserves the unit ball, so does Φ and thus we get a

restricted map

Φ : Ck(u−1Γu ∩ Γ,M0) → Ck(uΓu−1 ∩ Γ,M0)

of Banach Zp-modules.

Furthermore for any orthonormal basis {ei} of Ck(u−1Γu ∩ Γ,M), {ei} is

also an orthonormal basis for the unit ball Ck(u−1Γu∩Γ,M0). Similarly for

Ck(uΓu−1 ∩ Γ,M) and its unit ball. Thus choosing {ei} and {fi} such that

Φ(ei) =
∑

j

ajiej
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with aji ∈ Zp and limj→∞supi|aji| = 0 we confirm that

Φ : Ck(u−1Γu ∩ Γ,M0) → Ck(uΓu−1 ∩ Γ,M0)

is completely continuous. �

In what follows we need the following observation:

Lemma 2.8.7. Let K be a complete, non-archimedean field and V a Banach

space over K. Let W be a closed subspace of V . Then any orthonormal basis

for W can be extended to an orthonormal basis of V .

Proof: Let {ei}i∈I′ be an orthonormal basis for W . Then by [16] Lemma

1.1, the images ei in W , the reduction of W mod the maximal ideal of K,

form an algebraic basis and are thus linearly independent in V . Thus we

can extend to a basis {ei}i∈I , I
′ ⊂ I of V . If we take ei, i ∈ I − I

′
to be any

lift of ei then again [16] Lemma 1.1 says that {ei}, i ∈ I is an orthonormal

basis of V , extending the basis {ei}i∈I′ of W . �

The map Φ commutes with the maps δi and thus maps cocycles to cocycles

and coboundaries to coboundaries. The above lemma allows us to prove the

following.

Lemma 2.8.8. The map Φ from Zk(u−1Γu∩Γ,M0) to Zk(uΓu−1 ∩Γ,M0)

is completely continuous for M = N∗
t , S

∗
t .

Proof: Note that both Ck(G,M) and Zk(G,M), G = u−1Γu ∩ Γ or

uΓu−1 ∩ Γ satisfy condition (N) from [16].

We have Zk(u−1Γu ∩ Γ,M) is closed in Ck(u−1Γu ∩ Γ,M) so choose

an orthonormal basis {ei}i∈I′ of Zk(u−1Γu ∩ Γ,M) and extend it to an

orthonormal basis, {ei}i∈I , I
′ ⊂ I, of Ck(u−1Γu ∩ Γ,M).

Similarly choose an orthonormal basis {fj}j∈J ′ of Zk(uΓu−1∩Γ,M) and

extend it to an orthonormal basis, {fj}j∈J , J
′ ⊂ J , of Ck(uΓu−1 ∩ Γ,M).

As before {ei}i∈I is also an orthonormal basis of Ck(u−1Γu∩Γ,M0) and

{ei}i∈I′ is also an orthonormal basis of Zk(u−1Γu ∩ Γ,M0). Similarly for

{fj}j∈J and {fj}j∈J ′ . Then if we write Φ(ei) =
∑

j ajifj , Φ completely

continuous from Ck(u−1Γu ∩ Γ,M0) to Ck(uΓu−1 ∩ Γ,M0) implies the aji,
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i ∈ I, j ∈ J satisfy condition (∗) and thus the aji, i ∈ I
′
, j ∈ J ′

also satisfy

condition (∗) and we are done. �

We now prove some auxiliary results on the way to proving that Up is com-

pletely continuous on Hk(Γ,M0)⊗Zp Qp for M = N∗
t , S

∗
t .

First we notice that as in Corollary 2.8.3 the groups Hk(G,M0) for

G = u−1Γu ∩ Γ or uΓu−1 ∩ Γ and M = N∗
t , S

∗
t are Banach Zp-modules.

Let R be a normed ring. Define the following property for a normed

R-module M :

∀x, y ∈M, |x| < |y| ⇒ |x+ y| = |y|. (P1)

Lemma 2.8.9. The Qp-Banach space Nt satisfies (P1).

Proof: The space Nt is isometrically isomorphic to AB = Qp < zij >.

For g ∈ AB, |g| = sup(at), where g =
∑
atz

t. The result then follows as

(P1) holds in Qp. �

Lemma 2.8.10. The quotient of a (P1) normed Qp-vector space or Zp-

module, M , by a closed submodule N is again (P1).

Proof: Let x̄, ȳ ∈ M/N , with 0 < |x̄| < |ȳ|, and x, y ∈ M lifts of

x̄, ȳ ∈ M/N . Since the norm on Qp is discrete away from 0, there is an

x̃ ∈M , such that

|x̄|M/N = infn∈N |x+ n|M = |x̃|M .

Then

|x̃|M = |x̄|M/N < infn∈N |y + n|M = |ȳ|M/N

and thus

|x̄+ȳ|M = infn∈N |x+y+n|M = infn∈N |x̃+y+n|M = infn∈N |y+n|M = |ȳ|M/N

since M is (P1). �

Thus St is (P1).
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Lemma 2.8.11. If R is a normed ring, M is a normed R-module and R

satisfies (P1) then the dual M∗ of continuous R linear maps from M to R

also satisfies (P1).

Proof: This follows straightforwardly from the definitions. �

Clearly the unit ball in a vector space satisfying condition (P1) also sat-

isfies (P1), thus M0 and further Ck(G,M0), M = S∗t , N
∗
t , G = u−1Γu ∩ Γ

or uΓu−1 ∩ Γ satisfy condition (P1).

Define the following property for a normed R-module M :

∀a ∈ R,∀x ∈M, |ax| 6= |a||x| ⇒ |ax| = 0. (P2)

This property is clearly satisfied by unit balls in Qp-vector spaces and thus

by M0 and further Zk(G,M0), Bk(G,M0), M = N∗
t , S

∗
t , G = u−1Γu ∩ Γ

or uΓu−1 ∩ Γ. It is also satisfied by Hk(G,M0) with M as above, with

G = u−1Γu ∩ Γ or uΓu−1 ∩ Γ:

Lemma 2.8.12. The cohomology groups Hk(G,M0), M = S∗t , N
∗
t , G =

u−1Γu ∩ Γ or uΓu−1 ∩ Γ, satisfy condition (P2).

Proof: Let a ∈ Zp, x̄ ∈ Hk(G,M0) be the image of x ∈ Zk(G,M0). Then

|ax̄| = infn∈Bk(G,M0)|ax+ n| = inf|n|≤|ax||ax+ n|,

since Zk(G,M0) satisfies (P1). Then as Bk(G,M0) is isometrically isomor-

phic to a subspace of MNr(k)
0 and since M0 is the unit ball in a vector space,

for each n ∈ Bk(G,M0), with |n| ≤ |a|, there exists ñ ∈ Bk(G,M0), with

n = añ. Thus

|ax̄| = infn∈Bk(G,M0)|a(x+ n)|

and since Zk(G,M0) satisfies (P2), |ax̄| = |a||x̄| or |ax̄| = 0. �

Lemma 2.8.13. If M is a normed Zp-module satisfying condition (P2) then

for any g ∈M ⊗Zp Qp, there exist m ∈M, q ∈ Qp such that g = m⊗ q and

|g| = |m||q|.
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Proof: We have |g| = inf{maxi|mi||qi|} where the infimum is over all

possible representations of of g =
∑
mi ⊗ qi. Let g =

∑
imi ⊗ qi be a

representation of g. Choose an A ∈ Qp with |A| minimized such that qi =

Azi with zi ∈ Zp, for all i. Then g = (
∑
zimi)⊗A. Also

|
∑

zimi||A| ≤ max|zimi||A| ≤ max|zi||mi||A| = max|mi||ziA| = max|mi||qi|.

Thus |g| = inf |m||q| over all representations g = m⊗ q.

Since any two representations g = m1 ⊗ q1 = m2 ⊗ q2 differ only by a

factor of z ∈ Zp, WLOG m1 = zm2 say, and since M satisfies (P2) then

either |m1||q1| = |m2||q2| or |m1| = 0. Thus |m||q| can only be one of two

values for g = m⊗q and thus there exist m ∈M, q ∈ Qp such that g = m⊗q
and |g| = |m||q|. �

Lemma 2.8.14. For G = u−1Γu∩Γ or uΓu−1∩Γ and µ ∈ Hk(G,M0) such

that 0 < |µ| < 1, with M0 the unit ball in a Qp-vector space, there exists

a ∈ Zp, µ0 ∈ Hk(G,M0) such that |µ0| = 1 and aµ0 = µ.

Proof: Let |µ| = p−m, m ∈ N. Let u
′ ∈ Zk(G,M0) be a lift of µ such

that |µ′ | = p−m. Then define µ
′
0 = p−mu

′
. Then we check easily that both

µ
′
0 and its reduction µ0 to Hk(G,M0) are of norm 1 and µ0 = p−mu. �

Proposition 2.8.15. For G = u−1Γu∩Γ or uΓu−1∩Γ, the space Hk(G,M0)⊗Zp

Qp is a Qp-Banach space, for M = S∗t , N
∗
t , so

Hk(G,M0)⊗Zp Qp = Hk(G,M0)⊗̂ZpQp.

Proof: Observe that Lemma 2.8.13 means that g ∈ Hk(G,M0) ⊗Zp Qp,

|g| = 0, implies g = 0.

Let {xn} be a Cauchy sequence in Hk(G,M0)⊗Zp Qp and fix representations

xn = mn ⊗ qn such that |xn| = |mn||qn|. If infinitely many xn = 0 then the

sequence converges to zero and thus we may assume WLOG that none of

the xn are zero.
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As {xn} is Cauchy it is bounded. By Lemma 2.8.14 we may assume

|mn| ≥ 1 for all n ∈ N. Thus we can choose an n0 such that |qn0 | = supn|qn|.
Then write qn = anqn0 with an ∈ Zp for all n ∈ N and thus we have also

xn = (anmn) ⊗ qn0 =: m̃n ⊗ qn0 also with |xn| = |m̃n||qn0 |. Then the se-

quence {m̃n} is Cauchy in M and thus converges to m ∈ M say. Then

xn → x := m⊗ qn0 . �

We also observe

Lemma 2.8.16. For G = u−1Γu ∩ Γ or uΓu−1 ∩ Γ and M = S∗t , N
∗
t , we

have
Zk(G,M0)⊗Zp Qp

Bk(G,M0)⊗Zp Qp
= Hk(G,M0)⊗Zp Qp.

Proof: This follows from flatness of Qp over Zp. We have

0 → Bk(G,M0)
i→ Zk(G,M0)

π→ Hk(G,M0) → 0

and thus by flatness have

0 → Bk(G,M0)⊗Zp Qp
i⊗1→ Zk(G,M0)⊗Zp Qp

π⊗1→ Hk(G,M0)⊗Zp Qp → 0

as desired. �

We have

Proposition 2.8.17. For M = S∗t , N
∗
t , there is a map

Φp ⊗ 1 : Zk(u−1Γu ∩ Γ,M0)⊗Zp Qp → Zk(uΓu−1 ∩ Γ,M0)⊗Zp Qp

such that

(Φ⊗ 1)(m⊗ q) = Φ(m)⊗ q.

This map is completely continuous as a map of Qp-Banach spaces. It com-

mutes with the maps δk and reduces to a completely continuous map of Qp-

Banach spaces from

Hk(u−1Γu ∩ Γ,M0)⊗Zp Qp → Hk(uΓu−1 ∩ Γ,M0)⊗Zp Qp.
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Proof: The first statement is merely [4] 2.1.7 Proposition 5. As in

the proof of Lemma 2.8.8 we can choose an orthonormal basis {ei}i∈I′ of

Zk(u−1Γu ∩ Γ,M0) and a basis {fj}j∈J ′ of Zk(uΓu−1 ∩ Γ,M0) such that

Φ(ei) =
∑

j ajifj and aji, i ∈ I
′
, j ∈ J

′
satisfy condition (∗). Then

{ei ⊗ 1}i∈I
′ is an orthonormal basis of Zk(u−1Γu ∩ Γ,M0) ⊗Zp Qp and

{fj ⊗ 1}j∈J ′ is an orthonormal basis of Zk(uΓu−1 ∩ Γ,M0) ⊗Zp Qp and

Φ(ei ⊗ 1) =
∑

j ajifj ⊗ 1 which proves the second statement. The map Φ

commutes with boundary maps and thus induces a map on cohomology. Ar-

guments similar to those in Lemma 2.5.4(iii) confirm that the induced map

on cohomology is completely continuous. �

Finally we confirm

Proposition 2.8.18. For M = S∗t , N
∗
t , the maps res and tr defined earlier

in the section give rise to continuous maps

res⊗ 1 : Hk(Γ,M0)⊗Zp Qp → Hk(u−1Γu ∩ Γ,M0)⊗Zp Qp

defined by (res⊗ 1)(m⊗ q) = res(m)⊗ q and

tr ⊗ 1 : Hk(uΓu−1,M0)⊗Zp Qp → Hk(Γ,M0)⊗Zp Qp

defined by (tr ⊗ 1)(m⊗ q) = tr(m)⊗ q.

The composition

Up ⊗ 1 := (tr ⊗ 1) ◦ (Φ⊗ 1) ◦ (res⊗ 1) = (tr ◦ Φ ◦ res)⊗ 1

on Hk(Γ,M0)⊗Zp Qp is completely continuous. By abuse of notation we will

denote Up ⊗ 1 by Up.

Proof: Recall from [16] that if E, V,W are Banach spaces and u ∈
L(E, V ), v ∈ L(V,W ) then v ◦ u ∈ L(E,W ) is completely continuous if

and of if u or v is. This confirms that Up ⊗ 1 is completely continuous.

Everything else is immediate. �.
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2.9 Forms of Small Slope

Let t = (t1, . . . , tn) ∈ Nn. Define Qt = Nt/Bt. Then we have an exact

sequence of ∆-modules

0 → Bt
i→ Nt

j→ Qt → 0.

Furthermore, if we define Nt,cl to be the subspace of Nt with (finite) or-

thonormal basis {et
∏

j 6=i
z

mij

ij |
∑

j 6=i
mij ≤ ti,∀i} and Nt,ncl to be the sub-

space of Nt with (infinite) orthonormal basis {et
∏

j 6=i
z

mij

ij |
∑

j 6=i
mij >

ti, for some i} then Nt = Nt,cl⊕Nt,ncl and i(Bt) = Nt,cl isometrically. Note

that Nt,ncl is not preserved by the action of ∆. Furthermore, there is a

continuous section of the map j which we will denote by θ, which maps

and element q̄ ∈ Qt to the unique preimage q ∈ Nt of q̄ such that the

coefficients of terms in the set {et
∏

j 6=i
z

mij

ij |
∑

j 6=i
mij ≤ ti,∀i} are zero.

Then θ(Qt) = Nt,ncl where θ is an isometry of Banach spaces but not ∆-

equivariant.

We have an exact sequence of ∆-modules with an isometric section of j

(considered as a map of Banach spaces)

0 Bt Nt,cl ⊕Nt,ncl Qt 0...................................... ............ .................................................................... ............i ................................................................................
θ

.................................................................... ............
j

...................................... ............

and so by taking continuous duals we get

0 Q∗
t N∗

t,ncl ⊕N∗
t,cl B∗

t 0...................................... ............ .................................................................... ............
j∗

................................................................................

θ∗
.................................................................... ............i∗ ...................................... ............

where again i∗ and θ∗ induce isometric isomorphisms of Banach spaces

N∗
t,cl

∼= B∗
t and N∗

t,ncl
∼= Q∗

t respectively where i∗ and j∗ are ∆-equivariant.

If we restrict to the unit ball on the left and right we get

0 (Q∗
t )0 (N∗

t,ncl)0 ⊕ (N∗
t,cl)0 (B∗

t )0 0...................................... ............ .................................................................... ............
j∗

................................................................................

θ∗
.................................................................... ............i∗ ...................................... ............

with again (Q∗
t )0 and (B∗

t )0 isometrically isomorphic as Banach spaces to

(N∗
t,ncl)0 and (N∗

t,cl)0 respectively.

Similarly, if we define Pt = St/Ft then reducing

0 Bt Nt,cl ⊕Nt,ncl Qt 0...................................... ............ .................................................................... ............i ................................................................................
θ

.................................................................... ............
j

...................................... ............
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modulo ker(φ : Bt → St) we get

0 Ft St,cl ⊕ St,ncl Pt 0...................................... ............ .................................................................... ............i ................................................................................
θ

.................................................................... ............
j

...................................... ............

and proceed analogously to get

0 (P ∗t )0 (S∗t,ncl)0 ⊕ (S∗t,cl)0 (F ∗t )0 0...................................... ............ .................................................................... ............
j∗

................................................................................

θ∗
.................................................................... ............i∗ ...................................... ............

with (P ∗t )0 and (F ∗t )0 isometrically isomorphic as Banach spaces to (S∗t,ncl)0
and (S∗t,cl)0 respectively, where i∗ and j∗ are ∆-equivariant.

Definition 2.9.1. If V is a p-adic Banach space on which an operator U

acts completely continuously, f ∈ V and h ∈ Q, we say U acts with slope h

on f if there exists P (X) ∈ Qp[X] such that P (U)f = 0 and all of the roots

of P (X) in Cp have p-adic valuation h.

We define V h to be the subspace of V spanned by vectors on which U

acts with slope h.

The slopes we will discuss in what follows will be slopes for Up.

We also note that for the finite dimensional spaces M = Bt, Ft, we have

Hk(Γ,M∗
0 )⊗Zp Qp

∼= Hk(Γ,M∗) and furthermore remark that in [14] §31.6

it is established that F ∗t ∼= Ft as algebgraic representations of Sp2n(Qp).

Proposition 2.9.2. Let h ∈ Q with h < λ :=
∑

j(tj(
∑j

k=1 αn−k+1)) +

minn
i=1(ti + 1)(αn−i −αn−i+1) where for the purposes of easing notation we

let α0 denote αn+1. Then we have natural isomorphisms (Hk(Γ, (N∗
t )0)⊗Zp

Qp)h → Hk(Γ, B∗
t )h and (Hk(Γ, (S∗t )0)⊗Zp Qp)h → Hk(Γ, F ∗t )h.

Proof: We recall that Up = tr ◦ Φ ◦ res as described above. We will

prove that Up/p
λ is of norm ≤ 1 on Hk(Γ, (Q∗

t )0) ⊗Zp Qp. To this end we

will establish that

Φ/pλ : Ck(u−1Γu ∩ Γ, Q∗
t ) → Ck(uΓu−1 ∩ Γ, Q∗

t )

is of norm ≤ 1.

Recall that Ck(u−1Γu ∩ Γ, Q∗
t ) ∼= (Q∗

t )
Nr(k), isometrically via

f → (f(yk
1 ), . . . , f(yk

Nr(k)))
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where the yk
i are as in the previous section. Similarly, Ck(uΓu−1 ∩Γ, Q∗

t ) ∼=
(Q∗

t )
Nr(k), isometrically by

f → (f((yk
1 )•), . . . , f((yk

Nr(k))
•)).

Via these isomorphisms Φ acts diagonally by u on (Q∗
t )

Nr(k). Also we have

θ∗ : N∗
t,ncl → Q∗

t

an isomorphism of Banach spaces which respects the action of u. Let

f ∈ N∗
t,ncl with |f | ≤ 1. Recall that N∗

t,ncl is spanned by monomials

{et
∏

j 6=i
z

mij

ij |
∑

j 6=i
mij > ti, for some i}. For a monomial in z ∈ N∗

t,ncl,

uz = pNz with N ≥ λ and thus Φ/pλ is of norm ≤ 1. Then

|(Φ/pλ)f | = sup|x|≤1,x∈M

∣∣∣∣f(ux)
pλ

∣∣∣∣ ≤ |f | ≤ 1

so

Φ/pλ : Ck(u−1Γu ∩ Γ, Q∗
t ) → Ck(uΓu−1 ∩ Γ, Q∗

t )

is integral and thus we get a Zp-module map

Φ/pλ : Ck(u−1Γu ∩ Γ, (Q∗
t )0) → Ck(uΓu−1 ∩ Γ, (Q∗

t )0)

which induces a map on cohomology and composition with the maps res

and tr gives a map Up/p
λ of norm ≤ 1 on Hk(Γ, (Q∗

t )0). Thus the map

Up ⊗ 1 is of norm ≤ pλ on Hk(Γ, (Q∗
t )0)⊗Zp Qp.

We have the following portion of the long exact sequence in cohomology

. . .→ Hk(Γ, (Q∗
t )0)⊗Qp → Hk(Γ, (N∗

t )0)⊗Qp → Hk(Γ, B∗
t )

→ Hk+1(Γ, (Q∗
t )0)⊗Qp → . . .

where all the maps are Up equivariant. Also we have the exact sequence of

Banach spaces 0 → Q∗
t → N∗

t → B∗
t → 0 and have maps in both directions

between these spaces which commute with Up and thus maps between their

cohomology groups which also commute with Up. Thus we deduce that the

h-parts of the terms in this exact sequence correspond (ie the image of the

h-part of one term lies in the h-part of the next and the preimage of the

h-part of one term lies in the h-part of the previous term). Thus we can
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take the h-part of the exact sequence above, and it follows easily from the

previous paragraph that the Qt terms vanish so we arrive at

0 → (Hk(Γ, (N∗
t )0)⊗Zp Qp)h → Hk(Γ, B∗

t )h → 0.

and are done.

Everything proceeds similarly in the 0 → Ft → St → Pt → 0 case to the

desired conclusion. �
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Chapter 3

Theta maps

For this section we let n = 2.

In [10], Coleman proves the existence of a map θk+1 from his space of

overconvergent forms of weight −k to his space of overconvergent forms of

weight k + 2, k ≥ 0, that on q-expansions is qd/dq and commutes with the

action of Hecke operators up to a certain power of twisting by the deter-

minant. The existence of this map is predicted by the following heuristic:

Associated to one of Coleman’s Hecke eigenforms there is a Galois repre-

sentation. The Hodge-Tate weights associated to this representation for an

eigenform of weight −k are 0 and −k − 1. Following a twist by a k + 1-st

power of the determinant this is a representation with Hodge-Tate weights

0 and k+1 and thus looks plausibly like the representation associated to an

overconvergent modular form of weight k+ 2. This turns out to be the case

and Coleman’s θk+1 is the resulting map on forms.

In the Siegel case, even with n = 2, much less is known. One might hope

for a sensible geometric definition of a overconvergent Siegel modular form of

weight [k1, k2] and denote the space of such forms M[k1,k2]. One might hope

further that a Hecke eigenform in M[k1,k2] would have a Galois representation

associated to it. It is conjectured that the Hodge-Tate weights of the Galois

representation associated to a classical Siegel eigenform of weight [k1, k2]

would be 0, k1 − 2, k1 + k2 − 3, k2 − 1. There are 8 ways of twisting one

of these weights to 0 and reassigning the weights k1 and k2. One may

hope that if, as in the case for SL2, the class of representations arising
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as Galois representations of overconvergent Siegel modular forms were well

behaved under the appropriate twisting operations that this would yield 8

maps analogous to Coleman’s θk+1. From the arithmetic of the Hodge-Tate

weights we can see that these maps would arise:

· M[k1,k2] → M[k2+1,k1−1] which commutes with Hecke operators,

· M[k1,k2] → M[−k1+4,k2] which commutes with Hecke operators up to a

−k1 + 2-nd power of the determinant,

· M[k1,k2] → M[−k2+3,k1−1] which commutes with Hecke operators up to a

−k2 + 1-st power of the determinant,

· M[k1,k2] → M[k2+1,−k1+3] which commutes with Hecke operators up to a

−k1 + 2-nd power of the determinant,

· M[k1,k2] → M[k1,−k2+2] which commutes with Hecke operators up to a

−k2 + 1-st power of the determinant,

· M[k1,k2] → M[−k2+3,−k1+3] which commutes with Hecke operators up to a

−k1 − k2 + 3-rd power of the determinant,

· M[k1,k2] → M[−k1+4,−k2+2] which commutes with Hecke operators up to a

−k1 − k2 + 3-rd power of the determinant,

and of course the identity map from M[k1,k2] to itself.

We hope to find these maps in our cohomologically defined forms. Taking

into account the change in indices caused by

St(Γ) ↪→ H
1
2
n(n+1)(Γ, Vt−(n+1)t0)

and being careful to recall the change dictionary [k1, k2] = (k2 − k1, k1) the

maps listed above translate to maps

H3(Γ, (S∗ti)0)⊗Zp Qp → H3(Γ, (S∗t )0)⊗Zp Qp.

for t = (k1, k2), i = 1, . . . , 8 with t1 := (−k1−2, k1+k2+1), t2 := (k1+2k2+

2,−k2−2), t3 := (k1+2k2+2,−k1−k2−3), t4 := (−k1−2k2−4, k1+k2+1),

t5 := (−k1 − 2k2 − 4, k2), t6 := (k1,−k1 − k2 − 3), t7 := (−k1 − 2,−k2 − 2)

and t8 = t, where the maps commute with Up up to a di-th power of the

determinant where d1 = d8 = 0, d2 = d4 = −k2− 1, d3 = d5 = −k1− k2− 2,

d6 = d7 = −k1 − 2k2 − 3.

In what follows we exhibit maps δi, i = 1, . . . , 8, between the spaces

St, for appropriate t, which induce the maps on cohomology listed above.
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This provides evidence that the program to attach Galois representations to

overconvergent Siegel Hecke eigenforms may bear fruit.

3.1 The Maps

We see from § 2.3 that the ideal of relations between the yij is generated

by y22 + y25, y14 − y23 − y11y22, y26 + y13y22 + y14y24, y11y24 − y22 + y13,

y11y26 − y13y23 + y14y22 and y26 + y23y24 + y2
22. However, having reduced

from the Yij ’s to the yij ’s we see that the two relations y26 + y13y22 + y14y24

and y11y26 − y13y23 + y14y22 are in fact generated by the other four.

We may define a continuous differential operator ∂1 on AF whose action

on the variables yij is as follows:

∂1(y11) = 1, ∂1(y13) = −y24, ∂1(y14) = y22, ∂1(y2j) = 0

One checks that this operator preserves the ideal of relations between the

yij and thus extends to a differential operator on AF .

Let us denote the action of g ∈ ∆ on f ∈ St by g|tf to avoid confusion.

Lemma 3.1.1. The operator ∂1 induces a ∆-invariant map ∂1 : S(0,0) →
S(−2,1).

Proof: For g ∈ ∆ a straightforward calculation confirms that

∂1(g|(0,0)y11) = g|(−2,1)1.

Similarly

∂1(g|(0,0)y13) = −g|(−2,1)y24

and

∂1(g|(0,0)y14) = g|(−2,1)y22.

From this we check that for f ∈ S(0,0) we have

∂1(g|(0,0)f) = g|(−2,1)(∂1f)

as desired. �

We also define another continuous differential operator ∂2 on AF such that

∂2(y1j) = 0, ∂2(y22) = y11, ∂2(y23) = −y2
11, ∂2(y24) = 1, ∂2(y25) = −y11,
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and

∂2(y26) = −y14 − y11y13.

Again this map preserves the ideal of relations between the yij and thus

extends to AF .

Recall that for M ∈ GSp2n, c(M) denotes the multiplier satisfying

c(M)J = MTJM . More elaborate but similarly straightforward calcula-

tions confirm

Lemma 3.1.2. The map ∂2 induces a map ∂2 : S(0,0) → S(2,−2) satisfying

∂2(g|(0,0)f) = c(g)g|(2,−2)(∂2f), f ∈ S(0,0), g ∈ ∆. �

These simple calculations give rise to maps on S(k1,k2) for general k1, k2.

Proposition 3.1.3. Repeated application of the maps ∂1 and ∂2 give a ∆-

invariant map

δ1 := ∂k1+1
1 : S(k1,k2) → S(−k1−2,k1+k2+1), k1 ≥ 0

and a map

δ2 := ∂k2+1
2 : S(k1,k2) → S(k1+2k2+2,−k2−2), k2 ≥ 0

satisfying

δ2(g|(k1,k2)f) = c(g)−d2g|(k1+2k2+2,−k2−2)(δ2f), f ∈ S(k1,k2), g ∈ ∆.

Proof: First, let us treat the map δ1. Verifying that this map is ∆-

invariant boils down to verifying the following identity in AF

δ1

[
jk1
1 jk2

2 f(gyij)
]

= j−k1−2
1 jk1+k2+1

2 (δ1f)(gyij)

for g ∈ ∆ where the ji := ji(g) are the 1-cocycles defined previously.

We prove this by induction on k1. Lemma 3.1.1 is the case k1 = 0, k2 = 0

and the case k1 = 0, k2 arbitrary follows immediately as ∂1(j2) = 0.

Fix k1 ≥ 1. Assume the identity holds for all (k, k2), k < k1, k2 ∈ N.

We prove the identity holds for (k1, k2), k2 ∈ N.
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∂k1+1
1

[
jk1
1 jk2

2 f(gyij)
]

= jk2
2 ∂1

[
∂k1

1

(
jk1
1 f(gyij)

)]

= jk2
2 ∂1

[
k1(∂1j1)∂k1−1

1

(
jk1−1
1 f(gyij)

)
+ j−k1

1 jk1
2 (∂k1

1 f)(gyij)
]
, as ∂2

1(j1) = 0

= jk2
2

[
k1(∂1j1)∂k1

1

(
jk1−1
1 f(gyij)

)
− k1j

−k1−1
1 jk1

2 (∂1j1)(∂k1
1 f)(gyij)

+ j−k1−2
1 jk1+1

2 (∂k1+1
1 f)(gyij)

]

= j−k1−2
1 jk1+k2+1

2 (∂k1+1
1 f)(gyij)

as desired.

A similar proof goes through for δ2 as again ∂2
2j2 = 0 and the base case

was done above. �

Remark: Note that we may define analogous differential operators ∂1 and ∂2

on AB, simply by replacing yij above by zij , which can therefore be seen as

maps between the spaces Nt. By construction the maps δ1 and δ2 on Nt and

St commute with φ. Although it may at some points be useful to think of

δ1 and δ2 as maps on these spaces, it is however important to note that they

are merely maps of vector spaces and do not satisfying the compatibility

properties with the action of ∆ that the maps on the spaces St do.

3.2 Subquotients

Given t = (k1, k2), k1, k2 ∈ N, we identify certain subquotients of St as ∆-

invariant subspaces of St′ , for other t′ via compositions of the maps ∂n
1 and

∂m
2 as above for suitable m,n ∈ N.

To do this we first need to identify some ∆-invariant subspaces of the

spaces St. We have already discussed the finite dimensional subspace Ft,

by which we mean, by abuse of notation the image of Ft in St under the
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injection Ft ↪→ St.

Now consider the subspaces of Nt,

N1
t := (polynomials of degree ≤ k1 in z1j)⊗Qp Qp < z2j >⊂ Nt

and

N2
t := (polynomials of degree ≤ k2 in z2j)⊗Qp Qp < z1j >⊂ Nt.

We observe that both of these subspaces are ∆-invariant. Thus so are their

images S1
t := φ(N1

t ) and S2
t := φ(N2

t ) under φ.

We now consider the maps δ1 and δ2 restricted to these subspaces and

observe the following.

Lemma 3.2.1. With t1 and t2 as above, the maps δ1 and δ2 restrict to maps

δ1 : S2
t → S2

t1

and

δ2 : S1
t → S1

t2 .

Proof: The fact that the images of these maps lie in S2
t1 and S1

t2 respec-

tively is a restatement of the fact that the maps δ1 and δ2 commute with

φ coupled with observation of what these maps do to the variables zij . �

As S2
t1 and S1

t2 are ∆-invariant and the δi are ∆-invariant up to a constant,

the subspaces

T 2
t := (δ1)−1(S2

t1), T 1
t := (δ2)−1(S1

t2)

in St are ∆-invariant. We will see shortly that S1
t ⊂ T 2

t and S2
t ⊂ T 1

t — see

Lemma 3.2.2 and Lemma 3.2.3.

Thus, by construction we get

δ1 : T 2
t → S2

t1

and

δ2 : T 1
t → S1

t2 .
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Furthermore, composing ∂k1+1
1 and ∂k1+k2+2

2 we get

δ3 := ∂k1+k2+2
2 ◦ ∂k1+1

1 : St → St3 , k1 ≥ 0, k1 + k2 + 1 ≥ 0

with t3 as above which satisfies

δ3(g|tf) = c(g)−d3g|t3(δ3f), f ∈ St

and similarly

δ4 := ∂k1+2k2+3
1 ◦ ∂k2+1

2 : St → St4 , k2 ≥ 0, k1 + 2k2 + 2 ≥ 0

with t4 as above which satisfies

δ4(g|tf) = c(g)−d4g|t4(δ4f), f ∈ St.

We follow these compositions one step further as follows and calculate:

δ5 := ∂k1+2k2+3
1 ◦ ∂k1+k2+2

2 ◦ ∂k1+1
1 : St → St5 , k1 ≥ 0, k1 + 2k2 + 2 ≥ 0

with t5 as above which satisfies

δ5(g|tf) = c(g)−d5g|t5(δ5f), f ∈ St

and similarly

δ6 := ∂k1+k2+2
2 ◦ ∂k1+2k2+3

1 ◦ ∂k2+1
2 : St → St6 , k2 ≥ 0, k1 + k2 + 1 ≥ 0

with t6 as above, which satisfies

δ6(g|tf) = c(g)−d6g|t6(δ6f), f ∈ St

and

δ7 := ∂k2+1
2 ◦ ∂k1+2k2+3

1 ◦ ∂k1+k2+2
2 ◦ ∂k1+1

1 : St → St7 , k1, k2 ≥ 0

with t7 as above which satisfies

δ7(g|tf) = c(g)−d7g|t7(δ7f), f ∈ St.

Alternatively we can compose ∂k1+1
1 ◦ δ6 to get

δ′7 := ∂k1+1
1 ◦ ∂k1+k2+2

2 ◦ ∂k1+2k2+3
1 ◦ ∂k2+1

2 : St → St7 , k1, k2 ≥ 0
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with t7 as above which satisfies

δ′7(g|tf) = c(g)−d7g|t7(δ′7f), f ∈ St.

In fact δ7 = δ′7. The proof of this reduces to a combinatorial identity which

can be checked by a computational algorithm the details of which we omit.

At the end of this chapter we present a heuristic explaining this equality.

Finally, let δ8 := id, t8 := t = (k1, k2).

We define

U1
t := δ−1

1 (T 1
t1), U2

t := δ−1
2 (T 2

t2)

V 2
t := δ−1

1 (U2
t1).

We now examine the kernels of these maps.

First we observe that the Qp-algebra homomorphism

u : Nt → Qp < z11, z22, z23, z24 >t⊂ Nt

defined by

u(z11) = z11, u(z13) = z22 − z11z24, u(z14) = z23 + z11z22,

u(z2i) = z2i, i = 2, 3, 4, u(z25) = −z22, u(z26) = −z2
22 − z23z24,

gives an isomorphism of Qp-Banach algebras,

u : Nt/ker(φ) ∼= St → Qp < z11, z22, z23, z24 >t .

Since Nt/ker(φ) is canonically isomorphic to St, via replacing z’s by y’s we

will consider u as a map from St.

The inverse to u is easily seen to be the map that takes f(z11, z22, z23, z24)

to f(y11, y22, y23, y24) + I ∈ St. The maps δ1 and δ2 induced by this isomor-

phism are the restriction to Qp < z11, z22, z23, z24 >t of the maps δ1 and δ2

previously defined on Nt.

Consider the usual degree in z11,

deg1 : Qp < z11, z22, z23, z24 >t→ {−∞, 0, 1, . . . ,∞}.

This allows us to prove the following:

Lemma 3.2.2. The kernel of the map δ1 : St → St1 is S1
t .
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Proof: This result follows from the following two observations:

(i) the map ∂1 on Qp < z11, z22, z23, z24 >t decreases deg1 by 1, except on

things of deg1 = 0 which are the kernel of ∂1.

(ii) the image of S1
t in Qp < z11, z22, z23, z24 >t via the isomorphism above

are exactly the things of deg1 ≤ k1.

Assertion (i) is evident upon inspection of the definition of ∂1. We now

prove assertion (ii).

If f ∈ S1
t ⊂ St if and only if f = φ(g) where g ∈ N1

t is of degree

≤ k1 in the zij variables. This is if and only if g(z11, z22 − z11z24, z23 +

z11z22, z22, z23, z24,−z22,−z2
22 − z23z24) = u(f) has deg1 ≤ k1. �

It follows from this lemma that:

· ker(δ1 : S2
t → S2

t1) = S2
t ∩ S1

t = Ft.

· ker(δ1 : T 2
t → S2

t1) = S1
t .

· ker(δ4 : St → St4) = T 1
t .

· ker(δ5 : St → St5) = U1
t .

We clarify the equality S2
t ∩S1

t = Ft. Under the isomorphism of St with

Qp < z11, z22, z23, z24 >, S2
t maps to the set of f ∈ Qp < z11, z22, z23, z24 >

such that f can be expressed in the form

f =
∑

cai,bi
za1
11(z22 − z11z24)a2(z23 + z11z22)a3zb1

22z
b2
23z

b3
24(z23z24 + z2

22)
b4

with cai,bi
= 0 if

∑
i bi > k2.

The image of S1
t under this isomorphism is the set of f ∈ Qp < z11, z22, z23, z24 >

such that f has an expression of the form

f =
∑

cd,ei
zd
11z

e1
22z

e2
23z

e3
24

with cd,ei
= 0 if d > k1.

So the image S1
t ∩ S2

t under this isomorphism is the set of f ∈ Qp <

z11, z22, z23, z24 > such that f has an expression of the form

f =
∑

cai,bi
za1
11(z22 − z11z24)a2(z23 + z11z22)a3zb1

22z
b2
23z

b3
24(z23z24 + z2

22)
b4

with cai,bi
= 0 if

∑
i ai > k1 or

∑
i bi > k2.

This is clearly also the image of Ft.
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Now we can analyze the kernels of the remaining maps by exploiting

another isomorphism of St with a disc. We observe that the Qp-algebra

homomorphism

u : Nt → Qp < z11, z13, z14, z24 >t⊂ Nt

defined by

u(z1i) = z1i, i = 1, 3, 4, u(z22) = z13+z11z24, u(z23) = z14−z11z13−z2
11z24,

u(z24) = z24, u(z25) = −z13 − z11z24, u(z26) = z2
13 + z14z24 + z11z13z24,

gives an isomorphism of Qp-Banach algebras,

u : Nt/ker(φ) ∼= St → Qp < z11, z13, z14, z24 >t .

Since Nt/ker(φ) is canonically isomorphic to St, via replacing z’s by y’s we

will consider u as a map from St. As before, the inverse of this map takes

f(z11, z13, z14, z24) to f(y11, y13, y14, y24) + I ∈ St.

Again the maps δ1 and δ2 induced by this isomorphism are just the

restrictions of the previously discussed analogous maps defined on Nt.

Consider now the usual degree in z24,

deg2 : Qp < z11, z13, z14, z24 >t→ {−∞, 0, 1, . . . ,∞}.

As with ∂1, this allows to prove the following:

Lemma 3.2.3. The kernel of the map δ2 : St → St2 is S2
t .

Proof: Analogous to the proof of Lemma 3.2.2. �

It follows from this lemma that:

· ker(δ2 : S1
t → S1

t2) = S1
t ∩ S2

t = Ft.

· ker(δ2 : T 1
t → S1

t2) = S2
t .

· ker(δ3 : St → St3) = T 2
t .

· ker(δ6 : St → St6) = U2
t .

· ker(δ7 : St → St7) = V 2
t .
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Observing

St St1 St3 St5 St7
................................................................................................................. ............
∂k1+1

1 ................................................................................................................. ............
∂k1+k2+2

2 ................................................................................................................. ............
∂k1+2k2+3

1 ................................................................................................................. ............
∂k2+1

2

and

St St2 St4 St6
................................................................................................................. ............
∂k2+1

2 ................................................................................................................. ............
∂k1+2k2+3

1 ................................................................................................................. ............
∂k1+k2+2

2

it is clear that

0 ⊂ Ft ⊂ S1
t ⊂ T 2

t ⊂ U1
t ⊂ V 2

t ⊂ St

and

0 ⊂ Ft ⊂ S2
t ⊂ T 1

t ⊂ U2
t ⊂ St

and furthermore one concludes easily that the inclusions are strict.

Note: These maps aren’t surjective. For example,

pzp−1
11 + p2zp2−1

11 + p3zp3−1
11 + . . . ∈ Qp < z11, z22, z23, z24 >

is not in the image of δ1. However, using the isomorphisms of St with discs

discussed above we see that δ1 : St → S1
t has image{

f ∈ S1
t
∼= Qp < z2j > [z11], f =

∞∑
i=0

fi(z2j)zi
11 s. t. lim

i→∞

|fi(z2j)|
|i+ 1|

= 0

}
.

Similarly, δ2 : St → S2
t has image{

f ∈ S2
t
∼= Qp < z1j > [z24], f =

∞∑
i=0

fi(z1j)zi
24 s. t. lim

i→∞

|fi(z2j)|
|i+ 1|

= 0

}
.

3.3 Maps on Cohomology

Let t = (k1, k2) ≥ 0. From the ∆-invariant map

δ1 : St → St1

we get

(δ1)∗ : S∗t1 → S∗t

and since δ1 is of norm ≤ 1 we then get

(δ1)∗ : (S∗t1)0 → (S∗t )0.
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Thus, see [5], we get a map on cohomology,

H3(Γ, (S∗t1)0) → H3(Γ, (S∗t )0)

and finally a map which we will denote Θ1,

Θ1 : H3(Γ, (S∗t1)0)⊗Zp Qp → H3(Γ, (S∗t )0)⊗Zp Qp.

Proceeding similarly we have, as desired,

Theorem 3.3.1. For 1 ≤ i ≤ 8, δi induces a map

Θi : H3(Γ, (S∗ti)0)⊗Zp Qp → H3(Γ, (S∗t )0)⊗Zp Qp

such that

Θi(g|tif) = cdig|tΘi(f),

for f ∈ H3(Γ, (S∗
ti
)0)⊗Zp Qp and g ∈ ∆. �

3.4 Further Remarks

Finally, we outline a correspondence between the maps Θi and the Weyl

group of Sp4. As we have seen previously, the positive roots corresponding

to our choice of Borel subgroup U are [2, 0], [1, 1], [0, 2] and [−1, 1] where the

simple roots are [2, 0] and [−1, 1]. The Weyl group W of Sp4 is generated

by reflections in weight space perpendicular to the positive roots. We will

denote these reflections by w[2,0], w[1,1], w[0,2] and w[−1,1] respectively. The

elements of W ∼= D8, the corresponding elements of NSp4
(T )/T , and the

maps they induce on weight space are listed below:

e  


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 : [a, b] → [a, b],

w[2,0]  


0 0 1 0

0 1 0 0

−1 0 0 0

0 0 0 1

 : [a, b] → [−a, b],
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w[−1,1]  


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 : [a, b] → [b, a],

w[0,2] = w[−1,1]w[2,0]w[−1,1]  


1 0 0 0

0 0 0 1

0 0 1 0

0 −1 0 0

 : [a, b] → [a,−b],

w[1,1] = w[2,0]w[−1,1]w[2,0]  


0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

 : [a, b] → [−b,−a],

ε := w[2,0]w[−1,1]  


0 0 0 1

1 0 0 0

0 −1 0 0

0 0 −1 0

 : [a, b] → [−b, a],

ε3 = w[−1,1]w[2,0]  


0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

 : [a, b] → [b,−a],

ε2 = w[2,0]w[−1,1]w[2,0]w[−1,1]  


0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0

 : [a, b] → [−a,−b]

where we can also write ε2 in terms of the generators w[2,0] and w[−1,1] as

ε2 = w[−1,1]w[2,0]w[−1,1]w[2,0].

It is easily seen that the expressions above for the eight elements are of

minimal length in the generators w[2,0] and w[−1,1] and hence `(w[2,0]) =

`(w[−1,1]) = 1, `(ε) = `(ε3) = 2, `(w[1,1]) = `(w[0,2]) = 3 and ε2 is the long

element of the Weyl group with `(ε2) = 4.
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We denote H3(Γ, (S∗[a,b])0) ⊗Zp Qp by H[a,b] and recall the maps Θi as

follows:

Θ1 : H[a,b] → H[b+1,a−1],

Θ2 : H[a,b] → H[−a−2,b],

Θ3 : H[a,b] → H[−b−3,a−1],

Θ4 : H[a,b] → H[b+1,a−3],

Θ5 : H[a,b] → H[a,−b−4],

Θ6 : H[a,b] → H[−b−3,−a−3],

Θ7 : H[a,b] → H[−a−2,−b−4].

We renormalize the indices by setting H̃[a,b] = H[a−1,b−2] and note that the

following correspondence between {Θi} and W respects multiplication (ie.

it turns composition, where defined, into multiplication in W ):

Θ1 : H̃[a,b] → H̃[b,a]  w[−1,1] : [a, b] → [b, a],

Θ2 : H̃[a,b] → H̃[−a,b]  w[2,0] : [a, b] → [−a, b],

Θ3 = Θ2 ◦Θ1 : H̃[a,b] → H̃[−b,a]  ε = w[2,0]w[−1,1] : [a, b] → [−b, a],

Θ4 = Θ1 ◦Θ2 : H̃[a,b] → H̃[b,−a]  ε3 = w[−1,1]w[2,0] : [a, b] → [b,−a],

Θ5 = Θ1 ◦Θ3 : H̃[a,b] → H̃[a,−b]  w[0,2] = w[−1,1]ε : [a, b] → [a,−b],

Θ6 = Θ2 ◦Θ4 : H̃[a,b] → H̃[−b,−a]  w[1,1] = w[−1,1]ε
3 : [a, b] → [−b,−a],

Θ7 = Θ2 ◦Θ5 : H̃[a,b] → H̃[−a,−b]  ε2 = w[2,0]w[0,2] : [a, b] → [−a,−b]

and of course id e.

This correspondence and the fact that

ε2 = w[2,0]w[−1,1]w[2,0]w[−1,1] = w[−1,1]w[2,0]w[−1,1]w[2,0]

predicts the not otherwise obvious equality δ7 = δ′7.

To conclude we note that one might expect to generalize Chapter 2

to define overconvergent forms cohomologically for any connected classical

group G and to find a corresponding Θi map for each element of the Weyl

group of G, where the correspondence respects multiplication and the maps

corresponding to simple roots are induced by differentiation with respect to

variables of distinct left weights.
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