
Computing modular forms on definite quaternion algebras.

Last modified some time in the 1990s.

Here are some notes on quaternion algebras, modular forms on definite quaternion
algebras, and how they correspond to certain classical modular forms. The definition
of modular forms on a definite quaternion algebra is essentially combinatorial, although
somewhat long. The Jacquet-Langlands theorem gives a link between these new kinds of
modular forms and certain classical modular forms, but in a rather abstract way. However
it is possible to translate it down to a rather concrete statement, and that is the point of
these notes.

Everything here is known to the experts, and the only thing these notes have go-
ing for them is their concreteness, something which is usually lacking in the more modern
literature. Hopefully these notes will explain how one might attempt to actually do compu-
tations of spaces of modular forms in a way that as far as I know, noone has implemented.
In fact, the initial motivation for these notes was to explain to William Stein (who has
already written some programs for computing in spaces of modular forms) an algorithm for
doing some more computations, especially computations which would work for any weight
k ≥ 2 and would perhaps be faster than the standard methods being used by people like
Cremona. Whether they are in fact faster remains to be seen.

Of course, I learnt almost all of this from Richard Taylor. One reference for some of
this stuff is his papers with Fred Diamond from about 1992. If anyone finds any inaccuracies
in these notes or has any comments I’d love to hear about them, for example by email to
buzzard@dpmms.cam.ac.uk.

§1. Introduction.

This section is much more vague than the others, and is an attempt to explain what
the point of this note is.

The Jacquet-Langlands theorem says that if you have two quaternion algebras, then
certain automorphic forms for one of them are in canonical bijection with certain automor-
phic forms for the other. As it stands this statement is a bit general, as well as being a bit
vague, and it also has the merit of being fairly incomprehensible to many number theorists.
The point is that M2(Q) is a quaternion algebra, and classical modular (eigen)forms can
be viewed as automorphic forms for M2(Q). So if one translates the statement of the JL
theorem down a bit, one gets that certain classical modular forms should be related to
certain “modular forms” on other quaternion algebras. In some cases, though, the defi-
nition of a modular form for a quaternion algebra is (surprisingly) much easier than the
definition of a classical modular form.

In fact, if D is a definite quaternion algebra (all definitions are to come, of course) then
the modular forms for D are rather concrete algebraic objects. Vaguely speaking, classical
modular forms might be thought of as an “H1” (via the Eichler-Shimura isomorphism),
and automorphic forms for a definite quaternion algebra can be thought of as an “H0” and
we all know that H0s are easier than H1s. Another way of saying why definite quaternion
algebras are easy is that classical modular forms can be thought of as H0 of a certain
coherent sheaf on a (modular) curve, whereas modular forms for a definite quaternion
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algebra are H0 of a sheaf on a zero-dimensional thing (a finite set of points), and are hence
no more than the sum of the fibres over each point.

My feeling is that computing with definite quaternion algebras must be much easier
than with classical modular forms. Of course, one drawback is that one doesn’t see all
classical forms in this way (for example one will never find ∆—remember that only some
automorphic forms on one quaternion algebra will correspond to automorphic forms on
another one) but one can see many, and at least it’s good for examples.

§2. Some definitions.

Now we become more precise. Let K be a field.

Definition. A quaternion algebra over K is a (necessarily non-commutative!) ring D
equipped with an injective ring map K → D, satisfying the following 3 axioms:

1) (The image of) K is the centre of D
2) The dimension of D, considered as a K-vector space, is 4.
3) D has no non-trivial 2-sided ideals.

The canonical example of a quaternion algebra isD = M2(K), withK being embedded
as the scalar matrices.

Definition. A quaternion algebra over K which is isomorphic to M2(K) is said to
be split.

Of course, there are examples of non-split quaternion algebras. For example, H =
R ⊕ Ri ⊕ Rj ⊕ Rk with the usual relations holding on i, j and k, is a quaternion algebra
over R.

Note that H has the interesting property that if 0 6= h = a+ bi+ cj + dk ∈ H then h
has an inverse, namely (a − bi − cj − dk)/(a2 + b2 + c2 + d2). Hence non-commutativity
of multiplication is the only thing that stops H from being a field. Sometimes rings with

this property are called skew-fields. Of course, elements like

(
0 1
0 0

)
stop M2(R), or

indeed M2(K), from having this property. Rather surprisingly, this is a characterisation
of whether a quaternion algebra is split or not.

Theorem. If K is a field and D is a quaternion algebra over K then D is not split
iff every non-zero element of D has an inverse.

We sometimes abbreviate “Let D be a quaternion algebra over the field K” by “Let
D/K be a quaternion algebra”.

The actual definition of a quaternion algebra looks a bit daunting, but we shall never
actually use it, I just included it for completeness. What I shall do next is simply to state,
for various fields, what all the quaternion algebras are up to isomorphism, and so if you
are prepared to take things on trust then you never need even digest what the definition
of a quaternion algebra is.

§3. First examples of quaternion algebras.
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1) If K is algebraically closed, then there is only 1 quaternion algebra over K up to
isomorphism, namely M2(K), the split one.

2) If K is finite then there is also only one quaternion algebra over K and it’s of course
the split one again.

3) If K is R then there are two quaternion algebras (up to isomorphism), namely M2(R)
and the quaternions H as above.

4) If K is a finite extension of Qp then there are again 2, namely M2(K) and another one,
which can be written down explicitly thus.

We know that finite unramified extensions of K correspond bijectively to finite exten-
sions of the residue field of K. Now the residue field of K has a unique extension of degree
2, and hence there is a unique extension L/K of degree 2 which is unramified. Now let D
be the subset of M2(L) consisting of matrices(

a b
πσ(b) σ(a)

)
where a and b are arbitrary elements of L, π is a uniformiser of K (and hence of L
too) and σ is the non-trivial element of Gal(L/K). This set turns out to be a ring and
indeed a quaternion algebra over K which is not split. Moreover, it’s the only one, up to
isomorphism.

Note that this quaternion algebra is usually not K ⊕Ki ⊕Kj ⊕Kk with i, j and k
satisfying the usual relations; even though this latter thing is a quaternion algebra, it is
actually isomorphic to M2(K) a lot of the time. For example, it’s a neat exercise to show
that if K = Qp for p odd, then this latter quaternion algebra is always M2(K).

5) For more specific local fields, one can be a bit more concrete. For example, if K = Qp

with p odd, then here’s another description of the non-split quaternion algebra over K.
Choose u ∈ (Z/pZ)× a non-square, and lift it to u ∈ Zp. Then set D = Qp ⊕ Qpα ⊕

Qpβ ⊕Qpαβ, where we now have to explain how to multiply everything together to make
this a ring. We ask that α2 = u, β2 = pu and αβ = −βα. It is now easily checked that
we can extend this to a unique associative multiplication on D, and moreover it turns out
that D is a non-split quaternion algebra over Qp.

If K = Q2 then it turns out that the non-split quaternion algebra is isomorphic to
Q2 ⊕Q2i⊕Q2j ⊕Q2k with the usual relations.

§4 Base extension, traces and norms.

If D/K is a quaternion algebra over a field, and L is a field extension of K, then
D ⊗K L is a quaternion algebra over L.

Definition. Say that L splits D, or that D splits over L, or that L is a splitting field
for D, if D ⊗K L is split, that is, isomorphic to M2(L).

Note that D may well not be split, but could become split after a field extension. For
example, one can take the non-split “usual” quaternions over R and then tensor up to C
and they must become split, because there is only one quaternion algebra over C. More
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generally, if D/K is a quaternion algebra and K is the algebraic closure of K then K must
split D because there is only one quaternion algebra over K.

Let K be an arbitrary field, and let D/K be a quaternion algebra. Choose an isomor-
phism D⊗K K ∼= M2(K), and note that this gives us a way of thinking of D as a subring
of M2(K). In particular, elements of D now have traces and determinants.

Definition. If d ∈ D, define the trace of d to be the trace of d considered as an
element of M2(K). Also define the norm of d to be the determinant of d considered as an
element of M2(K).

Theorem. The norm and trace of an element of d are in K, and are independent of
the choice of isomorphism D ⊗K K ∼= M2(K).

§5 Quaternion algebras over number fields.

Let K be a number field and let D be a quaternion algebra over K. If v is a place
of K then one can tensor up to the completion Kv of K at v, and ask whether or not
this extension splits D. Let S(D) denote the set of places of K for which D does not
split. Rather surprisingly, it turns out that knowing S(D) is all you need to know D, as
explained by the following

Theorem.
(a) The set S(D) is a finite set of places of K, with an even number of elements, none of
them complex.
(b) Two quaternion algebras D and E over K are isomorphic if and only if S(D) = S(E).
(c) If S is any finite set of places of K containing no complex places, and S has an even
number of elements, then there is exactly one quaternion algebra D/K such that S(D) = S.

Put another way, there is a bijection between the set of isomorphism classes of quater-
nion algebras over K and the set of finite sets of non-complex places of K with even size.

For example, if D = M2(K) then D splits at every completion of K and hence S(D)
is the empty set. As another example, if K = Q and D = Q⊕Qi⊕Qj⊕Qk, then D is not
split, and it turns out that D splits over Qp if and only if p is odd, and so S(D) = {2,∞}.

To simplify things, let’s now set K = Q. So let D/Q be a quaternion algebra.

Definition. The discriminant d = disc(D) of D is the product of the primes p in
S(D).

Here I am distinguishing between primes of Q (which are all finite), and places of Q
(where I would allow the infinite place).

By the theorem above, we see that disc(D) uniquely determines D, and moreover that
every square-free positive integer d is the discriminant of a unique quaternion algebra over
Q.

Given a square-free positive integer d, there is a unique quaternion algebra D/Q with
discriminant d, and it is easy to work out whether or not D ⊗Q R is split, because one
knows that the total number of places in S(D) is even, and so one can count the number
of primes dividing d, and this number is even iff ∞ 6∈ S(D).
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Definition. A quaternion algebra D/Q is definite if ∞ ∈ S(D), that is, if D ⊗Q R 6∼=
M2(R).

Karsten once pointed out to me that a way to remember this is that definite quaternion
algebras are definitely not M2(Q).

Given a positive squarefree integer d, it is possible to write down explicitly the quater-
nion algebra over Q with discriminant d. One method I know is to find it as a sub-Q-space
of dimension 4 of M2(Q). Another method is as follows: choose non-zero rational num-
bers a and b and consider the ring D = Q ⊕ Qα ⊕ Qβ ⊕ Qαβ with α2 = a, β2 = b, and
αβ = −βα. This is always a quaternion algebra over Q, and in fact all quaternion algebras
over Q arise in this way. For example, if a = b = −1 then one retrieves the quaternion
algebra of discriminant 2, and if p is a prime congruent to 3 mod 4 then setting a = −1 and
b = −p gives the quaternion algebra of of discriminant p. Doing exercises like this taught
me a lot about quaternion algebras. It’s a slightly ambitious exercise, given d positive and
squarefree, to find a and b such that the quaternion algebra above has discriminant D.

§6. Orders.

Our aim in the next three or so sections is to define modular forms over definite
quaternion algebras. As I remarked above, this is actually not too hard, although it will
take a while. First I need to talk about orders. I shall be lazier now and just talk about
quaternion algebras over Q and Qp from now on, because this is all that we shall need.

Let p be a prime.

Definition. An order in a quaternion algebra D/Qp is a subring O ⊂ D such that
(a) O ∼= (Zp)4 as an abelian group, and
(b) O ⊗Zp Qp = D.

An order is said to be maximal if it is not properly contained in any larger order.

It is a theorem that maximal orders exist (and this is not a Zorn argument!). For
example, M2(Zp) is a maximal order in M2(Qp), and so are all its conjugates. In fact, any
maximal order of M2(Qp) is conjugate to M2(Zp). If D is the non-split quaternion algebra
over K then D has a unique maximal order, consisting of the elements of D with integral
norm.

Now let’s consider the case K = Q.

Definition. An order in a quaternion algebra D/Q is a subring O of D such that
(a) O ∼= Z4 as an abelian group, and
(b) O ⊗Z Q = D.

It is a theorem that every quaternion algebra over Q has maximal orders.
As an example, if D = M2(Q) then O = M2(Z) is a maximal order, as are its

conjugates. In fact, if D is any indefinite quaternion algebra over Q then all the maximal
orders of D are conjugate.

As another example, if D = Q ⊕ Qi ⊕ Qj ⊕ Qk with the usual relations on i, j and
k, then O = {a+ bi+ cj + dk | a, b, c, d ∈ Z} is an order in D, and one might expect that
it’s a maximal order, just as one might expect that Z[

√
5] might be the integers in Q(

√
5)
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when one first starts doing algebraic number theory. However O is not maximal: there is
a bigger order, namely {a+ bi+ cj + dk | either a, b, c, d ∈ Z or a, b, c, d ∈ Z + 1

2}, and in
fact this latter order is maximal.

If D/Q is definite, then there might be more than one conjugacy class of maximal
orders, but a compactness argument shows that there are only finitely many.

Definition. If D/Q is a quaternion algebra, and p is a prime, then write Dp for the
quaternion algebra D⊗QQp over Qp. If O ⊂ D is an order, write Op for the order O⊗ZZp

of Dp (it’s not hard to check that Op is in fact an order in Dp).

It’s a neat exercise to prove that if D/Q is a quaternion algebra and O ⊂ D is an
order, then O is maximal iff Op is maximal in Dp for all p.

§7. Enter the adeles.

Let D be a quaternion algebra over Q and fix a maximal order O of D. Later we shall
assume that D is definite but at the minute we don’t need to. Let Af denote the finite
adeles, that is, the restricted product of Qp for all primes p. Even more frightening, let
Df denote D ⊗Q Af . We shall now give a more down-to-earth description of Df . Choose
an order O ⊂ D. Then an element of Df can be thought of as the choice of an element
dp ∈ Dp for every prime p, subject to the restriction that dp ∈ Op for but finitely many p.
Note that this does not depend on the choice of O because any two orders will differ only
at a finite number of primes.

I should say something about topologies, but I fear it will be unhelpful. The adeles
have a topology on them. If I choose a Q-basis for D then Df becomes isomorphic to (Af )4

and we can give it the product topology induced from the adeles. This makes Df into a
topological ring. Now one follows the usual procedure to make (Df )× into a topological
group—one embeds it into (Df )2 via x 7→ (x, x−1) and then takes the subspace topology
of the product topology.

On a more practical level, one can work prime by prime. Choose an order O ⊂ D.
Then Op

∼= Z4
p, and so one can put a p-adic topology on Op to make this an isomorphism

of topological groups. Give (Op)× the subspace topology, and set K =
∏

p(Op)× with the

product topology. Note that K ⊂ Df , and in fact the topology that we just put on K
is the subspace topology. In particular, K is compact, it being the product of compact
spaces. Moreover, it turns out that K is a compact open subgroup of Df . Knowing this
actually tells us exactly what the topology on Df is, because Df is just the disjoint union
of translates of K.

To be even more concrete, we could take D = M2(Q) and O = M2(Z). Then K =

GL2(Ẑ) is a compact open subgroup of Df = GL2(Af ). It’s just a higher-dimensional

version of the statement that (Ẑ)× is compact and open in (Af )×.
In fact, there are a wealth of easily-definable compact open subgroups of Df . For

example, choose any finite set of primes and for each such prime choose an open compact
subgroup Kp of (Dp)×. So for example if Qp splits D and we choose an isomorphism
(Dp)× ∼= GL2(Qp), then Kp could be the matrices in GL2(Zp) which are congruent to the
identity modulo pn for some n. For the primes not in this chosen finite set, set Kp = (Op)×.
Then again the product K =

∏
pKp will be an open compact subgroup of (Df )×.
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In practice, again, one doesn’t really need to understand exactly what the topology is,
one just needs to know some examples. By the way, not all the open compact subgroups of
(Df )× will be expressible in this “product” form, but essentially all of the open compact
subgroups that we are interested in will be.

Finally, let D/Q be a definite quaternion algebra, and let K ⊂ (Df )× be an open
compact subgroup. The important result is that

Theorem. The double coset space D×\(Df )×/K is finite.

This finite set is the analogue of a modular curve in the definite quaternion algebra
set, although I’m actually too lazy to explain why at the minute. It turns out that the
space of modular forms of weight k and “level K” can just be thought of (non-canonically)
as the complex vector space of functions from this finite set to a certain finite-dimensional
complex vector space. Moreover, the space of “mod p modular forms for D of weight k
and level K” can be thought of as the space of functions from this finite set to a certain
finite-dimensional vector space over Fp.

§8. Weight 2 modular forms for definite quaternion algebras.

Fix D/Q definite and O a maximal order. Let d = disc(D). First I’ll explain the
weight 2 case of the Jacquet-Langlands theorem. First I have to give some names to
certain maximal compact subgroups of (Df )×. For all primes p prime to d, we have that
Op
∼= M2(Zp) and so let’s fix such an isomorphism for all such p. Now given some positive

integer N prime to d, let’s define some compact open subgroups of (Df )×. For p prime
to N , set Kp = (Op)×. For p dividing N , say pe exactly divides N and let K0,p be the

elements in (Op)× ∼= GL2(Zp) which are congruent to

(
∗ ∗
0 ∗

)
mod pe. Let K1,p denote

the elements in K0,p which are congruent to

(
∗ ∗
0 1

)
mod pe.

Definition. Let U0(N) =
∏

p 6|N Kp ×
∏

p|N K0,p and let U1(N) =
∏

p 6|N Kp ×∏
p|N K1,p.

Note that U0(N) and U1(N) are compact open subgroups of (Df )×.

Definition. If U = U0(N) or U1(N), then set LD
2 (U ;C) = {f :D×\(Df )×/U → C}.

Note that D×\(Df )×/U is a finite set on both cases, and so LD
2 (U ;C) is a finite-

dimensional vector space. Moreover, this finite set is explicitly computable in many cases
(see examples later), so one really can compute this space. It would be nice if these spaces
were spaces of modular forms for D of weight 2 and level N but this isn’t quite true; there
is an Eisenstein series that we haven’t quite removed (this strangeness only happens for
weight 2). So let’s remove it.

Let U = U0(N) or U1(N). Note that the constant functions are a 1-dimensional

subspace of LD
2 (U ;C); call them LD,triv

2 (C).

Definition. The modular forms of weight 2 and level U for D are

SD
2 (U ;C) = LD

2 (U ;C)/LD,triv
2 (C).
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The case U = U1(N) is analogous to Γ1(N), and the case U = U0(N) is analogous to
Γ0(N).

Now I’ll put a Hecke action on SD
2 (U ;C), but before I tell you what it is I’ll tell you

the point:

Theorem. There is an isomorphism of Hecke modules

SD
2 (U0(N);C) ∼= S0 ⊆ S2(Γ0(Nd);C)

and an isomorphism

SD
2 (U1(N);C) ∼= S1 ⊆ S2(Γ1(N) ∩ Γ0(d);C),

where the right hand sides are classical complex vector spaces of cusp forms, and S0 and
S1 are the subspaces consisting of forms which are new at all primes dividing d.

In more flashy language, S0 and S1 are the sum of the eigenspaces coming from forms
which are “special” at all primes dividing d.

For example, if d is a prime l and N = 1 then there are no oldforms at level d because
oldforms would come from cusp forms of level 1 and weight 2, and there aren’t any.

This theorem is of course just an application of the Jacquet-Langlands theorem. The
idea is that modular forms on a quaternion algebra should be able to spot forms which
are either special or supercuspidal at all primes dividing the discriminant of the quater-
nion algebra. For more on these notions, see some other notes I’ve written, on the local
Langlands correspondence.

Now I still have to explain what the Hecke action on SD
2 (U ;C) is, for U = U0(N) or

U1(N), before we can even understand the theorem. Well, first I’ll explain what it is on

LD
2 (U ;C), and then it will be easy to see that it preserves LD,triv

2 (C) and hence induces an
action on SD

2 (U ;C). I have to produce Hecke operators, and in the U1(N) case, diamond
operators. Because primes dividing d are rather strange in this setting, I shall just work
with primes not dividing d.

So let p be a prime not dividing d. Let ηp denote the element of (Df )× which is the

identity at all primes which are prime to p, and equal to

(
p 0
0 1

)
at p (remember that we

fixed an isomorphism Op
∼= M2(Zp), and this is indeed where we are assuming that p is

prime to d). Write the double coset UηpU =
∐n

j=1 αp,jU (note that this is a finite union)

and, for f ∈ LD
2 (U ;C), define Tpf by Tpf(γ) =

∑n
j=1 f(γαp,j).

Similarly, if p is a prime not dividing d and U = U1(N), let νp be the element of

(Df )× which is the identity at all primes which are prime to p, and which is

(
p 0
0 p

)
at

p. Note that this element is in the centre of (Df )× and hence U1(N)νpU1(N) = νpU1(N).
Define 〈p〉 on LD

2 (U1(N);C) by (〈p〉f)(γ) = f(γνp). Note that this only depends on p
modulo N , as if p and q are two primes which are prime to d and congruent mod N , then
γνp = γ(p/q)νqu = (p/q)γνqu where u ∈ U1(N) and (p/q) ∈ D×.
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I guess that’s it for weight 2.

Kevin Buzzard, May 1998.

In fact, that’s it for these notes, for the time being. Now let’s switch to
an example and some more personal notes directed to William alone.

OK, temporarily, the object of these notes isn’t to explain any more about the JL
theorem, it’s to give you (W) something to think about, so you can decide whether or
not it will be easier to do this computation or the “classical” one (and it will give you
some maths to think about whilst your computer cranks about with its Γ1 with character
computations!). I haven’t debugged this stuff so there might be typos.

Rather than muck about with the “easiest” case of M2(Q), I shall just go straight to
the quat alg I’m interested in. The representation that should exist of level 5203 should
be coming from a modular form which is unramified principal series at all primes other
than 11 and 43, is supercuspidal at 11, and is ramified principal series at 43. In particular,
because it’s supercuspidal at 11, there will be a modular form on the quaternion algebra
of disc 11 which will have the same Hecke eigenvalues for all diamond operators and all Tp
for p 6= 11, by the JL theorem.

So let D be the quaternion algebra Q⊕Qi⊕Qβ⊕Qiβ where i2 = −1, β2 = −11 and
βi = −iβ. This is the quat alg of disc 11. We need a maximal order to establish what a
U0(1)-structure is. Ones first guess at a maximal order is Z⊕Zi⊕Zβ⊕Ziβ, but again we
are slightly wrong. The localisation of this order is maximal at all odd primes, but not at
p = 2. It turns out that we can adjoin γ := (1 + β)/2 (and iγ = (i+ iβ)/2), and consider
O = Z⊕ Zi⊕ Zγ ⊕ Ziγ. Note that γ2 = γ − 3 and γi = i− iγ so O is a ring. Moreover,
O turns out to be a maximal order in D (because Op is maximal in Dp for all p, by an
explicit computation). Another way of seeing O is that it’s the a+ bi+ cβ+diβ in D such
that a, c are either both integers or both in Z + 1

2 and b, d are also either both integers
or both in Z + 1

2 . Put another way, 2a, 2b, 2c, 2d are all integers and 2a, 2c have the same
parity, and 2b, 2d have the same parity.

Now, essentially by definition, if γ = a + bi + cβ + diβ ∈ Dp, we have γ ∈ Op iff
a, b, c, d ∈ Zp for p odd, and γ ∈ O2 iff 2a, 2b, a+ c, b+ d ∈ Z2.

Let’s make explicit the isomorphism between Op and M2(Zp) for all p 6= 11. If p 6= 11
then there is always a solution to x2 + y2 = −11 with x, y ∈ Zp. Choose such a solution

and then define the map Op →M2(Zp) by sending i to

(
0 1
−1 0

)
and β to

(
x y
y −x

)
.

Let’s start with the easiest compact open subgroup there is, namely U = U0(1) =∏
p(Op)×. One now wonders what the size of the finite set D×\(Df )×/U is. Well, we

know that S2(Γ0(11)) ∼= C and hence the dimension of LD
2 (U ;C) is 2 (we add one because

of the trivial 1-dimensional space of constant functions). We deduce that the size of the
set D×\(Df )×/U0(1) must be 2.

So our next task is to find an explicit element c of (Df )× which isn’t in D×U . Then
we will have (Df )× = D×U

∐
D×cU . Here’s one I found earlier, although it’s not clear

to me whether this is the best choice. I looked for a c which only had support at a small
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prime, and I found that if I set cp = 1 for p odd and c2 =

(
2 0
0 1

)
then c can’t be in

D×U0(1) (see proof below). I have to be slightly more precise, by explicitly saying what I
took the isomorphism O2

∼= M2(Z2) to be. Well, I set x be the square root of −15 which
was congruent to 1 mod 8, and I set y = 2.

Well, here’s the proof that c 6∈ D×U0(1), and it’s the kind of argument that we
have to use again and again. If c were in D×U0(1), then write c = δu. First take the
determinant/norm of this, and deduce that the adele which is 2 at 2 and 1 elsewhere must
be ν(δ)ν(u). Well, δ = a+ bi+ cβ+diβ with a, b, c, d ∈ Q and ν(δ) = a2 + b2 + 11c2 + 11d2

so in particular it’s positive. And ν(u) ∈ Ẑ× because U0(1) is integral at every prime.
Hence we have a positive rational must equal a unit times ν(c) and taking the projection
to each prime we deduce that ν(δ) has valuation 1 at 2 and valuation 0 at all odd primes.
In particular, if it’s a positive rational then it must be 2. So a2 + b2 + 11c2 + 11d2 = 2 and
a, b, c, d are rational.

Next we make a more careful analysis at each prime. For all odd primes, we get that
δup = 1 and hence δ = u−1p ∈ (Op)×. In particular we must have a, b, c, d ∈ Zp. But
a, b, c, d are rational, so we deduce that a, b, c, d ∈ Z[1/2].

Finally we deal with the case p = 2, which is the only information we have left. We get

that δ =

(
2 0
0 1

)
(u2)−1 and u2 ∈ GL2(Z2), so δ =

(
2 0
0 1

)(
x y
z t

)
with x, y, z, t ∈ Z2.

In particular δ ∈M2(Zp) and δ ≡
(

0 0
z t

)
mod 2.

Next we recall our explicit isomorphism O2
∼= M2(Z2). I chose it such that i 7→(

0 1
−1 0

)
and β 7→

(
x 2
2 −x

)
where x ≡ 1 mod 8 is a square root of −15. In particular,

δ =

(
a+ xc+ 2d b+ 2c− xd
−b+ 2c− xd a− xc− 2d

)
.

Now we use the fact that this latter matrix, a priori only in M2(Q2), is in fact in M2(Z2)
and even has the top row congruent to 0 mod 2.

Adding top left and bottom right, we deduce that 2a ∈ Z2. Subtracting, we deduce
that 2xc + 4d ∈ Z2. Doing the same with the other 2 entries shows that 2b ∈ Z2 and
4c − 2xd ∈ Z2. Recall that a, b, c, d are rational. Solving the c, d linear equations we
deduce that 2d ∈ Z2 and 2c ∈ Z2. Hence we deduce that all of a, b, c, d are in 1

2Z, because
if you multiply any one of them by 2, it’s integral at every prime.

Remember the one global constraint that we had: we knew that a2+b2+11c2+11d2 =
2, and so

(2a)2 + (2b)2 + 11(2c)2 + 11(2d)2 = 8.

Moreover, 2a, 2b, 2c, 2d are all integers (that is, in Z). But there aren’t that many solutions
to these equations in integers. In fact, the only ones are c = d = 0 and a, b = ±1. So we
have 4 solutions. Now go back to the one fact that we haven’t used yet, namely that the
top row of that matrix in M2(Z2) has got entries which are 0 mod 2, and observe that
none of our solutions satisfy this! So c 6∈ D×U1(1), as was to be proved.
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Now the next natural question to ask is the following: how do the Hecke operators
act on LD

2 (U0(1);C)? One will be able to compute them explicitly but I’m not going to
at the minute. My feeling is that it would be a good exercise for you to do. I don’t know
whether T2 will be harder or easier than the rest. The basic idea will be the following. An
element f ∈ LD

2 := LD
2 (U0(1);C) will be determined by the complex numbers f(1) and

f(c) so there is an obvious basis for the 2-dimensional space LD
2 , it’s just e1, the function

which is 0 on c and 1 on 1, and e2, the function which is 1 on c and 0 on 1. It must
be possible to explicitly work out the matrix of Tp on this basis, for all primes not equal
to 11. The answer will be the following: all the Tp will be simultaneously diagonalisable,
one eigenspace will be Eisenstein and the other will be the value of ap for the elliptic
curve of conductor 11. It’s weird how this “profound” information is coming out of such
combinatorial data. Henri Darmon once remarked to me that it was probably something
to do with theta series, I forgot exactly what he said but I remember that he was right!

Do you feel competent to work out all the matrices for Tp in this case? Basically the
computation will be the same. If p is a prime and U = U0(1) then UηpU will be (at least
for p 6= 11) (p−1∐

j=0

(
p j
0 1

)
p

)∐(
1 0
0 p

)
p

,

where the matrixMp denotes the element ofDf which isM at the prime p and 1 everywhere

else. Then you have to decide whether

(
p j
0 1

)
p

etc is in D×U0(1) or in D×cU0(1). My

guess is that exactly the same computation as I did will tell you whether it’s in D×U0(1)
or not, and if it’s not then it’s in the other one.

There might be a cleverer way to do this based on first finding all the solutions to
A2 +B2 + 11C2 + 11D2 = 4p and then counting something else involving congruences, but
at the minute I have no idea how much of this you have digested so I won’t explain that to
you yet. You see, I did one of these computations before so I know what should happen.

After all this, we could think about how to do the actual computation. There are
2 choices. Either we do weight 2 and level 26015 or weight 5 and level 5203. My guess
is that weight 5 will be easier because the dimension of the space will be about 3/5 the
size, or something, so the computation will be easier. The hard part might be finding the
analogue of c above. The problem is that with a smaller U (the U we’re interested in is
U1(43) intersected with some subtle structure at 11), the size of the set D×\(Df )×/U will
be bigger, although there might be a way of mechanising how to find it.

Kevin
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