
Some introductory notes on the Local Langlands correspondence.

Last modified some time in the 1990s.

A lot of the introductory papers published on Langlands’ stuff are written for people
who know a fair amount of analysis. These notes were written principally for number
theorists (in fact they were written principally for David Jones!), to temporarily fill in the
gap in the literature which will one day be permanently filled by Leila Schneps’ book on
automorphic representations. She’s writing up some notes from a conference which took
place in Cambridge in 1993, and that conference is where I learnt a lot of this stuff. I also
learnt a lot from various lectures and a course given by Richard Taylor in 1992. There are
essentially no proofs in this note, just some recipes.

I essentially sat down and just wrote these notes over the course of 2 evenings, so there
are bound to be some inaccuracies. If you spot any, however trivial, or have any ideas on
how improve these notes, then feel free to email me at buzzard@dpmms.cam.ac.uk.

Let K be a finite extension of Qp for some prime p. I should perhaps add before we
start that there is a wider class of fields for which things like all this work, for example
fields like Fp((t)), and even the real numbers and the complexes, but we’ll stick to finite
extensions of Qp because it makes life easier.

This document makes a very vague and brief attempt to deal with the following
questions:

1) What is an admissible representation of GLn(K)?

2) What are all the admissible irreducible representations of GLn(K) for n ≤ 2?

3) What is the Local Langlands correspondence?

4) What is the Local Langlands correspondence, explicitly, for small values of n?

5) What is the Jacquet-Langlands theorem, vaguely speaking?

§0. Notation.

Throughout, p is a prime, l is a prime not equal to p, K is a finite extension of
Qp, and O denotes the integers in K. Also, q is the size of the residue field, and π is
a uniformiser (although in the literature π is frequently used to denote an admissible
representation, we shall use letters like V to denote these).

§1. What is an admissible representation of GLn(K)?

For simplicity let’s just talk about complex representations. Let K be as in §0. Then
K is a topological ring, so GLn(K) inherits the structure of a topological group. We want
to study (usually infinite-dimensional) complex representations of this group, and there
are problems with topologies here. The topology on GLn(K) is rather p-adic, and any
sane topology that one might one to put on the automorphisms of a complex vector space
will not be. But there is a pretty neat way of expressing a useful concept of continuity, as
I shall now explain. By the way, I never got my head around TEX and pagebreaks, so if
this definition is over 2 pages then rotten luck.
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Definition. A (complex) admissible representation of GLn(K) is a complex vector
space V equipped with an action of GLn(K) (by which I of course mean a group homo-
morphism ρ: GLn(K)→ AutC(V )) such that

a) If U ⊆ GLn(K) is an open subgroup, then V U , the set of vectors v ∈ V which are
fixed by every u ∈ U , is a finite-dimensional vector space, and

b) If v ∈ V then the stabilizer of v in GLn(K) is open.

These notions above give a (perhaps rather strong) notion of continuity.

Definition. We say that an admissible representation GLn(K) → Aut(V ) is irre-
ducible if V is non-zero but the only stable subspaces are 0 and V .

Note that if V is admissible and W ⊆ V is GLn(K)-stable, then W is automatically
admissible.

One of the aims of the game is to try and classify all irreducible admissible repre-
sentations. For small n one can try this “by hand”, and I’ll explain vaguely what the
classification is for n = 1 now and n = 2 later on in these notes.

§2 What are all the admissible irreducible representations of GLn(K) for n = 1?

If n = 1 and V is a non-zero admissible representation of GL1(K) = K× then choose
0 6= v ∈ V . The stabilizer of v is then open in K×; call it U . Because K× is commutative
we have that V U is stable under the group action, and it contains v so it is non-zero.
Hence if V is irreducible then V = V U , and hence V is finite-dimensional. Now it’s
rather elementary to see that V must in fact be 1-dimensional (use the fact that over
the complexes, every matrix has an eigenvector) and the representation is in fact a map
χ : K× → C× with open kernel, that is, with kernel containing 1 + πnO for some n > 0.

We shall refer to 1-dimensional irreducible admissible representations of GLn(K) as
admissible characters, or even just characters.

§3 Weil-Deligne representations.

If K is a finite extension of Qp then let’s recall the definition of the Weil group WK

associated with K. First recall that K has a maximal unramified extension Knr, and the
Galois groups of unramified extensions are controlled by the Galois groups of the residue
fields, so Gal(Knr/K) = Ẑ canonically. Moreover, there is a canonical reduction (or

valuation) map v : Gal(K/K)→ Gal(Knr/K) = Ẑ.

Definition. The Weil group WK of K is the subgroup of Gal(K/K) consisting of
elements σ such that v(σ) ∈ Z.

We topologise WK , but not by giving it the subspace topology. We give WK the
topology such that the subgroup IK = Gal(K/Knr) = ker(v) of WK is open and has its
usual profinite topology. This is enough to define the topology on WK uniquely.

Definition. A (complex) Weil-Deligne representation of K is a pair (ρ,N) where

a) ρ : WK → GLn(C) is continuous with respect to the discrete topology on GLn(C)

b) N is a nilpotent complex n by n matrix, and
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c) ρ(σ)Nρ(σ)−1 = |σ|−1N , where |σ| := q−v(σ) (recall that q is the order of the residue
field of K and v is the valuation map).

I should remark that there is in fact a Weil-Deligne group (scheme) and Weil-Deligne
representations as defined above actually correspond bijectively to representations of the
Weil-Deligne group.

Let’s try to work out some examples of Weil-Deligne representations. If n = 1, we see
that N is nilpotent and 1 by 1, so N has to be zero and a Weil-Deligne representation is
just a continuous homomorphism WK → C×. Note also that IK is profinite and GLn(C)
contains no small subgroups, so the image of IK is finite and hence ρ “isn’t too bad”, in
the sense that the hard bit of WK has got finite image, and the easy bit of WK is just Z
which is very easy.

Because the image of IK is finite, it can be given a filtration using the standard “lower
numbering”, and the usual definition of the conductor of ρ makes sense. We shall think
of conductors as being positive integers, as opposed to powers of π. The conductor of a
Weil-Deligne representation should perhaps involve N though, so we make the following

Definition. If (ρ,N) is a Weil-Deligne representation, with ρ and N thought of as
acting on the vector space V = Cn, then the conductor of (ρ,N) is the sum of the conductor
of ρ and dim(V IK/(ker(N))IK ).

One can semisimplify Weil-Deligne representations: given a Weil-Deligne represen-
tation of WK there is a unique unipotent u ∈ GLn(C) such that if ρu is defined by
ρu(σ) = ρ(σ)uv(σ) then (ρu, N) is a Weil-Deligne representation and ρu is semi-simple
(that is, the direct sum of irreducibles). Of course, if ρ is already semi-simple then one can
take u to be the identity. I think Tate’s Corvalis paper (Proc Sympos Pure Math XXXIII)
might say something about this.

If (ρ,N) is a Weil-Deligne representation and ρ is semi-simple, then (ρ,N) is said to
be F -semi-simple.

Now let l be a prime not equal to p. The field Ql is algebraically closed of characteristic
0 and of cardinality that of the complexes, and so it’s a theorem that it is isomorphic, as a
field, to the complexes. Choose such an isomorphism. Then we have the pretty neat (but
not too hard) theorem of Grothendieck:

Theorem (Grothendieck): There is a canonical bijection between

1) Isomorphism classes of continuous (with respect to the usual topologies) n-dimensional
representations Gal(K/K)→ GLn(Ql), and
2) Isomorphism classes of complex Weil-Deligne representations of WK such that the eigen-
values of some chosen lifting of Frobenius are l-adic units.

Furthermore, under this correspondence, the F -semi-simple Weil-Deligne representa-
tions match up with the Galois representations ρ with the property that ρ(φ) is diagonal-
isable, where φ is any element of Gal(K/K) such that v(φ) = 1.

The proof of this theorem is a long exercise, and I won’t do it. As I recall it’s also done
in Tate’s Corvalis article. The main point is that we’re considering local representations
and the only hard part of Galois is the p-part of IK , and this part of the Galois group
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can’t behave too badly because we’re interested in complex or l-adic representations of this
group and l 6= p.

I shall explain explicitly a recipe explaining this theorem for n = 2 later on. Note
that the case n = 1 is not too hard.

§4 Local Langlands.

We have seen that an irreducible admissible representation of K× is nothing more
than a map K× → C× which is continuous with respect to the discrete topology on C×.
But this is precisely what a complex 1-dimensional Weil-Deligne representation of WK is,
because the topological abelianisation of WK is just (by class field theory) isomorphic to
K×. So (if we believe local class field theory) we believe the case n = 1 of the following
conjecture:

Conjecture (Local Langlands): If n > 0 is an integer, then there is a canonical
bijection between irreducible admissible complex representations of GLn(K) and F -semi-
simple n-dimensional complex Weil-Deligne representations.

I could be more specific about how canonical this bijection is, but I won’t. It certainly
preserves, for example, conductors, although I didn’t say what the conductor of an admis-
sible representation was. It also preserves ε-factors (so I’m told). There are more things
that it does as well. I’ll be more specific for n = 2 later.

The Local Langlands conjecture is a theorem for n = 1 and also for n = 2. It’s also a
theorem in many more cases, but I don’t know exactly what is known. It might actually
even be a theorem for all n by now. My understanding is that the hard cases are those
when p ≤ n, and indeed we shall see later that p = n = 2 is the first hard case.

Let’s now restrict to n = 2 and try and really understand both sides of this Local
Langlands conjecture.

§5 Admissible irreducible representations of GL2(K).

As ever, K is a finite extension of Qp. Here is a list of irreducible admissible repre-
sentations of GL2(K).

Firstly, there are the 1-dimensional ones. Let χ be any admissible complex character
of K×. Then composing with the determinant map GL2(K)→ K× we get an irreducible
admissible representation, which is of course 1-dimensional. It turns out that these are the
only finite-dimensional irreducible admissible representations of GL2(K).

It is possible to write down explicitly some infinite-dimensional representations of
GL2(K), but I have chosen not to do so. What I shall do is just to say that they exist and
to give them names. They are not that mysterious, and one can see definitions in many of
the books or in Richard Taylor’s amazing notes on this stuff from Caltech, 1992. So here
are some names for the infinite-dimensional ones.

Let χ1 and χ2 be two admissible complex characters of K×, such that χ1/χ2 does
not equal either the usual norm on K (sending a uniformiser to 1/q), or its inverse. Then
there is an irreducible admissible representation PS(χ1, χ2) associated to the (unordered)
pair {χ1, χ2}, which turns out to be infinite-dimensional but not too hard to describe. A
concrete description of some of these representations is given in Richard Taylor’s amazing
notes on this stuff from Caltech, 1992. They’re just explicit infinite-dimensional spaces of

4



functions with an explicit action of GL2(K) and I don’t think we’d gain much if I said
what they were.

The above two classes of representations are called principal series representations.
One can think of the admissible 1-dimensional representation as being associated to the
“missing case” above, that is, the admissible 1-dimensional representation χ ◦ det is the
principal series representation (if I got the normalisation right) PS(χ|.|1/2, χ|.|−1/2).

Next, I’ll tell you almost nothing about the special representations. If χ is an admissi-
ble character of K× then there is an irreducible admissible representation S(χ) associated
with χ, called the special representation associated to χ. Distinct characters give distinct
representations. One can also write down an explicit countably infinite-dimensional vector
space with an explicit action of GL2(K), which corresponds to this reprsentation, and
again I’m not going to do this.

Finally, there are the supercuspidal ones. These are rather tricky to describe in general,
but there is a trick which works in many cases. Let L/K be an arbitrary quadratic field
extension, and let χ be an admissible character of L× such that χ does not equal χτ ,
where τ is the non-trivial element of Gal(L/K). Then one can obtain a supercuspidal
representation (called a “base change”) of GL2(K) from χ. Let’s call this representation
BC(L/K,χ). It turns out that if p 6= 2 then every supercuspidal representation arises
in this way. Moreover BC(L/K,χ) and BC(L′/K, χ′) are isomorphic if and only if the
induced representations IndWK

WL
(χ) and IndWK

WL′ (χ
′) are isomorphic (note that I am switching

between thinking of χ as being a representation of K× and of WK , so in other words I’m
using class field theory implicitly here).

So far I’ve just told you that there are certain representations which have names, and
the whole point of giving these representations names is that I can talk about them, and
even state now that if p 6= 2 then we have now given a name to every irreducible admissible
representation of GL2(K).

If p = 2 then there are more, which shouldn’t be surprising when you consider that
there are also “more Weil-Deligne representations” in the case of p = 2, as if p = 2 then
the image of IK can be more complicated than if p 6= 2. The extra irreducible admissible
representations for p = 2 are called “extraordinary”, and there are infinitely many of them,
but they’re not too hard to understand via the Langlands correspondence.

By the way, I think French for “supercuspidal” is just “cuspidale” because their cusp
forms are “formes paraboliques”, so for them there is no confusion. Don’t think that
supercuspidal representations are somehow to do with cusp forms (although they are, in a
weak sense—see later).

§6. Conductors.

We shall give an ad hoc definition of conductor, for admissible representations of
GLn(K) with n at most 2. For n = 1 define a decreasing sequence of subgroups V (t) of
K× for t a non-negative integer, by V (0) = O× and V (t) = 1 + (π)t for t > 0.

Definition. Let χ be an admissible character of K×. Then the conductor of χ is the
smallest integer t such that χ is trivial on V (t).
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For n = 2 things are harder and we shall just deal with everything case by case.

1) If V is a finite-dimensional irreducible admissible representation of GL2(K) then V is a
1-dimensional principal series and the representation factors through det and a character
χ of K×. Define the conductor of V to be twice the conductor of χ.

If V is infinite-dimensional then it’s either principal series, special, or supercuspidal.

2) If V is infinite-dimensional principal series, then V = PS(χ1, χ2) and the conductor of
V is the sum of the conductors of χ1 and χ2.

3) If V is special, isomorphic to S(χ), then the conductor of V is defined to be either 1 (if
χ is unramified) or twice the conductor of χ (if χ is ramified).

4) If V is supercuspidal then things are harder. If V = BC(χ) where χ is an admissible
character of a quadratic extension L/K of K, then the conductor of V is twice the conduc-
tor of χ if L/K is unramified, and the conductor of χ plus the conductor of (the quadratic
character of the absolute Galois group of K corresponding to) L/K if L/K is ramified.

If p = 2 then there are still some representations to go, and it’s hard to define conduc-
tors for them because we still haven’t even given them names. But here is another definition
of conductor which works for any irreducible admissible infinite-dimensional representation
of GL2(K), even if p = 2.

For t a non-negative integer, set U1(t) = {g ∈ GL2(O) | g ≡
(
∗ ∗
0 1

)
mod πt}. Let

V be an admissible irreducible infinite-dimensional representation of GL2(K).

Theorem. There is a unique minimal non-negative integer t such that V U1(t) is
non-zero.

Definition. The conductor of V is defined to be t as above.

One can check that the conductor of a supercuspidal representation of GL2(K) is
always at least 2.

§7 A recipe for Local Langlands if n = 2.

We have already seen some explicit theorems which say that certain admissible rep-
resentations should biject with certain other things, but I didn’t really explain how they
bijected. This section will make the Local Langlands theorem explicit for n = 2.

For n = 2, the theorem says that there is a bijection between isomorphism classes
of irreducible admissible complex representations of GL2(K) and isomorphism classes of
2-dimensional complex F -semi-simple Weil-Deligne representations of WK . Recall that we
have already shown that for n = 1 this is a rather easy consequence of local class field
theory, and we shall continue to identify admissible characters of K× with characters of
the Weil-Deligne group. Here’s the recipe for n = 2.

Let |.|1/2 denote the character which is the root of the norm character |.|, that is,
|σ|1/2 = q−v(σ)/2.

1) Let χ be an admissible character of K×, and let V denote the associated 1-dimensional
admissible representation of GL2(K) obtained by composing with the determinant map.
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Then V is 1-dimensional principal series. The associated Weil-Deligne representation is
χ|.|1/2 ⊕ χ|.|−1/2, with N = 0.

2) Let χ1 and χ2 be two admissible characters of K× whose ratio is not the norm or its
inverse. Then the Weil-Deligne representation associated to PS(χ1, χ2) is just χ1⊕χ2, with
N = 0. Now one can see that even though the two classes of principal series representations
were pretty different, the associated Weil-Deligne representations are very similar-looking.

3) Let χ be an admissible character of K×. Then the Weil-Deligne representation associ-

ated to S(χ) is χ⊕ χ|.| with N =

(
0 1
0 0

)
. This is the only case where N is non-zero.

4) Let χ be an admissible character of L×, where L is a quadratic extension of K. Then the
Weil-Deligne representation associated to BC(L/K,χ) is the 2-dimensional representation
IndWK

WL
(χ) induced from the 1-dimensional representation of WL which corresponds to χ,

and N = 0.

5) Finally, if we have an extraordinary supercuspidal admissible representation, then this
corresponds to a Weil-Deligne representation with N = 0 and image isomorphic to some-
thing more complicated than everything before, for example, to Weil-Deligne representa-
tions such that the image of inertia in PGL2(C) is isomorphic to A4 or S4. Note that if
p > 2 then no such representations exist.

So that was an “explicit” Local Langlands correspondence. Note that principal se-
ries representations correspond to semi-simple but reducible Weil-Deligne representations
with N = 0, special representations correspond to semi-simple reducible Weil-Deligne rep-
resentations with N 6= 0, and supercuspidal ones correspond to irreducible Weil-Deligne
representations.

§8 A recipe for Grothendieck’s theorem if n = 2.

As ever, l is a prime distinct from p. Recall that, after fixing an isomorphism Ql ∼= C,
then for certain Weil-Deligne representations one will get, by the theorem of Grothendieck
in §3, an associated l-adic local Galois representation. If N = 0 then it turns out that to
get from the Weil-Deligne representation to the Galois representation, one just “extends
by continuity” from WK to Gal(K/K). In particular, if N = 0 then the image of inertia
in the Galois representation is always finite. Tate’s paper is pretty essential reading if you
want to know the nuts and bolts of this result, and how to proceed if N 6= 0.

In the case N 6= 0, that is, the case of special admissible representations, it turns out
that the image of inertia in the associated Galois representation is never finite. In this
case, there is a basis for which the Galois representation has image in the upper-triangular
matrices, and the top right hand corner really is non-trivial. It’s this top right hand corner
which causes the image of inertia to be infinite. This is all obvious if you read Tate’s paper!

Note that the image of inertia is infinite in the Galois representation iff N 6= 0 iff the
Weil-Deligne representation is associated to a special representation. Note moreover that
the Galois representation is a direct sum of two 1-dimensional representations iff the Weil-
Deligne representation is associated to a principal series representation. Note finally that
the Galois representation is irreducible iff the Weil-Deligne representation is associated to
a supercuspidal representation.
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§9. The automorphic representations associated to newforms.

It turns out that given an eigenform f of weight k on Sk(Γ1(N)), then there is a
canonical way of associating to f an admissible irreducible representation Vf,p of GL2(Qp)
for all primes p. These admissible representations have the property that if f is a newform
of level N and pt exactly divides N , then the conductor of Vf,p is t. The way to construct
Vf,p from f is surprisingly easy but I am a bit too lazy to explain it here, and anyway I
have explained so little else. It’s all done in Taylor’s Caltech notes.

Given the admissible representation Vf,p, one gets, via Local Langlands, an F -semi-
simple complex Weil-Deligne representation of WQp . Now choose l 6= p a prime and choose

an isomorphism Ql ∼= C. Take a lifting φ of Frobenius to WQp and look at its eigenvalues,

considered as elements of Ql. I believe that it turns out that they are l-adic units (I guess
they are global integers whose product is a unit) and hence one can apply Grothendieck’s
theorem. Hence if l 6= p is a prime, one gets an l-adic representation of Gal(Qp/Qp) from
Vf,p and hence from f . Unsurprisingly, this representation is precisely the restriction to
the local Galois group of the global representation constructed by Deligne. Hence we have
a second way of constructing a local representation from a modular form. Furthermore,
this second way is much easier than the first, although local representations are very easy
to construct, whereas global ones are not.

The fact that the 2 methods of getting local representations from modular forms give
the same answer was only proved in about 1989, by Carayol, as far as I can see, although
for unramified primes it was done by Deligne much earlier: the unramified primes are
essentially taken care of by the fact that we know the trace and determinant of the Galois
representation.

§10 A recipe for getting from f to Vf,p.

Let f be a newform of level N . It’s sometimes possible to work out things about
Vf,p just by looking at f “at p”, and here I’ll explain what I know about this. Putting
these results together with an earlier recipe one gets a recipe for getting from f to the
local l-adic Galois representations associated to f . Of course, one already knows this latter
recipe when f has level N and p is prime to N , but this recipe works in the harder cases
as well.

If p does not divide the level of f then Vf,p is principal series, and is in fact one
of the infinite-dimensional ones. I have to tell you what the two characters are. Well,
they are both unramified. To give an unramified character is to give the value it takes
on a uniformiser of K, and the two values in question in this case are the two roots of
X2 − apX + χ(p)pk−1 where k is the weight and χ the character of f . Note that the ratio
of these characters can’t be the norm, because of things we know about ap, I guess. Note
that of course, this gives us the right associated l-adic Galois representation, that is, the
trace and determinant of Frobenius are correct.

If p divides the level of f exactly once, then there are two cases. If the character
of f has conductor prime to p, then Vf,p is special associated to an unramified character
which might or might not send Frobenius to ap, depending on whether or not I got all the
normalisations right, but I guess it should. If however the character of f has conductor
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a multiple of p, then Vf,p must be a principal series representation associated to two
characters, an unramified one called χ1 such that χ1(π) = ap, and a tamely ramified one.

If p divides the level of f at least twice, then anything could be going on. If ap is
non-zero then I think Vf,p has to be principal series associated to two characters, at least
one of which is unramified. If f can be “untwisted”, that is, f is a twist of a newform of
conductor prime to p, then one can twist the corresponding admissible representation and
this sometimes tells you something, but basically it’s harder to say what’s going on in this
case.

One very useful corollary of this theorem is that now one can sit down and work out
what the local Galois representation associated to a modular form is, even in some of the
cases where p divides the level of the form.

Of course, if one happens to know things about the Galois representation, then this
can also help to determine facts about the admissible representations attached to the form.
One silly example of this is the case of weight 1 forms. One knows that the image of Galois
is finite in the representations associated to a weight 1 form f . One can deduce that
Vf,p cannot be special for any p, because then already the local representation would have
infinite image of inertia at p in these cases. In particular, if f is a weight 1 newform
and p exactly divides the conductor of f then p also exactly divides the conductor of the
character of f . Another example is elliptic curves, but I’ll explain them more carefully in
the next recipe.

§11. A recipe for elliptic curves.

Here’s another recipe. If E is a modular elliptic curve coming from a modular form f ,
then one can ask how the possible local behaviours of E at a prime p match up with the
admissible representation Vf,p associated to f . Here’s how it works. Choose a prime p.

1) Vf,p is unramified principal series iff E has good reduction at p. This is because these
two cases are the only cases where the conductor is 0, so they must match up.

2) Vf,p is special iff E has potentially multiplicative reduction at p. This is because these
are the only cases where the image of inertia in the associated Galois representation is
infinite, so they must match up.

3) Vf,p is special associated to an unramified character iff E has multiplicative reduction.
This is because these are the only two subcases of case 2) where the conductor is 1.

4) Vf,p is ramified principal series or supercuspidal iff E has bad, but potentially good,
reduction. This is because these are the only cases left.

I’m not sure I understand why the two statements below are true, but someone once
told me that they were:

5) V is ramified principal series iff E attains good reduction over an abelian extension
of Qp.
6) V is supercuspidal iff E attains good reduction over a non-abelian extension of Qp.

Presumably 5) and 6) come out in the wash, if they’re true, if you think about the
associated Galois representations.
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§12. Quaternion algebras.

Now the reader will soon have to take a lot on board (or read the notes on quaternion
algebras that I will write up soon). The goal in these final few sections is to give some hint
of what the Jacquet-Langlands theorem says.

Let K be a finite extension of Qp as usual. Let’s consider the following rather weird
thing: there is a quaternion algebra over K which is not isomorphic to M2(K). It’s not too
hard to describe actually, but I won’t. Let’s just think of it as a weird non-commutative
ring, with K in its centre, and such that it’s 4-dimensional over K. Let G be the non-
zero elements of this quaternion algebra. Then G is a topological group and it makes
sense to talk about admissible irreducible complex representations of G. In stark contrast
to the GL2(K) case, all irreducible admissible representations of G are finite-dimensional
(because G/K× is compact, he said cryptically). One can get some of the way to describing
explicitly these admissible representations. Here’s at least an example. There is a norm
map ν : G → K×. Let χ be an admissible character of K×. Then χ ◦ ν is an irreducible
admissible representation of G.

§13. The local Jacquet-Langlands theorem.

This theorem is pretty amazing (but not as amazing as the global theorem, which is
mind-blowing!). Let G be as in the previous section. Then

Theorem (Jacquet-Langlands): There is a canonical bijection between

1) The irreducible admissible representations of G, and

2) The irreducible admissible representations of GL2(K) which are not principal series.

Again one can go via a recipe, but I didn’t even tell you what all the irreducible admis-
sible representations of G were so you will have to be content with a fragment of it: here it
is. The admissible representation χ◦ν of G in the previous section corresponds to the spe-
cial representation of GL2(K) corresponding to χ|.|−1/2 (again if I got the normalisations
right).

Another way of saying “non-principal-series” is “special or supercuspidal” of course,
and yet another way is “essentiallement de carré intégrable” which I think means “essen-
tially square-integrable”. But if you want to know what we’re integrating then you have
to start getting your hands dirty with what these representations actually are, which is
way beyond what I’m prepared to do in this note.

§14. The Global Jacquet-Langlands theorem.

Now let D be a quaternion algebra over Q. Then one can tensor up D to Qp for
any prime p and get a quaternion algebra Dp over Qp. This quaternion algebra is usually
M2(Qp) but for finitely many primes it isn’t, and these primes are called the ramified
primes. There is a notion of modular forms on quaternion algebras, and indeed one can
even talk about eigenforms. For example, if D = M2(Q) then a modular form on D is just
a classical modular form.

Given an eigenform f on D, and a prime p, one can associate an admissible irreducible
representation Vf,p of (Dp)

× to f . This is of course just a generalisation of the case where

10



D = M2(Q). Recall that whatever D is, then most of the time (Dp)
× will be GL2(Qp)

anyway, and we know what we’re doing, but some of the time it’s the units in a weird
quaternion algebra and then we get an admissible representation of this weird thing.

So the most näıve thing that one can do is the following. Take an eigenform f of
weight k for D. For simplicity I’ll assume that k ≥ 2 and moreover that if k = 2 then f
is not “Eisenstein”, a notion that I won’t bore you with. Anyway, now go through all the
primes p. For each prime p there is an admissible representation Vf,p of (Dp)

× associated
to f . If p isn’t ramified in D then (Dp)

× is just GL2(Qp) and let’s call this representation
Xp. If p is ramified then we’ve got ourselves an admissible representation of the units
in a weird quaternion algebra, but via local JL we can again get ourselves an admissible
representation of GL2(Qp), which isn’t principal series. Call this latter representation Xp.
So we have Xp, an admissible irreducible automorphic representation of GL2(Qp) for every
prime p.

Amazing thing number 1: there is a classical modular eigenform g of weight k such
that for all primes p we have Vg,p = Xp, where of course Vg,p is the admissible irreducible
representation of GL2(Qp) associated to g.

Amazing thing number 2: If g is a classical modular eigenform of weight k such that
for all primes p ramifying in D, the admissible representation of GL2(Qp) attached to g
is not principal series, then there is always an eigenform f on D such that f and g are
associated via Amazing thing number 1.

The upshot of all this is that certain modular forms can be “found” on quaternion
algebras, as long as they’re not principal series everywhere. Of course, there are examples
of modular forms which are principal series everywhere, for example any eigenform of level
1. But there are also plenty of examples of modular forms which aren’t principal series
somewhere. For example, consider the eigenforms in S2(Γ0(p)). These eigenforms are new
at p and must be special, and so one can also find them as eigenforms of weight 2 on
the quaternion algebra of discriminant p. Rather surprisingly (see more notes I’m in the
process of typing up) the definition of an eigenform on a quaternion algebra of discriminant
p isn’t so difficult, and results of this form are sometimes useful.

Kevin Buzzard, May 1998; some typos corrected Feb 2007 (thanks to Atsushi Yam-
agami).

11


