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1 Deligne.

Let K be a local non-archimedean field with integers O, uniformiser π and residue field k of size q.
Let C be the completion of an algebraic closure of K. Let Ω denote the set C\K = P1(C)\P1(K).
One can think of Ω as naturally corresponding to injective K-linear maps K2 → C, up to C∗

homothety, the identification being that τ ∈ Ω corresponds to the map K2 → C sending (a, b) to
aτ + b. We will give Ω the structure of a rigid space over K, and a bit later on we will realise it
as the generic fibre of a formal scheme over O.

Recall the building I attached to PGL2(K) is the graph with vertices the homothety classes
of lattices in K2, with an edge between [M1] and [M2] iff there are representatives M1 and M2

such that πM1 ⊂ M2 ⊂ M1, the inclusions both being strict. The graph I is a tree with all
vertices having valency q + 1. Let IR denote its real realisation; then IR naturally parametrises
(real-valued) norms on K2 up to scaling; the vertex [M ] corresponds to the obvious norm with
unit ball M and these norms interpolate nicely to also give norms for every point on the edges of
IR.

Composing an injection K2 → C with the usual norm on C we get a map λ : Ω → IR whose
image is IQ, the rational points (in the obvious sense) on IR. One checks that if s is a vertex of I
then λ−1(s) is the C-points of the closed disc minus q open discs, and the pre-image of a (closed)
edge [s, s′] is two such things glued together by an annulus (the annulus being the pre-image of
the open edge). All of these things have natural structures as rigid spaces and one can glue them
to give Ω the structure of a rigid space.

In fact one can do better. If s = [M ] then let Ps denote the projective space over O cor-
responding to M ; it is non-canonically isomorphic to P1 over O but canonically isomorphic to
P1 over K. Let Ωs denote Ps with the k-rational points of the special fibre removed and let Ω̂s
denote its completion; this is an affine formal scheme whose generic fibre is naturally isomorphic
to λ−1(s). One can do a similar thing with λ−1([s, s′]) for [s, s′] a closed edge; we glue the results
together and get a formal scheme Ω̂ over O with generic fibre Ω.

Choose M and let s = [M ]. Let Fs denote the functor from O-algebras which are complete and
separated with respect to the π-adic topology, to sets, sending R to the set of isomorphism classes
of pairs (L, α) such that L is a free R-module of rank 1 and α : M → L is a homomorphism of O-
modules such that for all prime ideals x of R containing π the corresponding map M/πM → L/xL
is injective.

Theorem 1. Fs is representable by the formal scheme Ω̂s.

There is a similar functor F[s,s′] represented by Ω̂[s,s′].

2 Drinfel’d I (algebra).

We now write down a functor F on the category of O-algebras B such that π is nilpotent on B,
which is represented by Ω̂. If B is such an algebra, set B[Π] = B[X]/(X2 − π), where Π is the
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image of X, and give it the Z/2Z-grading such that B has degree 0 and ΠB has degree 1. Let
S = Spec(B). The functor F sends B to the set of isomorphism classes of quadruplets (η, T, u, r)
where η is a constructible sheaf of flat O[Π]-modules on S (under the Zariski topology) with a
Z/2Z-grading, T is a Z/2Z-graded sheaf of OS [Π]-modules such that the graded pieces are both
invertible sheaves on S, u is anO[Π]-linear map η → T of degree 0 such that u⊗OOS : η⊗OOS → T
is a surjection, r is an isomorphism K2 → η0 ⊗O K, where here K2 represents the constant sheaf
on S, and such that (i) if Si is the zero locus of the sheaf kernel of Π : Ti → Ti+1 then ηi|Si is
constant with fibre O2, (ii) for every geometric point x of S, if T (x) is the fibre of T at s then the
map ηx/Πηx → T (x)/ΠT (x) induced by u is injective, and finally Λ2ηi|Si = π−i(Λ2(ΠirO2))|Si
for both i.

Theorem 2. F is representable by Ω̂.

The proof is to write down maps of functors Fs → F and F[s,s′] → F for all vertices s and
edges [s, s′], to check they induce a map Ω̂ → F , and then to check it’s an isomorphism. For
example, if s = [M ] and Λ2(M) = π−1O then the map Fs → F sends the pair (L, α) to the data
built by η0 = η1 = M , T0 = T1 = L, Π : η0 → η1 is the identity and Π : η1 → η0 is multiplication
by π, similarly for Ti, u = α and r is the isomorphism K2 → M ⊗K induced by the embedding
M → K2.

Note that GL2(K) acts on Ω and IR, and also on Ω̂, and also on F (although the action here
is a bit messy), and everything commutes.

3 Drinfel’d II (p-divisible groups)

Why did Drinfel’d prove such a crappy technical theorem? Because it’s the stepping-stone to
a much more interesting one. Let K now have characteristic zero. The idea is that over Onr
the formal scheme Ω̂, considered as a functor on Onr-algebras on which π is nilpotent, will be
isomorphic to a functor related to p-divisible groups plus a quasi-isogeny. To prove such a thing
all one has to do is to get from the p-divisible group to the linear algebra data of the previous
section and this is done via the theory of Cartier modules.

Recall that a formal O-module on an O-algebra B is just a smooth formal group X/B with an
O-action such that the induced O-action on the tangent space is the one coming from the B-action.
Recall also that the category of formal O-modules over B is equivalent to a linear algebra category,
the category of Cartier O-modules over B, that is modules over a monstrous non-commutative
ring (a completion of something that looks like W (B)[F, V ] where W is Witt vectors) satisfying
some axioms.

Now let OD be the integers in a quaternion algebra over K, fix an embedding of O′ into OD,
where O′ is the integers in the unramified quadratic extension of K, and choose Π ∈ OD with
Π2 = π and such that conjugation with Π induces the non-trivial automorphism of O′.

Define a formal OD-module over an O-algebra B to be a formal O-module X equipped with an
action of OD and say that X is special if the induced action of O′ on the tangent space of X makes
it a free B ⊗O O′-module of rank 1. The dimension of such a thing is 2 and they are equivalent
to a certain linear algebra category (Cartier O-modules plus some extra structure). Over k, any
special formal OD-module has height a multiple of 4, and there is one isogeny class of height 4
ones. Fix a certain element Φ in this isogeny class over k.

The construction alluded to earlier in this section is the following. If B is an O-algebra on
which π is nilpotent, X is a special formal OD-module of height 4 over B, and ρ is a quasi-isogeny
of height 0 from the base change of Φ to B/πB, to XB/πB , then Drinfel’d constructs a quadruple
(ηX , TX , uX , r(X,ρ)), where TX is just the tangent space of X, ηX and uX come from the Cartier O-
module, and r is induced by the quasi-isogeny. One works hard (the statement is Theoreme II.8.2
of Boutot-Carayol but the proof is all of sections 9–12 of chapter II) to deduce that everything is
a bijection and

Theorem 3. On the category of Onr-algebras on which π is nilpotent, the functor sending B to
the isomorphism classes of special formal OD-modules of height 4 over B equipped with a quasi-

2



isogeny of height zero to our fixed such thing over k, is representable by the formal Ônr-scheme
Ω̂⊗̂OÔnr.

Note that as a consequence, there is a universal formal group over the base change of Ω̂ to Onr,
one can look at the points of exact order πn on the generic fibre to get an interesting sequence of
covers Σn of Ω̂ ⊗O K̂nr, where K̂nr denotes the field of fractions of the completion of the strict
henselisation of O, and in particular the Σn are rigid spaces over K̂nr (and have models over Knr,
the field of fractions of Onr). One problem though is that the Σn are (or at least were in 1991)
not known to be the generic fibre of some “natural” formal schemes, because one has technical
problems with Drinfel’d bases in this situation. On the other hand a lot is known about the
rigid spaces Σn, for example Carayol computed their cohomology to get a geometric realisation of
both Langlands’ and Jacquet-Langlands’ correspondences between representations of GL2(K), D∗

and the Weil group WK . Note however that Thoeorem 3 wasn’t enough for Carayol—he needed
Theorem 4, the Čerednik-Drinfel’d theorem, which is global (it’s about Shimura curves over p-adic
fields).

Important note: why is this local theorem true? Think about everything in terms of Dieudonne
modules up to isogeny, and think about the case O = Zp. We are looking at deformations of Φ
and its Dieudonne module is the square of that of a supersingular elliptic curve over k. If M1 is
the DM of a supersingular elliptic curve up to isogeny (so in particular it’s a Qp-vector space) then
End(M1) is isomorphic the quaternion algebra D. Fix such an isomorphism i1. Choose Π ∈ D
with Π2 = p. Then we get another such isomorphism i2 after conjugation by Π; let M2 denote
M1 with this twisted action. Then M := M1 ⊕M2 is the DM of Φ; we twist to ensure the action
is special.

Now to lift this DM is to choose a weakly admissible plane in M which is stable under the
action of the quaternion algebra and such that the action on the plane is special. Choose a finite
extension K of W (k); tensor up to K and then choose your plane. The plane has an action of
K and D so it has an action of K ⊗D which is M2(K). Let L denote the unramified quadratic
extension of Qp. Embed L into D so that conjugation by Π ∈ D induces the non-trivial Galois
automorphism of L. Now define M0 to be the plane in M⊗K where the two actions of L coincide,
and let M1 = ΠM0.

To give the plane we’re interested in is to give a line in M0 which is an element of P1(K).
To ensure the line is weakly admissible one checks that we want to make sure that the line isn’t
defined over the ground field (as then the resulting line would be the tensoring up to K of a
submodule of M defined over W (k) which one can check contradicts weak admissibility). So we
remove P1(Qp) or P1(W (k)) depending on whether we’re working over Qp or the field of fractions
of W (k).

4 Čerednik-Drinfel’d (global application)

I’ll be brief. If ∆ is an indefinite quaternion algebra over Q and p is a ramified prime and we
look at a Shimura curve associated to ∆ with no level structure at p, it’s the solution to a moduli
problem involving abelian surfaces with an action of O∆. This moduli problem can be extended
to a moduli problem over Zp; one has to be a bit careful at points in characteristic p though—one
imposes a condition that the induced action of Zp2 on the Lie algebra of the tangent space is the
direct sum of the two obvious eigenspaces—this is the analogue of the “special” condition in the
previous section.

Representability of this functor over Zp is standard, as long as one knows a lemma (Proposition
3.3 of Boutot-Carayol) about the existence of principal polarizations with certain properties, for
abelian surfaces over nilpotent extensions of k. Drinfel’d reduces this lemma to a question about
p-divisible groups, verifies it for one p-divisible group over k, and deduces the general result using
his local representability result (although there are more direct proofs).

The result is a projective scheme SU over Zp with generic fibre equal to the Shimura curve.
But even things like flatness are non-obvious, and an analysis of the special fibre as things stand
might be tricky.
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The big theorem is

Theorem 4. The formal completion of SU (as a formal scheme over Zp) is isomorphic to the
quotient

GL2(Qp)\((Ω̂⊗̂Ẑnrp )× ZU )

where ZU is a certain discrete set depending on the level structure U .

Note that the p-adic upper half plane on the right is defined over Znrp but the quotient is
formally of finite type over Zp (the action of GL2(Qp) isn’t defined over Znrp ). One can manipulate
the RHS until it becomes a finite union of quotients of Ω̂⊗Zpn so after extension to Zpn for some
n, SU becomes a finite union of “Mumford quotients” of the p-adic upper half plane.

As a consequence of this theorem, Kurihara’s work tells us that SU is flat, and also shows that
the special fibre is reduced, only has ordinary double points as singularities, and even that the
normalisations of the irreducible components of SU are all rational curves!

When there is level structure at p one also gets something (Čerednik didn’t get this, it’s only
because of Drinfel’d’s reinterpretation that one gets anything):

Corollary 1. The analytification of SU is isomorphic to the quotient

GL2(Qp)\(Σn × ZUp)

where Σn is one of the covers of the rigid space Ω.

One deduces this easily from Theorem 4. Carayol uses Corollary 5 to compute the rigid-analytic
cohomology of the spaces Σn.

The construction of the map is as follows: one starts by fixing an abelian surface over k with the
usual properties, and one lets Φ denote its formal group. Then one considers all the algebraizations
of Φ together with a level-U -structure, that is, all the pairs consisting of an abelian surface plus
an isomorphism of the associated formal group with Φ and one checks that this space is just ZU .
This gives us a map from Ω̂⊗ k×ZU to (SU )k; one checks it’s GL2(Qp)-invariant and induces an
isomorphism on the quotient, so we’re now done on the special fibre; one now uses Serre-Tate to
get an isomorphism of the formal schemes.
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