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William Stein just explained to me (3 July 2002) what the Manin constant
is. Along the way, we read some of a preprint called “the Manin constant,
congruence primes, and the modular degree” by Amod and William. Along the
way, we had to do a computation of how differentials on X0(N) change if one
removes a singular point. This reminded me that I am always doing this kind
of computation (it comes up in Coleman-Voloch, I think) and also I’m always
trying to blow up the singularities of X0(N) to get a regular model. So here are
some of the details of these things.

Firstly, not that it really matters for the below, note that we can use Katz-
Mazur (KM) to compactify Y0(N) over Z, that is, that we can apply section 8.6.
The moduli problem Γ0(N) is relatively representable and finite over (Ell), and
regular (all KM 6.6.1), and hence normal, and so the associated coarse moduli
scheme M(Γ0(N)) is normal, by KM 8.1.2. So one can use section 8.6 of KM
to compactify it. The resulting compactification is called M0(N) by Amod
and William, and Bas. Note that this isn’t a fine moduli space and it’s not
necessarily a regular scheme, there are problems at supersingular points.

1 Differentials.

Let M0(N)0 denote the open of M0(N) comprising of the locus where the map
down to Spec(Z) is smooth. I am not one hundred percent sure what this looks
like in general, as I am so scared of these non-representable problems, but at
the end of the day I think that you’re doing something like throwing away all
supersingular points in characteristics p dividing N exactly once, and all non-
reduced fibres, that is, all middle components, in characteristics p dividing N
more than once.

An example of all of this is Y0(2) over Z; this is defined locally as XY = 212,
as I recall. So the one non-smooth point will be defined by X = Y = 2 = 0.

The calculation which William and I did answered the following question:
what is the difference between the local sections of Ω1 on M0(2) and M0(2)0?
More generally, if p divides N once, what’s going on at the fibre at p and how
do things change when one throws away the bad points?
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Here’s how we did it. Set R = Z[X,Y ]/(XY − pn), with n ≥ 1 an integer.
Locally this is the situation. Let’s firstly compute the global sections of Ω1

R/Z.

This is easy, it’s just (RdX ⊕RdY )/(Y dX −XdY ). This ring is probably not
a free R-module, it’s bad at the maximal ideal (X,Y, p), although I don’t prove
this here. It must be bad here though, the map isn’t smooth here.

Now let W be Spec(R) minus the non-smooth point. Note that W = U ∪ V
where U and V are the loci defined by inverting X and Y respectively; any
prime ideal containing both X and Y also contains pn and hence p. An easy
check shows that “the same” formulae give the differentials on U , V , and U ∩V ;
just replace R by the appropriate localisation. The sections of Ω1

R/Z on W can
hence be computed using the sheaf axiom, once one gets ones head around this
computation. Here’s how we did it.

Work entirely within A := R ⊗Q = Q[X,X−1]. Note that both X and Y
are invertible in this ring, because p is. Now all these modules of differentials
can be thought of as subsets of AdX. Let’s write down Z-bases for all of them.
Over Spec(R) a Z-basis is

. . . , X3dX,X2dX,XdX, dX, Y dX = −XdY, dY, Y dY, Y 2dY, . . . .

In terms of dX solely, the Z-basis is

. . . , X2dX,XdX, dX, (pn/X)dX, (pn/X2)dX, (p2n/X3)dX, (p3n/X4)dX, . . . .

Now when we invert X, R[1/X] = Z[X, 1/X] and the differentials get much
bigger: a Z-basis is just XtdX for t ∈ Z. And when we invert Y they get
bigger in a “different direction”; a Z-basis is things of the form p−n(t+1)XtdX
for t ∈ Z. The sections on W are the intersection of these two things; the basis
is XtdX for t ≥ −1, and p−n(t+1)XtdX for t ≤ −1. This is very nearly the
global sections of Ω1 on all of Spec(R); the only difference between the two
spaces of sections is at X−1dX: over Spec(R) we only allowed pnX−1dX; over
W we are allowed X−1dX.

The upshot is that there’s a map Ω1(Spec(R))→ Ω1(W ), and it’s an injec-
tion of free Z-modules, and the index is pn, and the quotient is cyclic, generated
by X−1dX = −Y −1dY , the “log pole” I guess. This differential clearly ex-
ists once one inverts X or Y , but it’s p−nY dX and doesn’t extend over the
singularity.

2 Desingularisation: uv = π2.

I’m sure this is all standard stuff. The idea is to blow up the singular points.
Let’s work in some generality: let’s let O denote a complete DVR with uni-
formiser π, and let’s consider a singularity of the form O[u, v]/(uv − π2) first,
and work our way up to more general π later. Note that this ring is not regular
but it is an integral domain, and is, I believe, integrally closed.

Let’s blow up the closed point. I am very naive about these matters. Here’s
the way I do it. Let A = O[u, v]/(uv−π2). Let I denote the ideal (u, v, π). Let

2



B denote A⊕ I ⊕ I2 ⊕ · · · , considered as a graded ring. It would be nice to see
a presentation of B. I think one is as follows: it’s

A[U, V,Π]/(uV − Uv, uΠ− Uπ, vΠ− V π, uV − πΠ, UV −Π2).

It’s hard to imagine anything else in the kernel. The first three relations are
somehow “coming from projective space” and the last two are “coming from the
relation”.

The blow-up of A at I is just Proj(B), the homogeneous primes not contain-
ing all of U, V,Π. One can understand this better by covering Proj(B) by three
affines gotten by inverting U , V and Π. Note that there’s no need to invert
Π though, as if Π is invertible then both U and V are too. So we can write
Proj(B) as the union of two explicit affines. Here’s one of them: the one gotten
by inverting U .

The idea here is that B(U) is the degree 0 subring of BU , the localisation of
B at {1, U, U2, . . .}. Explicitly,

BU = A[U,U−1, V,Π]/(uV − Uv, uΠ− Uπ, vΠ− V π, uV − πΠ, UV −Π2)

= O[u, v, U, U−1, V,Π]/(uv − π2, uV − Uv, uΠ− Uπ, vΠ− V π, uV − πΠ, UV −Π2).

Now if I had any kind of geometric intuition at all I wouldn’t have to do what
I am about to do, which is to do algebra in the above ring. Firstly observe that
U is invertible, so UV = Π2 gives me V in terms of the other variables, and
Uv = πΠ gives me v in terms of the other variables. So

BU = O[u, U, U−1,Π]/(uΠπ/U − π2, uΠ2/U −Ππ, uΠ− Uπ, uΠ2/U − πΠ)

= O[u, U, U−1,Π]/(uΠ− Uπ).

Now the degree 0 terms of this ring are

B(U) = O[u,Π/U ]/(u(Π/U)− π)

and this is a regular ring! There’s a natural map A→ B(U) sending u to u, and
v to π(Π/U). Note that this map is an injection.

Similarly, B(V ) = O[v,Π/V ]/(v(Π/V )−π) and there’s a natural map from A
to this. The intersection is where both U and V are invertible; one can compute
this for example by inverting V/U in B(U); this is tantamount to inverting Π/U
and one sees that the intersection is O[Π/U,U/Π], considered as an A-module
via the map sending u to πU/Π and v to πΠ/U .

One glues together Spec(B(U) and Spec(B(V )) to get the blow-up of A at I.
To understand this blow-up one can look at the fibres above various points
of Spec(A). If m is a maximal ideal of A that isn’t I, then general nonsense
says that the fibre is just one point, because the blow-up doesn’t change anything
away from I. Remark: I just tried to see this explicitly in our case, but didn’t
find a general argument. One can just check on the special and on the generic
fibre, perhaps this is one way to do it.
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At I we compute the pre-images in both pieces. This just amounts to com-
puting Spec(B(U)/IB(U)) and similar for V . This is dead easy: B(U)/IB(U) =
O[u,Π/U ]/(u(Π/U) − π, u, π) = O[Π/U ] is the affine line. Similarly we get
O[Π/V ] in the other piece. Note that Π/V = U/Π. Looking in B(UV ) we see
that the image of I is (π) and so we are just creating projective 1-space over the
residue field of O. So we have desingularised our singularity and it’s become a
projective line.

In fact, an infinitely more interesting thing to do is to analyse the spe-
cial fibre of the blow-up. This just involves modding everything out by π.
Let k be the residue field of O. Then A becomes k[u, v]/(uv), B(U) becomes
k[u,Π/U ]/(u(Π/U)), B(V ) is similar, and B(UV ) becomes k[(Π/U), (Π/U)−1].
The map A → B(U) becomes the map sending u to u and v to 0, so it factors
through k[u]. The map B(U) to B(UV ) becomes the map sending u to 0 and
Π/U to Π/U . Drawing some pictures shows that the special fibre of the blow-up
is two affine lines and a projective line and the blow-down kills the projective
line.

3 Desingularisation: uv = πn

.
Is this all just the same? Say n ≥ 3.
Let A be O[u, v]/(uv − πn) and let I = (u, v, π). Using notation as in the

previous section,

B = A[U, V,Π]/(uV − Uv, uΠ− Uπ, vΠ− V π, uV − πn−1Π, UV − πn−2Π2),

and so now we see the difference: Proj(B) is now unfortunately only covered by
the three affines gotten by inverting U , V and Π.

Now, analogous to before,

BU = O[u, v, U, U−1, V,Π]/(uv−πn, uV−Uv, uΠ−Uπ, vΠ−V π, uV−πn−1Π, UV−πn−2Π2)

and now observing that V = πn−2Π2/U and v = uV/U gives us

BU = O[u, U, U−1,Π]/(u2πn−2Π2/U2 − πn, uΠ− Uπ, uπn−2Π2/U − πn−1Π)

and the second of these relations implies the other two. So

BU = O[u, U, U−1,Π]/(uΠ− Uπ)

and
B(U) = O[u,Π/U ]/(u(Π/U)− π).

This is regular. The same sort of thing works for B(V ). But the new piece of
information, B(Π), looks like the following:

BΠ = O[u, v, U, V,Π,Π−1]/(uv−πn, uV−Uv, uΠ−Uπ, vΠ−V π, uV−πn−1Π, UV−πn−2Π2)
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and writing u = Uπ/Π and v = V π/Π gives

BΠ = O[U, V,Π,Π−1]/(UV π2 − πnΠ2, V Uπ − πn−1Π2, UV − πn−2Π2),

the first two of these relations clearly being implied by the last. So

BΠ = O[U, V,Π,Π−1]/(UV − πn−2Π2)

and so
B(Π) = O[U/Π, V/Π]/((U/Π)(V/Π)− πn−2).

So for n ≥ 3, one has all the data one needs now. The special fibre is two affine
lines and two projective lines, intersecting transversally: affine to projective to
projective to affine. The outer two intersections are defined by equations of the
form xy = π and the intersection of the projective lines looks like xy = πn−2.
So one has to blow up bn/2c times and one ends up with n− 1 new projective
lines, which was just what I wanted to see.
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